Amie Wilkinson Exercises

Lecture 2

- 1. Let (X, \mathcal{B}, μ) be a probability space, and let $\mathcal{A} \subset \mathcal{B}$ be a *finite* sub-sigma algebra of \mathcal{B} : i.e., $\#\mathcal{A} < \infty$.
 - (a) Let $\mathcal{P}_{\mathcal{A}}$ be the *atoms* of \mathcal{A} ; that is, the set of nonempty elements of \mathcal{A} that do not contain other nonempty elements. Show that $\mathcal{P}_{\mathcal{A}}$ is a partition of X.
 - (b) Let $B \in \mathcal{B}$. Compute the conditional expectation $E(\chi_B | \mathcal{A})$, where χ_B is the characteristic function of B.
 - (c) Let $f \in L^1(X, \mathcal{B}, \mu)$. Compute $E(f | \mathcal{A})$.
- 2. Let $\mathcal{P}_1, \mathcal{P}_2, \ldots$ be a sequence of (mod 0) finite partitions of the circle \mathbb{R}/\mathbb{Z} into intervals with the properties:
 - every element if \mathcal{P}_n is a (mod 0) union of elements of \mathcal{P}_{n+1} , and
 - the maximum diameter of elements of \mathcal{P}_n tends to 0 as $n \to \infty$.

Let $B \in \mathcal{B}_{\mathbb{R}/\mathbb{Z}}$ have positive Lebesgue measure: $\mu(B) > 0$. Prove that there exists a sequence of elements $I_n \in \mathcal{P}_n$ such that

$$\lim_{n \to \infty} \mu(B|I_n) = 1$$