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Maass cusp forms
Let H = {z = x + iy|y > 0} denote the upper half-plane. We
define the Hecke congruence subgroup I'y(N) < SL(2,Z) by

Fo(N) = {(i Z) €SL(2,Z)|c=0 (mod N)}
for N > 0.
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Let H = {z = x + iy|y > 0} denote the upper half-plane. We
define the Hecke congruence subgroup I'y(N) < SL(2,Z) by

Fo(N) = {(i 2) €SL(2,Z)jc=0 (mod N)}

for N > 0. This group acts on H by linear fractional
transformations, i.e

a b az+b»b a b

The modular surface X = 'p(N)\H is a finite volume non-compact
surface with Laplacian
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Level 1 -SL(2,Z)

Mo(1) = SL(2,Z) is generated by the two matrices

1 1 0 —1
1) =04
This gives the following fundamental domain for this action

1
F:{zeH:|z[21and|Re(z)]§2}.
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Maass cusp forms

We call a function f : H — C a Maass cusp form of level N (trivial
character) if

1. fis an eigenfunction of the Laplacian, Af = Af, A > 0,
2. fis automorphic, f(yz) = f(z) for all v € ['o(N),

3. f € L2(X),i.e fis square-integrable,

4. fvanishes at all of the cusps of X.

We will denote the space of Maass cusp forms of level N and
Laplace eigenvalue \ by Sy(N).
The set of functions that just satisfy points (2), (3) and (4) we shall

denote as LZ,s,(X).
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Pictures of Maass forms

N e

a) Level 1, A =91.141345. b) Level 1, A = 190.131547 .
c) Level 2, A = 79.867724 . d) Level 3, A = 182.713668.

Figure: Images of Maass forms from the LMFDB.
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Hecke operators

For any f € S\(N) and any non-zero integer n coprime to N, we
define the Hecke operator T, by

az+j\ .
f ifn >0,
Ly s (a;i,-) |
(a%)£1j 0 (d ) if n < 0.
a>0

Thf(z) =

This will map Sx(N) — Si\(N).
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For any f € S\(N) and any non-zero integer n coprime to N, we
define the Hecke operator T, by

az+j\ .
f if n >0,
Ly s (a;i,-> |
(a%)£1j 0 (d ) if n < 0.
a>0

Thf(z) =

This will map Sx(N) — Si\(N).

Now a famous result then tells us that there exists an orthogonal
basis {f;} in Lcusp(X) consisting of eigenfunctions to all Hecke
operators T, with (n, N) = 1.
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Hecke eigenvalues

A Maass cusp form f of level N and with Laplace eigenvalue
A= } + R? has a Fourier expansion (at oo) of the form

f(z) =) _ a(n)\/yKir(2r|nly)e(nx)
n#0

where e(nx) = exp(2winx) and K, (u) is the K-Bessel function.
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Hecke eigenvalues

A Maass cusp form f of level N and with Laplace eigenvalue
A= } + R? has a Fourier expansion (at oo) of the form

f(z) =) _ a(n)\/yKir(2r|nly)e(nx)
n#0

where e(nx) = exp(2winx) and K, (u) is the K-Bessel function.
We call a Maass form f even if a(—n) = a(n) or odd if

a(—n) = —a(n).

If f is also a Hecke eigenfunction for all Hecke operators T, with
(n,N) =1,i.e Tof = A(n)f, then we can normalise such that
a(1) =1 and we have

where e is 1 is f is even and —1 if f is odd.
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Hejhal’s Algorithm
There are a few methods known for computing Maass forms, the
most widely used is an algorithm due to Hejhal from the 1990’s.
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most widely used is an algorithm due to Hejhal from the 1990’s.
The algorithm goes in the following steps
1. Truncate the Fourier series and treat it like a discrete Fourier
series.

f(2)=tx+iy)= > a(n)yyKa(2r|nly)e(nx) + [[]].

o<|n|<M

2. Do aninverse Fourier transform along a certain horocycle of
points away from the fundamental domain.

3. This will give an expression for the Fourier coefficients,
however to make it a non-tautology, we use the automorphy of
the Maass form to produce a linear system for the Fourier
coefficients.

4. We then use a non-linear search strategy to zoom in on an
Laplace eigenvalue.
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List of eigenvalues for SL(2,7Z)

Ry | 9.53369526135 ...
Ry | 12.1730083247 ...
Rz | 18.7797513519 ...
R4 | 14.3585095183 ...
Rs | 16.1380731715...
Rs | 16.6442592019 ...
R; | 17.7385633811 ...
Rs | 18.1809178345 ...
Ry | 19.4234814708 ...
Ry | 19.4847138547 ...

Table: List of first 10 eigenvalues R on SL(2,Z). Data from the LMFDB.
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Remarks

» The search strategy for finding R tends to involve computing a
set of Fourier coefficients for 2 different R values and then
minimise by either measuring the difference or testing their
multiplicativity.
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Remarks

» The search strategy for finding R tends to involve computing a
set of Fourier coefficients for 2 different R values and then
minimise by either measuring the difference or testing their
multiplicativity.

» This method is heuristic, so we require another method to
certify if the data produced is correct.

» Despite being heuristic, in practice this method is very stable
and can produce results to high precision.

» There are nearly 15000 examples of these Maass cusp forms
computed and stored on the LMFDB.

> There is also a phase 2 to this algorithm which allows us to
compute more Fourier coefficients once we have a good
approximation to R and its first few Fourier coefficients.
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Verification methods

> In 2006, Booker, Strombergsson and Venkatesh proved that it
is possible to certify whether a candidate Maass form is
“close” to a true Maass form. Roughly, suppose you have a
computed eigenvalue A= % + R? and the coefficients of a
suspected Maass form f. Then they showed that if f is “almost
automorphic”, then 7 is “close” to a true Maass cusp form f.
They only showed this for level 1, i.e SL(2,Z) and computed
and verified the first few Maass cusp forms to a hundred digits.
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Verification methods

> In 2006, Booker, Strombergsson and Venkatesh proved that it
is possible to certify whether a candidate Maass form is
“close” to a true Maass form. Roughly, suppose you have a
computed eigenvalue A= % + R? and the coefficients of a
suspected Maass form f. Then they showed that if f is “almost
automorphic”, then 7 is “close” to a true Maass cusp form f.
They only showed this for level 1, i.e SL(2,Z) and computed
and verified the first few Maass cusp forms to a hundred digits.

» For congruence subgroups of SL(2, Z) current work is being
done to verify the Laplace eigenvalues using that method that
relies on an explicit version of the Selberg trace formula.

> Little plug: In order to do rigorous computations we use
interval arithmetic. A library | use for this is ARB library for C
which does arbitrary ball arithmetic.
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Thanks for listening!
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