Amie Wilkinson Exercises

Lecture 2

1. Let (X, \mathcal{B}, μ) be a probability space, and let $\mathcal{A} \subset \mathcal{B}$ be a finite sub-sigma algebra of \mathcal{B} : i.e., $\# \mathcal{A}<\infty$.
(a) Let $\mathcal{P}_{\mathcal{A}}$ be the atoms of \mathcal{A}; that is, the set of nonempty elements of \mathcal{A} that do not contain other nonempty elements. Show that $\mathcal{P}_{\mathcal{A}}$ is a partition of X.
(b) Let $B \in \mathcal{B}$. Compute the conditional expectation $E\left(\chi_{B} \mid \mathcal{A}\right)$, where χ_{B} is the characteristic function of B.
(c) Let $f \in L^{1}(X, \mathcal{B}, \mu)$. Compute $E(f \mid \mathcal{A})$.
2. Let $\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots$ be a sequence of $(\bmod 0)$ finite partitions of the circle \mathbb{R} / \mathbb{Z} into intervals with the properties:

- every element if \mathcal{P}_{n} is a $(\bmod 0)$ union of elements of \mathcal{P}_{n+1}, and
- the maximum diameter of elements of \mathcal{P}_{n} tends to 0 as $n \rightarrow \infty$.

Let $B \in \mathcal{B}_{\mathbb{R} / \mathbb{Z}}$ have positive Lebesgue measure: $\mu(B)>0$. Prove that there exists a sequence of elements $I_{n} \in \mathcal{P}_{n}$ such that

$$
\lim _{n \rightarrow \infty} \mu\left(B \mid I_{n}\right)=1
$$

