
ICTP, Trieste, July 2018 Dynamical Systems School

3 Gauss map and continued fractions

In this lecture we will introduce the Gauss map, which is very important for its connection
with continued fractions in number theory.

The Gauss map G : [0, 1]→ [0, 1] is the following map:

G(x) =

{
0 if x = 0{

1
x

}
= 1

x mod 1 if 0 < x ≤ 1

Here {x} denotes the fractional part of x. We can write {x} = x− [x] where [x] is the integer
part. Equivalently, {x} = x mod 1.

Remark that [
1

x

]
= n ⇔ n ≤ 1

x
< n+ 1 ⇔ 1

n+ 1
< x ≤ 1

n
.

Thus, explicitely, one has the following expression (see the graph in Figure 1):

G(x) =

{
0 if x = 0
1
x − n if 1

n+1 < x ≤ 1
n

forn ∈ N.

The rescrition of G to an interval of the form (1/n + 1, 1/n] is called branch. Each branch
G : (1/n+ 1, 1/n]→ [0, 1) is monotone, surjective (onto [0, 1)) and invertible (see Figure 1).

10

1

1/3 1/21/4...

...

Figure 1: The first branches of the graph of the Gauss map.

The Gauss map is important for its connections with continued fractions.
A finite continued fraction (CF will be used as shortening for Continued Fraction) is an

expression of the form
1

a0 + 1
a1+

1

a2+ 1
a3+... 1

an

(1)

where a0, a1, a2, . . . , an ∈ N\{0} are called entries of the continued fraction expansion. We
will denote the finite continued fraction expansion by [a0, a1, a2, . . . , an].

Every finite continued fraction expansion correspond to a rational number p/q (which can
be obtained by clearing out denominators).
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Example 3.1. For example
1

2 + 1
3

=
1

2·3+1
3

=
3

7
.

Conversely, all rational numbers in [0, 1] admit a representation as a finite continued
fraction1.

Example 3.2. For example

3

4
=

1

1 + 1
3

,
49

200
=

1

3 + 1
4+ 1

12+ 1
4

.

Every irrational number x ∈ (0, 1) can be expressed through a (unique) infinite continued
fraction2, that we denote by

[a0, a1, a2, a3, . . . ] =
1

a0 + 1
a1+

1

a2+ 1
a3+...

.

Example 3.3. For example

π = 3 +
1

7 + 1
15+ 1

1+ 1
293+...

,

1

1 + 1
1+ 1

1+ 1
1+...

=

√
5− 1

2
.

The number (
√

5 − 1)/2 is known as golden mean3 and it has the lowest possible continued
fraction entries, all entries equal to one. Similarly, the number whose CF entries are all equal
to 2 is known as silver mean.

One can see that a number is rational if and only if the continued fraction expansion is
finite.

If x is an irrational number whose infinite continued fraction expansion is [a1, a2, a3, . . . ],
one can truncate the continued fraction expansion at level n and obtain a rational number
that we denote pn/qn

pn
qn

= [a0, a1, a2, . . . , an].

These numbers pn/qn are called convergents of the continued fraction.
Two of the important properties of convergents are the following:

1. One can prove that pn/qn converge to x exponentially fast, i.e.

lim
n→∞

pn
qn

= x and

∣∣∣∣pnqn − x
∣∣∣∣ ≤ 1

(
√

2)n
. (2)

Thus, the fractions pn/qn give rational approximations of x.

1This representatin is not unique: if the last digit an of a finite CF is 1, then [a0, . . . , an−1, 1] =
[a0, . . . , an−1 + 1]. If one requires that the last entry is different than one, though, then one can prove
that the representation as finite continued fraction is unique.

2To be precise, when we write such an infinite continued fraction expression, its value is the limit of the
finite continued fraction expansion truncations [a0, a1, a2, a3, . . . , an], each of which is a well defined rational
number. One should first prove that this limit exist, see (2).

3The inverse of the golden mean is
√

5+1
2

, known as golden ratio. It appears often in art and in nature
since it is considered aesthetically pleasing: for example, the ratio of the width and height of the facade of
the Partenon in Athens is exactly the golden ratio and a whole Renessaince treaty, Luca Pacioli’s De divina
proportione, written in 1509, is dedicated to the golden ratio in arts, science and architecture.
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2. Convergents give best approximations among all rational approximations with denomi-
nator up to qn, that is∣∣∣∣x− pn

qn

∣∣∣∣ ≤ ∣∣∣∣x− p

q

∣∣∣∣ , ∀ p ∈ Z, 0 ≤ q ≤ qn.

One can also see that the continued fraction expansion of an irrational number is unique.

To find the continued fraction expansion of a number, we will exploit the relation with
the symbolic coding of the Gauss map, in the same way that binary expansions are related
to the symbolic coding of the doubling map.

Let Pn be the subintervals of [0, 1) naturally determined by the domains of the branches
of the Gauss map:

P1 =

(
1

2
, 1

]
, P2 =

(
1

3
,

1

2

]
, P3 =

(
1

4
,

1

3

]
, . . . , Pn =

(
1

n+ 1
,

1

n

]
, . . .

Remark that Pn accumulate towards 0 as n increases If we add P0 = {0}, the collection
{P0, P1, . . . , Pn, . . . } is a (countable) partition4 of [0, 1].

