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Maass cusp forms

Let H = {z = x + iy | y > 0} denote the upper half-plane. We
define the group Γ = SL(2,Z) = {γ ∈ GL(2,Z)| det(γ) = 1}.
This group acts on H by linear fractional transformations, i.e(

a b
c d

)
z =

az + b
cz + d

∀γ =

(
a b
c d

)
∈ Γ, z ∈ H.

SL(2,Z) is generated by the two matrices

T =

(
1 1
0 1

)
S =

(
0 −1
1 0

)
.

This gives the following fundamental domain for this action

F =

{
z ∈ H : |z| ≥ 1 and |Re(z)| ≤ 1

2

}
.
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Fundamental domain

3 / 24



Fundamental domain
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Maass cusp forms

The modular surface X = Γ\H is a finite volume non-compact
surface with Laplacian

∆ = −y2
(
∂2

∂x2 +
∂2

∂y2

)
.

We also have the measure

dx dy
y2 .
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Maass cusp forms

We call a function f : H→ C a Maass cusp form on Γ if

1. f is an eigenfunction of the Laplacian, ∆f = λf , λ ≥ 0,

2. f is automorphic, f (γz) = f (z) for all γ ∈ Γ,

3. f ∈ L2(X ), i.e f is square-integrable,

4. f vanishes at all of the cusps of X .

We will denote the space of Maass cusp forms on Γ with Laplace
eigenvalue λ by Sλ.
The set of functions that just satisfy points (2), (3) and (4) we shall
denote as L2

cusp(X ).
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Pictures of Maass forms

(a) λ = 91.141345 . . . (b) λ = 190.131547 . . .

(c) λ = 404.529171 . . . (d) λ = 2468.702167 . . .

Figure: Images of Maass forms from the LMFDB.
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Hecke operators

For any f ∈ Sλ and any non-zero integer n, we define the Hecke
operator Tn by

Tnf (z) =
1√
|n|

∑
ad=n
d>0

d−1∑
j=0


f
(

az + j
d

)
if n > 0,

f
(

az + j
d

)
if n < 0.

This will map Sλ → Sλ.

Now a famous result then tells us that there exists an orthogonal
basis {fj} in L2

cusp(X ) consisting of eigenfunctions to all Hecke
operators Tn.
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Hecke eigenvalues
A Maass cusp form f with Laplace eigenvalue λ = 1

4 + R2 has a
Fourier expansion (at∞) of the form

f (z) =
∑
n 6=0

a(n)
√

yKiR(2π|n|y)e(nx)

where e(nx) = exp(2πinx) and Kν(u) is the K-Bessel function.

We call a Maass form f even if a(−n) = a(n) or odd if
a(−n) = −a(n).
If f is also a Hecke eigenfunction for all Hecke operators Tn, i.e
Tnf = λ(n)f , then we can normalise such that a(1) = 1 and we
have

a(n) = λ(n)

a(−n) = ελ(n)

where ε is 1 is f is even and −1 if f is odd.
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Hejhal’s Algorithm

There are a few methods known for computing Maass forms, the
most widely used is an algorithm due to Hejhal from the 1990’s.
The algorithm goes in the following steps

1. Truncate the Fourier series and treat it like a discrete Fourier
series.

2. Do an inverse Fourier transform along a certain horocycle of
points away from the fundamental domain.

3. This will give an expression for the Fourier coefficients,
however to make it a non-tautology, we use the automorphy of
the Maass form to produce a linear system for the Fourier
coefficients.

4. We then use a non-linear search strategy to zoom in on an
Laplace eigenvalue.
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Hejhal’s algorithm

Let f be a Maass cusp form with Laplace eigenvalue
λ = 1/4 + R2. To begin we truncate the Fourier series

f (z) = f (x + iy) =
∑

0<|n|≤M

a(n)
√

yKiR(2π|n|y)e(nx) + [[ε]].

(We use [[ε]] to denote a quantity with absolute value less than ε.)

We can now view this a discrete Fourier transform in x . Thus we
can do an inverse transform over some points so that we can get
an expression for a(n). However, we will need to be careful
choosing these points so that we can achieve a non-trivial linear
system.
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Hejhal’s algorithm
Let Y < Y0 =

√
3

2 and Q > M. We will perform an inverse
transform over the following set of sampling points along a
horocycle:{

zm = xm + iY
∣∣∣∣xm =

1
2Q

(
m − 1

2

)
, 1− Q ≤ m ≤ Q

}
.

