
Fast inverse square-root program

Andrei Seymour-Howell

March 12, 2021

1 / 27

Why would one need to compute 1/
√

x?

The inverse square root is used to normalise vectors. Normalised
vectors are needed for 3D graphics programs to determine angles
of incidence and reflection.
As a reminder a vector v = (v1, v2, v3) ∈ R3 can be normalised by
dividing by it’s norm, that is

v̂ =
v
||v||

=
v√

v2
1 + v2

2 + v2
3

.

3D graphics programs must normalise millions of vectors every
second to simulate lighting. In the early 1990’s, the code that did
this for decimal numbers was computationally expensive,
especially when dealing with a large amount of vectors.

2 / 27

Why would one need to compute 1/
√

x?

The inverse square root is used to normalise vectors. Normalised
vectors are needed for 3D graphics programs to determine angles
of incidence and reflection.
As a reminder a vector v = (v1, v2, v3) ∈ R3 can be normalised by
dividing by it’s norm, that is

v̂ =
v
||v||

=
v√

v2
1 + v2

2 + v2
3

.

3D graphics programs must normalise millions of vectors every
second to simulate lighting. In the early 1990’s, the code that did
this for decimal numbers was computationally expensive,
especially when dealing with a large amount of vectors.

2 / 27

Quake 3 Arena
Quake 3 Arena is a first-person shooter multiplayer game released
in 1999 based on the famous id tech engine.

Now why is this product placement necessary? Well within the
source code in the following quite interesting code to compute the
inverse square root.

3 / 27

Quake 3 Arena
Quake 3 Arena is a first-person shooter multiplayer game released
in 1999 based on the famous id tech engine.

Now why is this product placement necessary? Well within the
source code in the following quite interesting code to compute the
inverse square root.

3 / 27

Magic code

4 / 27

Newton’s method

Newton’s method is a root-finding algorithm that successively
computes better approximations to a root of a function f (x).

More explicitly, if f (x) = 0 for some x ∈ R, then for some
sufficiently close number x0 to x , the following sequence

xn+1 = xn −
f (xn)

f ′(xn)

will converge to x quadratically.
For nice-enough functions, the hardest part is finding the initial
guess.

5 / 27

Newton’s method

Newton’s method is a root-finding algorithm that successively
computes better approximations to a root of a function f (x).
More explicitly, if f (x) = 0 for some x ∈ R, then for some
sufficiently close number x0 to x , the following sequence

xn+1 = xn −
f (xn)

f ′(xn)

will converge to x quadratically.

For nice-enough functions, the hardest part is finding the initial
guess.

5 / 27

Newton’s method

Newton’s method is a root-finding algorithm that successively
computes better approximations to a root of a function f (x).
More explicitly, if f (x) = 0 for some x ∈ R, then for some
sufficiently close number x0 to x , the following sequence

xn+1 = xn −
f (xn)

f ′(xn)

will converge to x quadratically.
For nice-enough functions, the hardest part is finding the initial
guess.

5 / 27

Newton’s method for 1/
√

x

For our case we wish to calculate 1√
x . To do this we consider the

function f (y) = 1
y2 − x , whose positive root is exactly 1√

x .

Applying Newton’s method to this we get the sequence

yn+1 =
yn
(
3− xy2

n
)

2
= yn

(
3
2
− x

2
y2

n

)
.

This is the step occurring in the line:

6 / 27

Newton’s method for 1/
√

x

For our case we wish to calculate 1√
x . To do this we consider the

function f (y) = 1
y2 − x , whose positive root is exactly 1√

x .
Applying Newton’s method to this we get the sequence

yn+1 =
yn
(
3− xy2

n
)

2
= yn

(
3
2
− x

2
y2

n

)
.

This is the step occurring in the line:

6 / 27

Newton’s method for 1/
√

x

For our case we wish to calculate 1√
x . To do this we consider the

function f (y) = 1
y2 − x , whose positive root is exactly 1√

x .
Applying Newton’s method to this we get the sequence

yn+1 =
yn
(
3− xy2

n
)

2
= yn

(
3
2
− x

2
y2

n

)
.

This is the step occurring in the line:

6 / 27

Storing integers on a computer

Computers store information using bits, which are logical states
that can have 2 possible values, think 1 or 0.

