ICTP Summer School on Dynamical Systems Rotations of the circle and renormalization Homework 1

Exercise 1.1. Let $R_{\alpha}: S^{1} \rightarrow S^{1}$ where $\alpha=p / q$ and p and q are coprime, i.e., $g c d(p, q)=1$.
(a) Draw an orbit of R_{α} for α for $p / q=2 / 7$ and for $p / q=5 / 8$. Prove that q is the minimal period, i.e. for each $x \in \mathbb{R} / \mathbb{Z}$ we have $R_{\alpha}^{k}(x) \neq x$ for each $1 \leq k<q$. What is the dynamical meaning of p ?
(b) Assume now that α is irrational. Conclude the proof started in class that for every $z \in S^{1}$ the forward orbit $\mathscr{O}_{R_{\alpha}}(z)$ is dense in S^{1}.

* Exercise 1.2. Let $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ be an irrational number. Prove that there are infinitely many fractions p / q where $p \in \mathbb{Z}, q \in \mathbb{N}$ and p, q coprime, that solve the equation

$$
\left|\alpha-\frac{p}{q}\right| \leq \frac{1}{q^{2}} .
$$

[This result is known as Dirichlet theorem in Number Theory and it shows how well an irrational number can be approximated by rational numbers.]

More Exercises

Exercise 1.3. Let $X=[0,1) \times[0,1)$ and let $f: X \rightarrow X$ be given by

$$
f(x, y)=(x+y \quad \bmod 1, y)
$$

(a) Show that the set $\operatorname{Per}(f)$ of periodic points consists exactly of the points $(x, y) \in X$ such that y is rational.
(b) Are there points whose orbit is dense? Explain your answer.
[Here in the definition of density let d be the Euclidean distance on $[0,1] \times[0,1]$, that is

$$
\left.d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} .\right]
$$

Exercise 1.4. Let $X=[0,1) \times[0,1)$ be the unit square and let d be the Euclidean distance. Consider the map

$$
f\left(x_{1}, x_{2}\right)=\left(x_{1}+\alpha_{1} \quad \bmod 1, x_{2}+\alpha_{2} \quad \bmod 1\right)
$$

Assume that at least one of α_{1}, α_{2} is irrational.
(a) Write down the the $n^{t h}$-term of the orbit $\mathcal{O}_{f}^{+}(\underline{x})$ of $\underline{x}=\left(x_{1}, x_{2}\right)$ under f and show that for any $\underline{x}=\left(x_{1}, x_{2}\right) \in[0,1)^{2}$ all points in the orbit $\mathcal{O}_{f}^{+}(\underline{x})$ of \underline{x} under f are distinct.
(b) Show that for any $\underline{x}=\left(x_{1}, x_{2}\right) \in[0,1)^{2}$ and any N positive integer there exists $1 \leq n \leq$ N^{2} such that

$$
d\left(f^{n}(\underline{x}), \underline{x}\right) \leq \frac{\sqrt{2}}{N}
$$

where d is the Euclidean distance.
Exercise 1.5. Consider the map $\Psi: \mathbb{R} / \mathbb{Z} \rightarrow S^{1}$ given by $\Psi(x)=e^{2 \pi i x}$.
(a) Check that Ψ is well-defined and establishes a one-to-one correspondence between \mathbb{R} / \mathbb{Z} and S^{1} (that is, show Ψ is injective and surjective).
(b) Fix $b \in \mathbb{N}$. Show that $f_{b}: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} / \mathbb{Z}$ given by $f_{b}(x)=b x \bmod 1$ is conjugate to the map $g_{b}: S^{1} \rightarrow S^{1}$ given by

$$
g_{b}(z)=z^{b} .
$$

(c) Let d be the distance on S^{1} given by the shortest arc length divided by 2π. Show that

$$
d(\Psi(x), \Psi(y))=\min _{m \in \mathbb{Z}}|x-y+m| .
$$

(d) Show that g_{b} expands distances in the following sense: if $d(x, y) \leq 1 / 2 b$, then

$$
d\left(g_{b}(x), g_{b}(y)\right)=b d(x, y)
$$

* Exercise 1.6. Let $X=[0,1]$ and let $f: X \rightarrow X$ be differentiable and invertible. Prove that:
(a) If $f^{\prime}(x)>0$ then f has only fixed points and no periodic points;
(b) If $f^{\prime}(x)<0$ then f has a unique fixed point and all other periodic points have period two.

