ICTP Summer School on Dynamical Systems Rotations of the circle and renormalization Homework 1

Exercise 1.1. Let $R_{\alpha}: S^1 \to S^1$ where $\alpha = p/q$ and p and q are coprime, i.e., gcd(p,q) = 1.

- (a) Draw an orbit of R_{α} for α for p/q = 2/7 and for p/q = 5/8. Prove that q is the minimal period, i.e. for each $x \in \mathbb{R}/\mathbb{Z}$ we have $R_{\alpha}^{k}(x) \neq x$ for each $1 \leq k < q$. What is the dynamical meaning of p?
- (b) Assume now that α is irrational. Conclude the proof started in class that for every $z \in S^1$ the forward orbit $\mathscr{O}_{R_{\alpha}}(z)$ is dense in S^1 .

* Exercise 1.2. Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ be an irrational number. Prove that there are infinitely many fractions p/q where $p \in \mathbb{Z}$, $q \in \mathbb{N}$ and p, q coprime, that solve the equation

$$\left|\alpha - \frac{p}{q}\right| \le \frac{1}{q^2}.$$

[This result is known as Dirichlet theorem in Number Theory and it shows how well an irrational number can be approximated by rational numbers.]

More Exercises

Exercise 1.3. Let $X = [0,1) \times [0,1)$ and let $f: X \to X$ be given by

$$f(x,y) = (x+y \mod 1, y).$$

- (a) Show that the set Per(f) of periodic points consists exactly of the points $(x, y) \in X$ such that y is rational.
- (b) Are there points whose orbit is dense? Explain your answer.

[Here in the definition of density let d be the Euclidean distance on $[0, 1] \times [0, 1]$, that is

$$d((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}.$$

Exercise 1.4. Let $X = [0, 1) \times [0, 1)$ be the unit square and let d be the Euclidean distance. Consider the map

$$f(x_1, x_2) = (x_1 + \alpha_1 \mod 1, x_2 + \alpha_2 \mod 1).$$

Assume that at least one of α_1, α_2 is irrational.

- (a) Write down the the n^{th} -term of the orbit $\mathcal{O}_f^+(\underline{x})$ of $\underline{x} = (x_1, x_2)$ under f and show that for any $\underline{x} = (x_1, x_2) \in [0, 1)^2$ all points in the orbit $\mathcal{O}_f^+(\underline{x})$ of \underline{x} under f are distinct.
- (b) Show that for any $\underline{x} = (x_1, x_2) \in [0, 1)^2$ and any N positive integer there exists $1 \le n \le N^2$ such that

$$d(f^n(\underline{x}), \underline{x}) \le \frac{\sqrt{2}}{N},$$

where d is the Euclidean distance.

Exercise 1.5. Consider the map $\Psi : \mathbb{R}/\mathbb{Z} \to S^1$ given by $\Psi(x) = e^{2\pi i x}$.

- (a) Check that Ψ is well-defined and establishes a one-to-one correspondence between \mathbb{R}/\mathbb{Z} and S^1 (that is, show Ψ is injective and surjective).
- (b) Fix $b \in \mathbb{N}$. Show that $f_b : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ given by $f_b(x) = bx \mod 1$ is conjugate to the map $g_b : S^1 \to S^1$ given by

$$g_b(z) = z^b.$$

(c) Let d be the distance on S^1 given by the shortest arc length divided by 2π . Show that

$$d(\Psi(x), \Psi(y)) = \min_{m \in \mathbb{Z}} |x - y + m|.$$

(d) Show that g_b expands distances in the following sense: if $d(x, y) \leq 1/2b$, then

$$d(g_b(x), g_b(y)) = bd(x, y).$$

* Exercise 1.6. Let X = [0,1] and let $f : X \to X$ be differentiable and invertible. Prove that:

- (a) If f'(x) > 0 then f has only fixed points and no periodic points;
- (b) If f'(x) < 0 then f has a unique fixed point and all other periodic points have period two.