Numerically computers work in base 2, so to store an integer on a
computer we convert the number to base 2 and keep a track of the
sign of the integer. For example 190 is +10111110, or −50 is
−110010.
Since computers are limited by how many bits it can store, we limit
the numbers bits we allow to store each number. If we stick to the
same rules throughout the code, we can gain vast speed
advantages. This is implemented in programming languages by
data types.
Examples in C include int for 16-bit integer, char for text
characters/strings and float for 32-bit decimal numbers.

7 / 27

Storing integers on a computer

Computers store information using bits, which are logical states
that can have 2 possible values, think 1 or 0.
Numerically computers work in base 2, so to store an integer on a
computer we convert the number to base 2 and keep a track of the
sign of the integer. For example 190 is +10111110, or −50 is
−110010.

Since computers are limited by how many bits it can store, we limit
the numbers bits we allow to store each number. If we stick to the
same rules throughout the code, we can gain vast speed
advantages. This is implemented in programming languages by
data types.
Examples in C include int for 16-bit integer, char for text
characters/strings and float for 32-bit decimal numbers.

7 / 27

Storing integers on a computer

Computers store information using bits, which are logical states
that can have 2 possible values, think 1 or 0.
Numerically computers work in base 2, so to store an integer on a
computer we convert the number to base 2 and keep a track of the
sign of the integer. For example 190 is +10111110, or −50 is
−110010.
Since computers are limited by how many bits it can store, we limit
the numbers bits we allow to store each number. If we stick to the
same rules throughout the code, we can gain vast speed
advantages. This is implemented in programming languages by
data types.

Examples in C include int for 16-bit integer, char for text
characters/strings and float for 32-bit decimal numbers.

7 / 27

Storing integers on a computer

Computers store information using bits, which are logical states
that can have 2 possible values, think 1 or 0.
Numerically computers work in base 2, so to store an integer on a
computer we convert the number to base 2 and keep a track of the
sign of the integer. For example 190 is +10111110, or −50 is
−110010.
Since computers are limited by how many bits it can store, we limit
the numbers bits we allow to store each number. If we stick to the
same rules throughout the code, we can gain vast speed
advantages. This is implemented in programming languages by
data types.
Examples in C include int for 16-bit integer, char for text
characters/strings and float for 32-bit decimal numbers.

7 / 27

Long data type

The data type for integers appearing in the code is long, which
stores whole numbers in 32-bits of memory. The first bit is used to
store the sign of the number, 0 for + and 1 for − and the other bits
are used to number.

For example the number 190 would be stored in memory as

This allows us to store all integers in the range
[−231 + 1, 231 − 1] = [−2, 147, 483, 647,+2, 147, 483, 647].
On computers we actually store negative numbers in two’s
complement form. Since we’ll only be dealing with positive
numbers we wont need to look at it here.

8 / 27

Long data type

The data type for integers appearing in the code is long, which
stores whole numbers in 32-bits of memory. The first bit is used to
store the sign of the number, 0 for + and 1 for − and the other bits
are used to number.
For example the number 190 would be stored in memory as

This allows us to store all integers in the range
[−231 + 1, 231 − 1] = [−2, 147, 483, 647,+2, 147, 483, 647].
On computers we actually store negative numbers in two’s
complement form. Since we’ll only be dealing with positive
numbers we wont need to look at it here.

8 / 27

Long data type

The data type for integers appearing in the code is long, which
stores whole numbers in 32-bits of memory. The first bit is used to
store the sign of the number, 0 for + and 1 for − and the other bits
are used to number.
For example the number 190 would be stored in memory as

This allows us to store all integers in the range
[−231 + 1, 231 − 1] = [−2, 147, 483, 647,+2, 147, 483, 647].

On computers we actually store negative numbers in two’s
complement form. Since we’ll only be dealing with positive
numbers we wont need to look at it here.

8 / 27

Long data type

The data type for integers appearing in the code is long, which
stores whole numbers in 32-bits of memory. The first bit is used to
store the sign of the number, 0 for + and 1 for − and the other bits
are used to number.
For example the number 190 would be stored in memory as

This allows us to store all integers in the range
[−231 + 1, 231 − 1] = [−2, 147, 483, 647,+2, 147, 483, 647].
On computers we actually store negative numbers in two’s
complement form. Since we’ll only be dealing with positive
numbers we wont need to look at it here.

