ICTP Summer School on Dynamical Systems Rotations of the circle and renormalization Homework 4

Exercise A1 Let R_{α} be an irrational rotation and consider the inducing intervals $I^{(n)}$ defined in class. Consider the towers representation of R_{α} as towers with heights q_{n} and q_{n-1} over the intervals $\Delta^{(n-1)}$ and $\Delta^{(n)}$ (shown in Figure),
(a) Plot inside the towers the orbit segment: $\left\{R_{\alpha}^{i}(0), \quad 0 \leq i<q_{n}+q_{n-1}\right\}$;
(b) Plot inside the towers the orbit segment: $\left\{R_{\alpha}^{i}(0), \quad 0 \leq i<q_{n}+q_{n+1}\right\}$;

Exercise A2 Let R_{α} be a rotation by $\alpha \notin \mathbb{Q}$. Let ξ_{n} be the partition given by

$$
\left\{\Delta_{i}^{(n-1)}, 0 \leq i<q_{n}\right\} \cup\left\{\Delta_{i}^{(n)}, 0 \leq i<q_{n-1}\right\}
$$

Encode this partition by a word w_{n} in the letters l (for large) and s (for short) which encode in clockwise order the sequence of short and long intervals (see example in figure).

Show that the strings w_{n} are obtained recursively from $w_{0}=s l$ as follows:

- for n even, get w_{n+1} by replacing each s by l and each l by the word $l^{a_{n}} s$ (where s^{k} denote s repeated k times);
- for n odd, get w_{n+1} by replacing each s by l and each l by the word $s l^{a_{n}}$.
[A curious fact about this string: it is almost palyndrome: if you reverse the order of the letters, it is equal to itself a part possibly the first and the last symbol. Try it out on a few examples! (for the proof see the paper "'A limit theorem for Birkhoff sums..."', Sinai and Ulcigrai, Contemporary Mathematics 2008)]

Figure 1: In this example, $w_{n}=$ slllslllslllsslllsllll.

Exercise A3 (Kac Lemma)

Let (X, \mathscr{B}, μ) be a probability space $(\mu(X) 1=)$ and let T be a measure preserving ergodic transformation of (X, \mathscr{B}, μ). Let B be a set such that $\bigcup_{n \geq 0} T^{-n}(B)=X$ (we say that B is a sweeping set). Show that

$$
\int_{Y} r_{Y} d \mu=1
$$

Hint: You can assume that T is invertible and use (or try to prove) the decomposition of the space as Kakutani towers that we stated in class, namely

$$
X=\cup_{n \geq 0} \cup_{k=0}^{n-1} T^{k}\left(Y_{n}\right), \quad Y_{n}:=\left\{y \in Y: \quad r_{Y}(y)=n\right\} .
$$

Rk: The result is known as Kac's Lemma and shows that the expected value of the return time r_{Y} is $\frac{1}{\mu(Y)}$. It also holds for T non invertible (a proof uses the notion of natural extension).

