ICTP Summer School on Dynamical Systems Rotations of the circle and renormalization Homework 2

Let $G:[0,1] \rightarrow[0,1]$ be the Gauss map. Let $x \in[0,1]$, let $\left[a_{0}, a_{1}, \ldots\right]=\left[a_{0}(x), a_{1}(x), \ldots\right]$ denote the (a) continued fraction expansion of x (infinite and uniquely defined if x is irrational, one of the finite continued fraction expansions otherwise).
Exercise 2.1. (a) Complete the proof by induction that if $x \notin \mathbb{Q}$ and $\left(a_{i}\right)_{i=0}^{+\infty}$ is the itinerary of $\mathscr{O}_{G}^{+}(x)$ then $x=\left[a_{0}, a_{1}, \ldots, a_{n}, \ldots\right]$.
(b) Assume that $x \in(3 / 4,4 / 5)$ and find $a_{0}(x)$ and $a_{1}(x)$. Now suppose also that $G^{2}(x)=x$ and find x.
(c) Construct an example of a point $x \in[0,1)$ such that the orbit $\mathscr{O}_{G}^{+}(x)$ accumulates to $\frac{1}{3}$, that is there is an increasing subsequence n_{k} such that

$$
\lim _{k \rightarrow \infty} G^{n_{k}}(z)=\frac{1}{3}
$$

* Exercise 2.2. [Leading digits of powers of two.] Consider the sequence $\left(2^{n}\right)_{n \in \mathbb{N}}$ of powers of two:

$$
1,2,4,8,16,32,64,128,256,512,1024,2048, \ldots
$$

The leading digit of a number is simply the first digit in the decimal expansion. For example, the leading digit of 512 is 5 . The leading digits of the previous sequence are written in bold font:

$$
\mathbf{1}, \mathbf{2}, \mathbf{4}, \mathbf{8}, \mathbf{1} 6, \mathbf{3} 2, \mathbf{6} 4, \mathbf{1} 28, \mathbf{2} 56, \mathbf{5} 12, \mathbf{1} 024, \mathbf{2} 048, \ldots
$$

Consider the sequence of the leading digits:

$$
1,2,4,8,1,3,6,1,2,5,1,2, \ldots
$$

Compute the frequency of the digit 1 in the sequence of leading digits of $\left(2^{n}\right)_{n \in \mathbb{N}}$, i.e. what is the limit

$$
\lim _{N \rightarrow \infty} \frac{\operatorname{Card}\left\{0 \leq n<N \quad \text { s.t. the leading digit of } 2^{n} \text { is } k\right\}}{N}
$$

(Here Card denotes cardinality)
$\left[\right.$ Answer: $\left.\log _{10}(k+1)-\log _{10} k=\log _{10}\left(1+\frac{1}{k}\right).\right]$

More Exercises

Exercise 2.3. Let $\sigma: \Sigma \rightarrow \Sigma$ be the shift map on the space $\Sigma=\mathbb{N}^{\mathbb{N}}$ of sequences $\underline{a}=\left(a_{n}\right)_{n \in \mathbb{N}}$ with a_{i} positive integers. Let $X=[0,1)-\mathbb{Q}$ the set of irrational points in $[0,1)$ and consider the map $\psi: \Sigma \rightarrow X$ given by

$$
\psi(\underline{a})=\left[a_{1}, a_{2}, \ldots,\right]=\frac{1}{a_{1}+\frac{1}{a_{2}+\ldots}} .
$$

(a) Show that ψ is a conjugacy between the Gauss map $G: X \rightarrow X$ and $\sigma: \Sigma \rightarrow \Sigma$.
(b) Describe all fixed points of G in terms of their continued fraction expansion.
(c) Is $\psi: \Sigma \rightarrow[0,1)$ a conjugacy between $G:[0,1) \rightarrow[0,1)$ and $\sigma: \Sigma \rightarrow \Sigma$? Explain.

Exercise 2.4. Using itineraries of the Gauss map:
(a) write the continued fraction expansions of the number $0 \leq \alpha \leq 1$ such that

$$
\alpha=\frac{1}{5+\frac{1}{4+\alpha}} .
$$

(b) Assume that $x \in[0,1]$ is such that $G^{k}(x) \in(1 / 3,1 / 2)$ for all $k \in \mathbb{N}$. Find x.
(c) Show that if $\lim _{n \rightarrow \infty} G^{n}(x)=0$ then $\lim _{n \rightarrow \infty} a_{n}(x)=\infty$.
(d) construct an example of a point $x \in[0,1)$ which is non periodic under G and each even iterate (that is, each iterate of the form $G^{2 n}(x)$ for $n \in \mathbb{N}$) belongs to the left half of the unit interval.

* Exercise 2.5. Let $G:[0,1] \rightarrow[0,1]$ be the Gauss map. Show that if α is a periodic point of period n for G then it is a quadratic irrational.
[Hint: Try first for $n=2$.]