8 / 27

How to store decimal values?

The first simplest way to thing about doing this is to just also
consider negative powers of 2. For example allow the first 16-bits
to be positive powers of 2 and the rest be negative powers of 2 to
give you the decimal digits.

The main drawback of this is the numbers we can store are quite
small, only up to 215 − 1 if we also include a sign bit.
Thankfully some clever people at the Institute of Electrical and
Electronic Engineers(IEEE) came up with a standard to store these
numbers more efficiently.

9 / 27

How to store decimal values?

The first simplest way to thing about doing this is to just also
consider negative powers of 2. For example allow the first 16-bits
to be positive powers of 2 and the rest be negative powers of 2 to
give you the decimal digits.
The main drawback of this is the numbers we can store are quite
small, only up to 215 − 1 if we also include a sign bit.

Thankfully some clever people at the Institute of Electrical and
Electronic Engineers(IEEE) came up with a standard to store these
numbers more efficiently.

9 / 27

How to store decimal values?

The first simplest way to thing about doing this is to just also
consider negative powers of 2. For example allow the first 16-bits
to be positive powers of 2 and the rest be negative powers of 2 to
give you the decimal digits.
The main drawback of this is the numbers we can store are quite
small, only up to 215 − 1 if we also include a sign bit.
Thankfully some clever people at the Institute of Electrical and
Electronic Engineers(IEEE) came up with a standard to store these
numbers more efficiently.

9 / 27

IEEE 754-1985 Floating point numbers

The main idea is that we already have a way to minimise how we
write numbers by using scientific notation. That is we tend to write
a number as

x = ±d0.d1d2d3 . . .× 10e

where 1 ≤ d0 < 10.

The exponent e tends to be quite small so
when we store this number we can add more bits to describe the
di ’s.
In base 2 we would write our number as

x = ±1.b1b2b3 . . .× 2ex = ±(1 + mx)2ex

where ex is an integer. We call ex the exponent and 1 + mx the
mantissa or significand. On a computer we would only need to
store the numbers ex and mx and the sign since we will only ever
work in base 2.

10 / 27

IEEE 754-1985 Floating point numbers

The main idea is that we already have a way to minimise how we
write numbers by using scientific notation. That is we tend to write
a number as

x = ±d0.d1d2d3 . . .× 10e

where 1 ≤ d0 < 10. The exponent e tends to be quite small so
when we store this number we can add more bits to describe the
di ’s.

In base 2 we would write our number as

x = ±1.b1b2b3 . . .× 2ex = ±(1 + mx)2ex

where ex is an integer. We call ex the exponent and 1 + mx the
mantissa or significand. On a computer we would only need to
store the numbers ex and mx and the sign since we will only ever
work in base 2.

10 / 27

IEEE 754-1985 Floating point numbers

The main idea is that we already have a way to minimise how we
write numbers by using scientific notation. That is we tend to write
a number as

x = ±d0.d1d2d3 . . .× 10e

where 1 ≤ d0 < 10. The exponent e tends to be quite small so
when we store this number we can add more bits to describe the
di ’s.
In base 2 we would write our number as

x = ±1.b1b2b3 . . .× 2ex = ±(1 + mx)2ex

where ex is an integer.

We call ex the exponent and 1 + mx the
mantissa or significand. On a computer we would only need to
store the numbers ex and mx and the sign since we will only ever
work in base 2.

10 / 27

IEEE 754-1985 Floating point numbers

The main idea is that we already have a way to minimise how we
write numbers by using scientific notation. That is we tend to write
a number as

x = ±d0.d1d2d3 . . .× 10e

where 1 ≤ d0 < 10. The exponent e tends to be quite small so
when we store this number we can add more bits to describe the
di ’s.
In base 2 we would write our number as

x = ±1.b1b2b3 . . .× 2ex = ±(1 + mx)2ex

where ex is an integer. We call ex the exponent and 1 + mx the
mantissa or significand. On a computer we would only need to
store the numbers ex and mx and the sign since we will only ever
work in base 2.

10 / 27

IEEE 754-1985 Floating point numbers

The IEEE 754 standard states that if you want to store a number in
this way in 32-bits:
I 1-bit should be given to the sign,
I 8-bits should given to the exponent ex ,
I 23-bits should be given to the mantissa mx .

