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Some Complex Analysis

Definition - Domain
A domain D ⊆ C is a connected open subset of C.

Definition - Holomorphic/Analytic function
We call a function f : D → C holomorphic if it has a derivative at every
point in D.

Proposition - Analytic continuation
Let D,D′ be domains with D ⊆ D′ and let f : D → C be holomorphic. Then
there exists (under certain conditions) an unique analytic extension
F : D′ → C such that F = f on D. We call F the analytic continuation of
f to D′.
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The Riemann zeta function
The Riemann zeta function
Let s ∈ C with Re(s) > 1. We define the Riemann zeta function by the
series

ζ(s) =
∞∑

n=1

1
ns =

1
1s +

1
2s +

1
3s + . . . .

This was first studied by Euler in the 18th century, who managed to find
this remarkable relation

ζ(s) =
∏

primes p

(
1

1− p−s

)
.

Euler also managed to find some explicit values as well, the most famous
being

ζ(2) =
π2

6
.
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Facts about ζ
ζ(s) can be analytically continued to be defined for all s ∈ C except at
s = 1 where it has a pole(i.e tends to infinity).

It satisfies the Functional Equation

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s).

Here the Γ(s) function is an extension of the factorial function to
complex numbers.
From this we can get wacky results like ζ(−1) = − 1

12 .
ζ(s) has zeros at the even negative integers, i.e s = −2,−4,−6, . . .
which we call the trivial zeros.
The other zeros of ζ(s) all lie in the Critical strip defined by

S = {s ∈ C|0 < Re(s) < 1}.

If ρ ∈ S is a zero of ζ(s), then so is ρ, 1− ρ, 1− ρ ∈ S.
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Why did anyone care about this function?

It turns out that the Riemann zeta function is closely related to the Prime
Number Theorem.

Theorem - Prime Number Theorem
Let x ≥ 0. Then

π(x) := #{p prime |p ≤ x} =
x

log x
+ error .

For most of the 19th century this was a prominent open problem in
mathematics. Riemann in his 1859 paper, titled “On the number of primes
less than a given quantity”, devised a strategy to try and prove it that
heavily relied on the Riemann zeta function.
One of the key ingredients in the strategy is knowing (roughly) where the
zeros are of ζ(s).
Hadamard and de la Vallée Poussin in 1896 managed to use Riemann’s
strategy to prove the Prime Number Theorem independently.
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Where are those zeros?

The question is now, where in the Critical strip do these zeros lie? Well
Riemann had an idea!

Conjecture - The Riemann Hypothesis

All the zeros of ζ(s) in the Critical strip all lie on the Critical line s = 1
2 + it

with t ∈ R.

Proof
I have no idea.

Where did Riemann come up with this and did he have some evidence to
support this?
Yes! He computed the first few zeros using, what we now call, the
Riemann-Siegel formula.
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Riemann Siegel formula
Idea: Use functional equation and symmetry around s = 1/2 + it to get an
expression for ζ(1/2 + it). Then rotate this value(i.e multiply by complex
exponential) so that it is now real. Then expand formula and use fancy
maths to get a finite sum with a small error.

Definitions
We define the Riemann Siegel theta function by

θ(t) ≈ t
2

log

(
t

2π

)
− t

2
− π

8
+

1
48t

+
7

5760t3 + . . . .

Then define the Z-function for t ∈ R by

Z (t) = eiθ(t)ζ

(
1
2

+ it
)
.

This is a real-valued function. We have that the zeros of Z (t) coincide with
the zeros of ζ(1/2 + it) since |Z (t)| = |ζ(1/2 + it)|.
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Riemann Siegel formula
Final result

Let N =
⌊√

t
2π

⌋
. Then we have

Z (t) = 2
N∑

n=1

n−1/2 cos(t log(n)− θ(t)) + R(t)

where R(t) is some error that can be improved.
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First few zeros

Now Z (t) is just a real valued function and we are just looking for roots of
this, so we can just employ your favourite root finding algorithm (I used
secant for my computations) in steps along the real line and look for sign
changes. In doing so, one can easily compute the first few zeros.

n t
1 14.134725 . . .
2 21.022040 . . .
3 25.010858 . . .
4 30.424876 . . .
5 32.935062 . . .
6 37.586178 . . .
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A little History - Hand calculations

The first few computations were all done by hand and actually used a
different method of computation called Euler-Maclaurin summation,
which is actually slower than the method that Riemann used. However
Riemann’s method was not known to the world until Siegel rediscovered
them 70 years after Riemann used them!