Theorem 3.1. Let x be irrational. Let a0, a1, . . . , an, . . . be the itinerary of O+
G(x) with

respect to the partition {P0, P1, P2, . . . , Pn, . . . }, i.e.

x ∈ Pa0 , G(x) ∈ Pa1 , . . . , G2(x) ∈ Pa2 , . . . , Gk(x) ∈ Pak , . . . ,

Then x = [a0, a1, a2, . . . , an, . . . ]. Thus, itineraries of the Guass map give the entries of the
continued fraction expansions.

Remark 3.1. If x is rational, then there exists n such that Gn(x) = 0 and hence Gm(x) = 0
for all m ≥ n. In this case, Gm(x) ∈ P0 for all m ≥ n so the itinerary is eventually zero. The
theorem is still true if we consider the beginning of the itineary: the finite itinerary before the
tail of 0 gives the entries of the finite continued fraction expansion of x.

Proof. Let us first remark that

x ∈ Pn ⇔ 1

n+ 1
< x ≤ 1

n
⇔ n ≤ 1

x
< n+ 1 ⇔

[
1

x

]
= n. (3)

In particular, a0 = [1/x] since x ∈ Pa0 . Thus,

G(x) =

{
1

x

}
=

1

x
−
[

1

x

]
=

1

x
− a0 ⇔ x =

1

a0 +G(x)
.

Let us prove by induction that

an =

[
1

Gn(x)

]
and x =

1

a0 + 1
a1+...

1

an+Gn+1(x)

= [a0, a1, . . . , an +Gn+1(x)]. (4)

We have already shown that this is true for n = 0. Assume that it is proved for n and consider

n+ 1. Since Gn+1(x) ∈ Pan+1
by definition of itinerary, we have an+1 =

[
1

Gn(x)

]
by (3). This

proves the first part of (4) for n+ 1. Then, recalling the definition of G we have

Gn+2(x) =
1

Gn+1(x)
−
[

1

Gn+1(x)

]
=

1

Gn+1(x)
−an+1 ⇔ Gn+1(x) =

1

an+1 +Gn+2(x)

4Recall that a partition is a collection of disjoint sets whose union is the whole space.
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so that, plugging that in the second part of the inductive assumption (4) we get

x =
1

a0 + . . . 1
an+Gn+1(x)

=
1

a0 + . . . 1
an+

1

an+1+Gn+2(x)

,

which proves the second part of (4) for n + 1. Thus, recursively, the itinerary is producing5

the infinite continued fraction expansion of x.

From the proof of the previous theorem, one can see the following.

Remark 3.2. The Gauss map acts on the digits of the CF expansion as the one-sided shift,
that is

if x = [a0, a1, a2, . . . , an, . . . ]

then G(x) = [a1, a2, a3, . . . , an+1, . . . ].

One can characterize in terms of orbits of the Gauss map various class of numbers. For
example:

1. Rational numbers are exactly the numbers x which have finite continued fraction ex-
pansion or equivalently such that there exists n ∈ N such that Gn(x) = 0 (eventually
mapped to zero by the Gauss map).

2. Quadratic irrationals, that is numbers of the form a+b
√
c

d , where a, b, c, d are integers6,
are exactly numbers which have a eventually periodic continued fraction expansion or
equivalently are pre-periodic points for the Gauss map.

In number theory (and in particular in Diophantine approximation) other class of numbers
(for example Badly approximable numbers) can be characterized in terms of their continued
fraction expansion7.

Example 3.4. We have already seen two examples of quadratic irrationals, the golden mean
g and the silver mean s:

g =
1

1 + 1
1+ 1

1+ 1
1+...

=

√
5− 1

2
, s =

1

2 + 1
2+ 1

2+ 1
2+...

=
√

2− 1.

Both the golden mean and the silver mean are fixed points of the Gauss map: G(g) = g,
G(s) = s. Similarly all other fixed points correspond to numbers whose continued fraction
entries are all equal.

Example 3.5. Let α = −3+3
√
5

2 . Then one can check that α = [2, 3, 2, 3, 2, 3, . . . ], so that
the entries are periodic and the period is 2. Thus G2(α) = α. Explicitely, since we know the
itinerary of α, we can write down the equation satisfied by α. We know that

G(α) =
1

α
− 2, since

[
1

α

]
= 2, and G(G(α)) =

1

G(α)
− 3 since

[
1

G(α)

]
= 3,

5One should still prove that the finite continued fractions in (4) do converge, as n tends to infinity and
that the limit is x. This can be done by the same method that one can use to show that convergents tend to
x exponentially fast.

6Equivalently, one can define quadratic irrationals as solutions of equations of degree two with integer
coefficients.

7One can defined Badly approximable numbers as the numbers for which there exists a number A such
that all entries an of their continued fraction expansion are bounded by A. In particular, quadratic irrationals
are badly approximable.
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so that the equation G2(α) = α becomes

1
1
α − 2

− 3 = α.

Using the ideas in the previous exercise, one can produce quadratic irrationals with any
given periodic sequence of CF entries.

Exercise 3.1. Prove that if Gn(x) = 0 then x has a representation as a finite continued
fraction expansion and thus it is rational.

Exercise 3.2. Prove that if Gn(x) = x then x satisfies an equation of degree two with integer
entries. Conclude that x is a quadratic irrational.
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