To actually store this physically in the memory, we have to first
change how we write ex and mx .
I We write Ex = ex + B where B = 127 = 27 − 1 called the

exponent bias.
I We write Mx = mx × L where L = 223, then round the number

to an integer.

This means we only need to 3 integers that are all positive Ex ,Mx

and the sign.

11 / 27

IEEE 754-1985 Floating point numbers

The IEEE 754 standard states that if you want to store a number in
this way in 32-bits:
I 1-bit should be given to the sign,
I 8-bits should given to the exponent ex ,
I 23-bits should be given to the mantissa mx .

To actually store this physically in the memory, we have to first
change how we write ex and mx .
I We write Ex = ex + B where B = 127 = 27 − 1 called the

exponent bias.

I We write Mx = mx × L where L = 223, then round the number
to an integer.

This means we only need to 3 integers that are all positive Ex ,Mx

and the sign.

11 / 27

IEEE 754-1985 Floating point numbers

The IEEE 754 standard states that if you want to store a number in
this way in 32-bits:
I 1-bit should be given to the sign,
I 8-bits should given to the exponent ex ,
I 23-bits should be given to the mantissa mx .

To actually store this physically in the memory, we have to first
change how we write ex and mx .
I We write Ex = ex + B where B = 127 = 27 − 1 called the

exponent bias.
I We write Mx = mx × L where L = 223, then round the number

to an integer.

This means we only need to 3 integers that are all positive Ex ,Mx

and the sign.

11 / 27

IEEE 754-1985 Floating point numbers

The IEEE 754 standard states that if you want to store a number in
this way in 32-bits:
I 1-bit should be given to the sign,
I 8-bits should given to the exponent ex ,
I 23-bits should be given to the mantissa mx .

To actually store this physically in the memory, we have to first
change how we write ex and mx .
I We write Ex = ex + B where B = 127 = 27 − 1 called the

exponent bias.
I We write Mx = mx × L where L = 223, then round the number

to an integer.

This means we only need to 3 integers that are all positive Ex ,Mx

and the sign.

11 / 27

Floating point example

Let’s look at x = π = 3.141592653589793 In fixed point
arithmetic in base 2 we have
x = 11.0010010000111111011011

In the normalised form, we would get

x = +(1 + 0.57079648971557617188 . . .)× 21

= +(1 + 0.10010010000111111011011 . . .)× 21.

Hence ex = 1, which means Ex = 1 + B = 128 = 100000002 and
mx = 0.10010010000111111011011 . . ., which gives
Mx = mx × L = 10010010000111111011011 = 4788187 after
rounding.

12 / 27

Floating point example

Let’s look at x = π = 3.141592653589793 In fixed point
arithmetic in base 2 we have
x = 11.0010010000111111011011
In the normalised form, we would get

x = +(1 + 0.57079648971557617188 . . .)× 21

= +(1 + 0.10010010000111111011011 . . .)× 21.

Hence ex = 1, which means Ex = 1 + B = 128 = 100000002 and
mx = 0.10010010000111111011011 . . ., which gives
Mx = mx × L = 10010010000111111011011 = 4788187 after
rounding.

12 / 27

Floating point example

Let’s look at x = π = 3.141592653589793 In fixed point
arithmetic in base 2 we have
x = 11.0010010000111111011011
In the normalised form, we would get

x = +(1 + 0.57079648971557617188 . . .)× 21

= +(1 + 0.10010010000111111011011 . . .)× 21.

Hence ex = 1, which means Ex = 1 + B = 128 = 100000002 and
mx = 0.10010010000111111011011 . . ., which gives
Mx = mx × L = 10010010000111111011011 = 4788187 after
rounding.

12 / 27

Floating point example

Let’s look at x = π = 3.141592653589793 In fixed point
arithmetic in base 2 we have
x = 11.0010010000111111011011
In the normalised form, we would get

x = +(1 + 0.57079648971557617188 . . .)× 21

= +(1 + 0.10010010000111111011011 . . .)× 21.

Hence ex = 1, which means Ex = 1 + B = 128 = 100000002 and
mx = 0.10010010000111111011011 . . ., which gives
Mx = mx × L = 10010010000111111011011 = 4788187 after
rounding.

