Amie Wilkinson Exercises

Lecture 5
(1) Let $f_{\epsilon}: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ be defined by

$$
f_{\epsilon}(x, y):=(2 x+y-\epsilon \sin (2 \pi(x+y)), x+y)=h_{\epsilon} \circ f_{A}(x, y),
$$

where $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$, and $h_{\epsilon}(x, y)=(x-\epsilon \sin (2 \pi y), y)$.
(Note the "minus sign" in this definition!)
(a) Prove that for all $\epsilon \in \mathbb{R}, f_{\epsilon}$ preserves Lebesgue measure.

Hint: Show that for all x, y and all ϵ :

$$
\operatorname{det}\left(D_{(x, y)} f_{\epsilon}\right)=1
$$

Use the chain rule.
(b) Consider the cone fields on \mathbb{T}^{2} defined by

$$
\mathcal{C}^{u}(x, y)=\left\{(u, v) \in \mathbb{R}^{2}: u v>0\right\}, \quad \text { and } \mathcal{C}^{s}(x, y)=\left\{(u, v) \in \mathbb{R}^{2}: u v<0\right\} .
$$

Show that \mathcal{C}^{u} is invariant under $D f_{A}=A$ and that vectors in \mathcal{C}^{u} are expanded in length under $D f_{A}$ by a definite factor $\sqrt{2}$. Similarly show that \mathcal{C}^{s} is invariant under $D f_{A}^{-1}=A^{-1}$ and that vectors in \mathcal{C}^{s} are expanded in length under $D f_{A}^{-1}$ by the definite factor $\sqrt{2}$.
(c) Find a value of ϵ_{0} so that f_{ϵ} is an Anosov diffeomorphism for all $\epsilon<\epsilon_{0}$.

Hint: Cone fields. Use the exercise from Khadim War's lecture yesterday.
(d) Show that if $g: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ is an Anosov diffeomorphism, and if $\left(x_{0}, y_{0}\right) \in \mathbb{T}^{2}$ satisfies

$$
g^{k}\left(x_{0}, y_{0}\right)=\left(x_{0}, y_{0}\right)
$$

for some $k \geq 1$, then the eigenvalues of the matrix $D_{\left(x_{0}, y_{0}\right)} g^{k}$ are λ_{1}, λ_{2}, where $\left|\lambda_{1}\right|<1<\left|\lambda_{2}\right|$.
(e) Find a value of $\epsilon_{1}>0$ such that f_{ϵ} is not Anosov for $\epsilon \geq \epsilon_{1}$ but close to ϵ_{1}.

Hint: Consider the derivative at $(0,0)$. Recall the relationship between trace and eigenvalues for 2×2 matrices of determinant 1 .
(f) Prove that there exists $\bar{\epsilon}>0$ such that f_{ϵ} is Anosov for $\epsilon<\bar{\epsilon}$ and $f_{\bar{\epsilon}}$ is not Anosov.
(g) ${ }^{* * *}$ Find $\bar{\epsilon}$ (use a computer?) Is $f_{\bar{\epsilon}}$ ergodic? If f_{ϵ} Anosov for $\epsilon>\bar{\epsilon}$?