Year Range of t Number of zeros
Riemann 1859 t < 26 3

Gram 1903 t < 65 15
Backlund 1914 t < 200 79

Hutchinson 1925 t < 300 138
Titchmarsh, Comrie 1935-1936 t < 1468 1041
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A little History - Computers

In April 1949 the Manchester Mark I (one of the early electronic
computers) became operational (woo!) and so began the new era of
modern computation. Alan Turing, who was a professor at the University of
Manchester at the time, used this machine to compute some more zeros.

Year Number of zeros
Turing 1950 1104

Lehmer 1956 25,000
Rosser et al. 1968 3,500,000
Brent et al. 1982 200,000,000

1988: Odlyzko-Schönhage algorithm published
van der Lune 2001 10,000,000,000

Gourdon 2004 10,000,000,000,000
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Turing’s Method
Alan Turing in 1950 devised a method to numerically verify whether or not
a zero has been missed. It relies on 2 main theorems.

Theorem 1 - Von Mangoldt
Let N(T ) be the number of zeros of ζ(s) in the critical strip up to some
height T > 0. Then

N(T ) =
T
2π

log

(
T
2π

)
− T

2π
+

7
8

+ S(T ) + error

12 / 27



Turing’s Method
Alan Turing in 1950 devised a method to numerically verify whether or not
a zero has been missed. It relies on 2 main theorems.

Theorem 1 - Von Mangoldt
Let N(T ) be the number of zeros of ζ(s) in the critical strip up to some
height T > 0. Then

N(T ) =
T
2π

log

(
T
2π

)
− T

2π
+

7
8

+ S(T ) + error

12 / 27



Turing’s Method
Alan Turing in 1950 devised a method to numerically verify whether or not
a zero has been missed. It relies on 2 main theorems.

Theorem 1 - Von Mangoldt
Let N(T ) be the number of zeros of ζ(s) in the critical strip up to some
height T > 0. Then

N(T ) =
T
2π

log

(
T
2π

)
− T

2π
+

7
8

+ S(T ) + error

12 / 27



Turing’s Method
Theorem 2 - Littlewood/Turing
S(T ) is 0 on average as T →∞ and we have the bound∣∣∣∣∫ T+h

T
S(t)dt

∣∣∣∣ ≤ 2.3 + 0.128 log

(
T + h

2π

)
for h > 0 and T > 168π.

The idea is to compute a bunch of zeros in some interval (T ,T + h), then
assume we missed a zero. Then N(T + h)− N(T ) is just the number of
zeros that we computed +1. Then using this we compute S(T ) in this
region via

S(T ) = N(T )− T
2π

log

(
T
2π

)
+

T
2π
− 7

8
.

If we didn’t miss a zero then S(T ) will be on average 1 since we
over-counted by 1, which will eventually contradict the above bound.
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Some pictures of Z (t), t ≈ 238
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Some pictures of Z (t), t ≈ 1421
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Some pictures of Z (t), t ≈ 7000
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Some pictures of Z (t), t ≈ 9878
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Some pictures of Z (t), t ≈ 74941
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Some pictures of Z (t), t ≈ 42653550
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Some pictures of Z (t), t ≈ 371870204
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Some pictures of Z (t), t ≈ 1.0× 1024
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Some pictures of Z (t), t ≈ 8.10291947327× 1034
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Consequences of the computations - Mertens Conjecture
Definition - Möbius function
Let n ∈ N. Then the Möbius function µ : N→ {−1, 0, 1} is defined by

µ(n) =


1 if n = 1,

0 if a square divides n,

(−1)k if n = p1p2 . . . pk .

Mertens Conjecture
Let

M(n) =
n∑

k=1

µ(k).

Then for all n > 1 we have

|M(n)| <
√

n.

In 1985 Odlyzko and Riele proved that there exists a counterexample,
however no explicit counterexample has been found. This counterexample
has been show to exist between 1014 and 101040
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Consequences of the computations - Mertens Conjecture
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Consequences of the computations - Mertens Conjecture

Mertens conjecture has been studied intensely since if true, it can be
shown to imply the Riemann Hypothesis.

Sadly, in 1985 Odlyzko and te Riele disproved Mertens conjecture. Their
proof doesn’t show an explicit counterexample and instead shows that

lim sup
n→∞

M(n)n−1/2 > 1.06;

lim inf
n→∞

M(n)n−1/2 < −1.009.

These bounds were attained by computing a bunch of zeros of the
Riemann zeta function to high accuracy. Although no explicit
counterexample has been found, we know it must be between 1014 and
101040

.
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Consequences of the computations - Computing π(x)

Theorem (Platt - 2012)
We have

π(1024) = #{primes p ≤ 1024} = 18, 435, 599, 767, 349, 200, 867.

To compute this, the first 103, 800, 788, 359 zeros of ζ(s) were calculated
to an accuracy of roughly 25 decimal places.
This also agrees with earlier results that required the Riemann Hypothesis.
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Thanks for listening!

27 / 27