12 / 27

Initialisation step

13 / 27

evil floating point bit level hack

The claim of this line of code, is that treating the bits of a positive
floating point number x as a long type gives a rough approximation
to log2(x).

To begin we shall write x = 2ex (1 + mx), then

log2(x) = ex + log2(1 + mx).

Since 0 ≤ mx < 1, the logarithm on the right can be approximated
by

log2(1 + mx) ≈ mx + σ

where σ is a free parameter used to tune the approximation.
It turns out that σ ≈ 0.0430357 . . . gives the best approximation for
the uniform error along the interval. For historical purposes we
shall let σ = 0.0450465679168701.

14 / 27

evil floating point bit level hack

The claim of this line of code, is that treating the bits of a positive
floating point number x as a long type gives a rough approximation
to log2(x).
To begin we shall write x = 2ex (1 + mx), then

log2(x) = ex + log2(1 + mx).

Since 0 ≤ mx < 1, the logarithm on the right can be approximated
by

log2(1 + mx) ≈ mx + σ

where σ is a free parameter used to tune the approximation.
It turns out that σ ≈ 0.0430357 . . . gives the best approximation for
the uniform error along the interval. For historical purposes we
shall let σ = 0.0450465679168701.

14 / 27

evil floating point bit level hack

The claim of this line of code, is that treating the bits of a positive
floating point number x as a long type gives a rough approximation
to log2(x).
To begin we shall write x = 2ex (1 + mx), then

log2(x) = ex + log2(1 + mx).

Since 0 ≤ mx < 1, the logarithm on the right can be approximated
by

log2(1 + mx) ≈ mx + σ

where σ is a free parameter used to tune the approximation.

It turns out that σ ≈ 0.0430357 . . . gives the best approximation for
the uniform error along the interval. For historical purposes we
shall let σ = 0.0450465679168701.

14 / 27

evil floating point bit level hack

The claim of this line of code, is that treating the bits of a positive
floating point number x as a long type gives a rough approximation
to log2(x).
To begin we shall write x = 2ex (1 + mx), then

log2(x) = ex + log2(1 + mx).

Since 0 ≤ mx < 1, the logarithm on the right can be approximated
by

log2(1 + mx) ≈ mx + σ

where σ is a free parameter used to tune the approximation.
It turns out that σ ≈ 0.0430357 . . . gives the best approximation for
the uniform error along the interval. For historical purposes we
shall let σ = 0.0450465679168701.

14 / 27

log2(1 + mx) error

15 / 27

evil floating point bit level hack
We now do the “evil floating point bit level hack” and interpret the
floating point bits of x as a long type. Since the mantissa is already
an integer it doesn’t change, so all we really do is add on the
exponent to the 24-th bit onwards, numerically this means just
multiplying it by L = 223.

In the code this is given by

Mathematically, this means

Ix = ExL + Mx

= L(ex + B + mx)

= L(ex + mx + σ + B − σ)
≈ L log2(x) + L(B − σ)

Rearranging, we see that Ix is a linear approximation to log2(x)

log2(x) ≈
Ix
L
− (B − σ).

16 / 27

evil floating point bit level hack
We now do the “evil floating point bit level hack” and interpret the
floating point bits of x as a long type. Since the mantissa is already
an integer it doesn’t change, so all we really do is add on the
exponent to the 24-th bit onwards, numerically this means just
multiplying it by L = 223.
In the code this is given by

Mathematically, this means

Ix = ExL + Mx

= L(ex + B + mx)

= L(ex + mx + σ + B − σ)
≈ L log2(x) + L(B − σ)

Rearranging, we see that Ix is a linear approximation to log2(x)

log2(x) ≈
Ix
L
− (B − σ).

16 / 27

evil floating point bit level hack
We now do the “evil floating point bit level hack” and interpret the
floating point bits of x as a long type. Since the mantissa is already
an integer it doesn’t change, so all we really do is add on the
exponent to the 24-th bit onwards, numerically this means just
multiplying it by L = 223.
In the code this is given by

Mathematically, this means

Ix = ExL + Mx

= L(ex + B + mx)

= L(ex + mx + σ + B − σ)
≈ L log2(x) + L(B − σ)

Rearranging, we see that Ix is a linear approximation to log2(x)

log2(x) ≈
Ix
L
− (B − σ).