This gives us

a(n)
√

YKiR(2π|n|Y ) =
1

2Q

Q∑
m=1−Q

f (zm)e(−nxm) + [[ε]].

Now to make this a non-trivial system we shall pullback the points
zm into the fundamental domain, that is find the matrices Pm ∈ Γ
such that z∗m = Pmzm, where z∗m = x∗m + iy∗m is in the fundamental
domain. The automorphy of f gives us the non-trivial system since
f (z∗m) = f (zm).
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Picture of zm
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Picture of zm
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Picture of zm
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Hejhal’s algorithm

This allows us to rewrite the system as

a(n)
√

YKiR(2π|n|Y ) =
1

2Q

Q∑
m=1−Q

f (z∗m)e(−nxm) + [[ε]]

=
∑

0<|k |≤M

a(k)Vnk + 2[[ε]]

where

Vnk =
1

2Q

Q∑
m=1−Q

√
y∗mKiR(2π|k |y∗m)e(kx∗m − nxm).

Due to the non-trivial mixing of the points zm and z∗m, we get a
non-trivial linear system for the Fourier coefficients.
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Hejhal’s algorithm

Restricting to 1 ≤ |n| ≤ M, we can rewrite the linear system to get

0 =
∑

0<|k |≤M

a(k)Ṽnk + 2[[ε]]

where Ṽnk = Vnk − δnk
√

YKiR(2π|n|Y ).

If we let V denote the (2M × 2M)-matrix Ṽnk and let C denote the
2M-vector of Fourier coefficients a(n), we can write the linear
system as

VC = 0.

Note that this solution space of this system for a true eigenvalue R
is a 1-dimensional space, so in order to get a unique solution we
use the normalisation a(1) = 1.
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Hejhal’s algorithm - Finding R

This algorithm works for any R and will yield a homogeneous linear
system V (R,Y )C = 0. For a true eigenvalue R, this linear system
should be independent of the choice of Y . We see in practice, that
if R is far away from a true eigenvalue R, then the resulting
coefficients in C change drastically as Y changes.

Thus to find the eigenvalues in a given range [R1,R2], we divide
this interval into smaller intervals and test the R values with 2
different Y values and measure the difference of the coefficients.
We can then repeatedly do this to zoom into an eigenvalue R.
This essentially amounts to minimising some cost function cost(R)
that is large when R is far away from a true eigenvalue and small
when R is close to a true eigenvalue.
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List of eigenvalues

R1 9.53369526135 . . .
R2 12.1730083247 . . .
R3 13.7797513519 . . .
R4 14.3585095183 . . .
R5 16.1380731715 . . .
R6 16.6442592019 . . .
R7 17.7385633811 . . .
R8 18.1809178345 . . .
R9 19.4234814708 . . .
R10 19.4847138547 . . .

Table: List of first 10 eigenvalues R on SL(2,Z). Data from the LMFDB.
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Remarks

I This method is heuristic, so we require another method to
certify if the data produced is correct.

I Despite being heuristic, in practice this method is very stable
and can produce results to high precision.

I An alternative/additional way to test for a true eigenvalue is to
test the multiplicativity of the coefficients, for example
measure how well a(2)a(3) = a(6).

I This method has been generalised to congruence subgroups
(with characters) of SL(2,Z) by Strömberg in 2006.

I There are nearly 15000 examples of these Maass cusp forms
computed and stored on the LMFDB.

I There is also a phase 2 to this algorithm which allows us to
compute more Fourier coefficients once we have a good
approximation to R and its first few Fourier coefficients.
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Verification methods

I In 2006, Booker, Strömbergsson and Venkatesh proved that it
is possible to certify whether a candidate Maass form is
“close” to a true Maass form. Roughly, suppose you have a
computed eigenvalue λ̃ = 1

4 + R̃2 and the coefficients of a
suspected Maass form f̃ . Then they showed that if f̃ is “almost
automorphic”, then f̃ is “close” to a true Maass cusp form f .
They only showed this for level 1, i.e SL(2,Z) and computed
and verified the first few Maass cusp forms to a hundred digits.

I For congruence subgroups of SL(2,Z) current work is being
done to verify the Laplace eigenvalues using that method that
relies on an explicit version of the Selberg trace formula.
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Thanks for listening!

24 / 24


