ICTP Summer School on Dynamical Systems Rotations of the circle and renormalization Homework 3

Exercise 3.1. Let R_{α} be an irrational rotation, let $\alpha=\left[a_{0}, a_{1}, \ldots\right]$ be the continued fraction expansion of α and let $p_{n} / q_{n}=\left[a_{0}, \ldots, a_{n}\right]$ be the convergents of α. Let $\Delta^{(n)}$ be the arc with endpoints 0 and $R_{\alpha}^{q_{n}}(0)$. Verify yourself that the lenghts λ_{n} of the intervals $\Delta^{(n)}$ for $n \geq 1$ satisfy

$$
\frac{\lambda_{n}}{\lambda_{n-1}}=G^{n}(\alpha)
$$

where G is the Gauss map and that the return times to $I^{(n)}=\Delta^{(n)} \cup \Delta^{(n-1)}, n \geq 1$ are q_{n} and q_{n+1}. Try:

- the case $n=0$ and $n=1$ first (drawing pictures);
- the general case (by induction).

Exercise 3.2. Let $R_{\alpha}: S^{1} \rightarrow S^{1}$ be a rotation. Let $I \subset S^{1}$ be an arc (an interval in $[0,1] / \sim)$. Let T be the Poincar'e first return map of R_{α} to I. Show that T is an exchange of three intervals, i.e. there exists three subintervals I_{1}, I_{2}, I_{3} which partition I and such that $T\left(I_{1}\right), T\left(I_{2}\right), T\left(I_{3}\right)$ cover again I.

Exercise 3.3. Let G be the Gauss map and let F be the Farey map, given by

$$
F(x)= \begin{cases}\frac{1-x}{x} & \text { if } x>\frac{1}{2} \\ \frac{x}{1-x} & \text { if } x \leq \frac{1}{2}\end{cases}
$$

Let F_{0} and F_{1} be the two branches of F, F_{0} denoting the left branch (restriction to $[0,1 / 2]$), F_{1} denoting the left branch (restriction to $[1 / 2,1]$).

Verify that G can be obtained accelerating F by putting together all consecutive branches of F_{0} (plus the next F_{1}), namely

$$
G(x)= \begin{cases}F_{1}(x) & \text { if } x>\frac{1}{2} \\ F_{1} \circ F_{0}^{k(x)+1}(x) & \text { if } x \leq \frac{1}{2}\end{cases}
$$

where $k(x)$ is the largest integer k such that $x \in[0,1 / 2], F(x) \in[0,1 / 2], \ldots F^{k}(x) \in[0,1 / 2]$.