16 / 27

evil floating point bit level hack
We now do the “evil floating point bit level hack” and interpret the
floating point bits of x as a long type. Since the mantissa is already
an integer it doesn’t change, so all we really do is add on the
exponent to the 24-th bit onwards, numerically this means just
multiplying it by L = 223.
In the code this is given by

Mathematically, this means

Ix = ExL + Mx

= L(ex + B + mx)

= L(ex + mx + σ + B − σ)
≈ L log2(x) + L(B − σ)

Rearranging, we see that Ix is a linear approximation to log2(x)

log2(x) ≈
Ix
L
− (B − σ).

16 / 27

WTF

If we let y = 1√
x , the magic number that I alluded to earlier,

actually isn’t that magic, it just comes from the identity

log2(y) = −
1
2
log2(x).

Using our approximation from before we can write this as

Iy
L
− (B − σ) ≈ −1

2

(
Ix
L
− (B − σ)

)
which yields

Iy ≈
3
2

L(B − σ)− 1
2

Ix .

17 / 27

WTF

If we let y = 1√
x , the magic number that I alluded to earlier,

actually isn’t that magic, it just comes from the identity

log2(y) = −
1
2
log2(x).

Using our approximation from before we can write this as

Iy
L
− (B − σ) ≈ −1

2

(
Ix
L
− (B − σ)

)
which yields

Iy ≈
3
2

L(B − σ)− 1
2

Ix .

17 / 27

Magic number reveal

This first term is just a constant given by

3
2

L(B − σ) = 1597463007

= 0x5f3759df

in base 16 or hexadecimal. This is written in the code in the line

The term 1
2 Ix is computed by shifting all the bits to the right by one.

Since we work base 2 this will be the same as dividing by 2.
Then the last line

just converts Iy back to y and gives us the initial guess of y = 1√
x .

18 / 27

Magic number reveal

This first term is just a constant given by

3
2

L(B − σ) = 1597463007 = 0x5f3759df

in base 16 or hexadecimal. This is written in the code in the line

The term 1
2 Ix is computed by shifting all the bits to the right by one.

Since we work base 2 this will be the same as dividing by 2.
Then the last line

just converts Iy back to y and gives us the initial guess of y = 1√
x .

18 / 27

Magic number reveal

This first term is just a constant given by

3
2

L(B − σ) = 1597463007 = 0x5f3759df

in base 16 or hexadecimal. This is written in the code in the line

The term 1
2 Ix is computed by shifting all the bits to the right by one.

Since we work base 2 this will be the same as dividing by 2.

Then the last line

just converts Iy back to y and gives us the initial guess of y = 1√
x .

18 / 27

Magic number reveal

This first term is just a constant given by

3
2

L(B − σ) = 1597463007 = 0x5f3759df

in base 16 or hexadecimal. This is written in the code in the line

The term 1
2 Ix is computed by shifting all the bits to the right by one.

Since we work base 2 this will be the same as dividing by 2.
Then the last line

just converts Iy back to y and gives us the initial guess of y = 1√
x .

18 / 27

How good is this approximation?

Let’s consider again x = 3.14159 . . ., our memory for y looks like

Now interpreting this as an long type and storing this in i , the
memory address for i looks like

Shifting the bits by one place to the right, i.e the line i >> 1, i
becomes

Then subtracting this from our “magic number” 0x5f3759df, we get

Finally reinterpreting this as a float and storing this back in y we
get

As a decimal number this gives y = 0.5735160112. After 1
Newton iteration we get y = 0.5639570355. The actual value is
0.56418958354775

19 / 27

How good is this approximation?

Let’s consider again x = 3.14159 . . ., our memory for y looks like

Now interpreting this as an long type and storing this in i , the
memory address for i looks like

Shifting the bits by one place to the right, i.e the line i >> 1, i
becomes

Then subtracting this from our “magic number” 0x5f3759df, we get

Finally reinterpreting this as a float and storing this back in y we
get

As a decimal number this gives y = 0.5735160112. After 1
Newton iteration we get y = 0.5639570355. The actual value is
0.56418958354775

19 / 27

How good is this approximation?

