Amie Wilkinson Exercises

Lecture 1

1. Consider the tripling map $g: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ given by

$$
g(x)=3 x \quad(\bmod 1)
$$

(a) Prove that $g_{*} \mu=\mu$, where μ is the Lebesgue probability measure on \mathbb{R} / \mathbb{Z}
(b) Let $\mathcal{C} \subset[0,1]$ be the middle-thirds Cantor set. Show that $g(\mathcal{C})=$ \mathcal{C}.
2. Let $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$, and let $f_{A}: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ be the automorphism:

$$
f_{A}(x)=A x \quad\left(\bmod \mathbb{Z}^{2}\right)
$$

(a) Show that for all $x \in \mathbb{T}^{2}$:

$$
f_{A}^{k}(x)=x, \text { for some } k \geq 2 \Longleftrightarrow x=\left(\frac{p_{1}}{q_{1}}, \frac{p_{2}}{q_{2}}\right) \in \mathbb{Q}^{2} / \mathbb{Z}^{2}
$$

(b) Show that $k \leq\left(q_{1} q_{2}\right)^{2}$ in part (a)

Hint: Part (b) is a hint for part (a). Use the fact that f_{A} is invertible as well as the pigeonhole principle.
3. Find two Borel probability measures μ_{1} and μ_{2} on \mathbb{R} / \mathbb{Z} and an integer $m \geq 2$ such that the following properties all hold:

- $f_{*} \mu_{i}=\mu_{i}$, for $i=1,2$, where

$$
f(x)=m x(\bmod 1)
$$

- For every nonempty open interval I and $i=1,2$:

$$
\mu_{i}(I)>0
$$

- $\mu_{1} \perp \mu_{2}$, meaning that there exists a Borel set $X \in \mathcal{B}$ such that $\mu_{1}(X)=0$ and $\mu_{2}(X)=1$.

Hint: There are several ways to do this. One way (for $m=2$) is to code the doubling map by a shift (off of a countable set of points). Consider two different Bernoulli measures on the shift... The Birkhoff ergodic theorem (or the law of large numbers) is useful here.