Let’s consider again x = 3.14159 . . ., our memory for y looks like

Now interpreting this as an long type and storing this in i , the
memory address for i looks like

Shifting the bits by one place to the right, i.e the line i >> 1, i
becomes

Then subtracting this from our “magic number” 0x5f3759df, we get

Finally reinterpreting this as a float and storing this back in y we
get

As a decimal number this gives y = 0.5735160112. After 1
Newton iteration we get y = 0.5639570355. The actual value is
0.56418958354775

19 / 27

How good is this approximation?

Let’s consider again x = 3.14159 . . ., our memory for y looks like

Now interpreting this as an long type and storing this in i , the
memory address for i looks like

Shifting the bits by one place to the right, i.e the line i >> 1, i
becomes

Then subtracting this from our “magic number” 0x5f3759df, we get

Finally reinterpreting this as a float and storing this back in y we
get

As a decimal number this gives y = 0.5735160112. After 1
Newton iteration we get y = 0.5639570355. The actual value is
0.56418958354775

19 / 27

How good is this approximation?

Let’s consider again x = 3.14159 . . ., our memory for y looks like

Now interpreting this as an long type and storing this in i , the
memory address for i looks like

Shifting the bits by one place to the right, i.e the line i >> 1, i
becomes

Then subtracting this from our “magic number” 0x5f3759df, we get

Finally reinterpreting this as a float and storing this back in y we
get

As a decimal number this gives y = 0.5735160112. After 1
Newton iteration we get y = 0.5639570355. The actual value is
0.56418958354775

19 / 27

How good is this approximation?

Let’s consider again x = 3.14159 . . ., our memory for y looks like

Now interpreting this as an long type and storing this in i , the
memory address for i looks like

Shifting the bits by one place to the right, i.e the line i >> 1, i
becomes

Then subtracting this from our “magic number” 0x5f3759df, we get

Finally reinterpreting this as a float and storing this back in y we
get

As a decimal number this gives y = 0.5735160112. After 1
Newton iteration we get y = 0.5639570355. The actual value is
0.56418958354775

19 / 27

Error graph
Relative error = vA−vE

vE

20 / 27

Better Error graph

21 / 27

Even Better Error graph

22 / 27

The big question, should you use this?

No.

Probably.

23 / 27

The big question, should you use this?

No. Probably.

23 / 27

Reasons not to use this code

1. The main reason is this is no longer the fastest method. In
1999 the “Streaming SIMD Extensions” (SSE) were added to
x86 architecture CPU, effectively allowing certain operations,
like square-rooting directly on the CPU without needing to do
anything in software. One of the functions include “rsqrtss”
which computes the inverse-square root considerably faster
and to the full 11 decimal accuracy. Most modern compilers
will automatically choose the SSE functions even when you
type the software version.

2. A second slightly less important reason is that this
reinterpreting floats and integers using pointers is considered
undefined behaviour and some computers probably wont like
it. (As of a few months ago C++ defined correct behaviour
using C++20’s std::bit cast function).

24 / 27

Reasons not to use this code

1. The main reason is this is no longer the fastest method. In
1999 the “Streaming SIMD Extensions” (SSE) were added to
x86 architecture CPU, effectively allowing certain operations,
like square-rooting directly on the CPU without needing to do
anything in software. One of the functions include “rsqrtss”
which computes the inverse-square root considerably faster
and to the full 11 decimal accuracy. Most modern compilers
will automatically choose the SSE functions even when you
type the software version.

2. A second slightly less important reason is that this
reinterpreting floats and integers using pointers is considered
undefined behaviour and some computers probably wont like
it. (As of a few months ago C++ defined correct behaviour
using C++20’s std::bit cast function).

24 / 27

History

I John Carmack

I Terje Mathisen
I Gary Tarolli
I Greg Walsh

25 / 27

History

I John Carmack
I Terje Mathisen

I Gary Tarolli
I Greg Walsh

25 / 27

History

I John Carmack
I Terje Mathisen
I Gary Tarolli

I Greg Walsh

25 / 27

History

I John Carmack
I Terje Mathisen
I Gary Tarolli
I Greg Walsh

25 / 27

Greg Walsh’s inspiration

Cleve Moler

26 / 27

Thanks for listening!

Main references:
I FAST INVERSE SQUARE ROOT - Chris Lomont
I M.Robertson: A Brief History of InvSqrt, Bachelor Thesis,

Univ. of New Brunswick 2012.

27 / 27

