Inducing and renormalization for rotations

We defined several tools:

\rightarrow An renormalization procedure;

 - An algorithm;(induce R_{α} on $I^{(n)}=\Delta^{(n)} \cup \Delta^{(n+1)}$ (cut $\Delta^{(n)}$ from right, cut from left...)
\rightarrow Partitions of the circle;

- Towers and cutting and stacking;

Inducing and renormalization for rotations

We defined several tools:

- An renormalization procedure;

(induce R_{α} on $I^{(n)}=\Delta^{(n)} \cup \Delta^{(n+1)}$)
(cut $\Delta^{(n)}$ from right, cut from left...)
- Partitions of the circle;
- Towers and cutting and stacking;

Inducing and renormalization for rotations

We defined several tools:

- An renormalization procedure;

(induce R_{α} on $I^{(n)}=\Delta^{(n)} \cup \Delta^{(n+1)}$)
- An algorithm;

(cut $\Delta^{(n)}$ from right, cut from left...)
- Partitions of the circle;
- Towers and cutting and stacking;

Inducing and renormalization for rotations

We defined several tools:

- An renormalization procedure;

(induce R_{α} on $I^{(n)}=\Delta^{(n)} \cup \Delta^{(n+1)}$)
- Partitions of the circle;

- An algorithm;

(cut $\Delta^{(n)}$ from right, cut from left...)
- Towers and cutting and stacking;

Inducing and renormalization for rotations

We defined several tools:

- An renormalization procedure;

(induce R_{α} on $I^{(n)}=\Delta^{(n)} \cup \Delta^{(n+1)}$)
- Partitions of the circle;

- An algorithm;

(cut $\Delta^{(n)}$ from right, cut from left...)
- Towers and cutting and stacking;

I

Inducing and renormalization for rotations

Sample of results which can be proved using these tools:

```
> Three gaps theorem (Steinhaus theorem) for rotations;
    (using towers)
- Deniov-Koksma inequality for Birkhoff sums over rotations;
    (using towers)
- Rotation numbers for homeos and diffeos of \(S^{1}\)
    (using the renormalization procedure) [Ref: van Strien-de Melo book]
- Poincaré theorem for homeos of \(S^{1}\)
    (using the renormalization procedure) [Ref: van Strien-de Melo book]
- Herman result on regularity of conjugacy for diffeos of \(S^{1}\)
(using the renormalization procedure) [Ref: Sinai-Khanin]
- A limit theorem for Birkhoff sums of non integrable functions
    (using the partitions) [Ref: Sinai-Ulcigrai, 08]
- A generalization of Beck central limit theorem for rotations
(using the cutting/stacking) [Ref: Bromberg-Ulcigrai, '17]
```


Inducing and renormalization for rotations

Sample of results which can be proved using these tools:

- Three gaps theorem (Steinhaus theorem) for rotations; (using towers)
- Denjoy-Koksma inequality for Birkhoff sums over rotations; (using towers)
- Rotation numbers for homeos and diffeos of S^{1} (using the renormalization procedure) [Ref: van Strien-de Melo book]
- Poincaré theorem for homeos of S^{1} (using the renormalization procedure) [Ref: van Strien-de Melo book]
- Herman result on regularity of conjugacy for diffeos of S^{1} (using the renormalization procedure) [Ref: Sinai-Khanin]
\rightarrow A limit theorem for Birkhoff sums of non integrable functions (using the partitions) [Ref: Sinai-Ulcigrai, '08]
- A generalization of Beck central limit theorem for rotations (using the cutting/stacking)

Inducing and renormalization for rotations

Sample of results which can be proved using these tools:

- Three gaps theorem (Steinhaus theorem) for rotations; (using towers)
- Denjoy-Koksma inequality for Birkhoff sums over rotations; (using towers)
\rightarrow Rotation numbers for homeos and diffeos of S^{1} (using the renormalization procedure) [Ref: van Strien-de Melo book]
- Poincaré theorem for homeos of S^{1} (using the renormalization procedure) [Ref: van Strien-de Melo book]
- Herman result on regularity of conjugacy for diffeos of S^{1} (using the renormalization procedure)
- A limit theorem for Birkhoff sums of non integrable functions (using the partitions) [Ref: Sinai-Ulcigrai, 08]
- A generalization of Beck central limit theorem for rotations (using the cutting/stacking) [Ref: Bromberg-Ulcigrai, '17]

Inducing and renormalization for rotations

Sample of results which can be proved using these tools:

- Three gaps theorem (Steinhaus theorem) for rotations; (using towers)
- Denjoy-Koksma inequality for Birkhoff sums over rotations; (using towers)
- Rotation numbers for homeos and diffeos of S^{1} (using the renormalization procedure) [Ref: van Strien-de Melo book]
(using the renormalization procedure) [Ref: van Strien-de Melo book]
- Herman result on regularity of conjugacy for diffeos of S^{1} (using the renormalization procedure)
\rightarrow A limit theorem for Birkhoff sums of non integrable functions (using the partitions)
- A generalization of Beck central limit theorem for rotations (using the cutting/stacking) [Ref: Bromberg-Ulcigrai, '17]

Inducing and renormalization for rotations

Sample of results which can be proved using these tools:

- Three gaps theorem (Steinhaus theorem) for rotations; (using towers)
- Denjoy-Koksma inequality for Birkhoff sums over rotations; (using towers)
- Rotation numbers for homeos and diffeos of S^{1} (using the renormalization procedure) [Ref: van Strien-de Melo book]
- Poincaré theorem for homeos of S^{1} (using the renormalization procedure)
[Ref: van Strien-de Melo book] (using the renormalization procedure)
- A limit theorem for Birkhoff sums of non integrable functions (using the partitions)
- A generalization of Beck central limit theorem for rotations (using the cutting/stacking)

Inducing and renormalization for rotations

Sample of results which can be proved using these tools:

- Three gaps theorem (Steinhaus theorem) for rotations; (using towers)
- Denjoy-Koksma inequality for Birkhoff sums over rotations; (using towers)
- Rotation numbers for homeos and diffeos of S^{1} (using the renormalization procedure) [Ref: van Strien-de Melo book]
- Poincaré theorem for homeos of S^{1} (using the renormalization procedure)
[Ref: van Strien-de Melo book]
- Herman result on regularity of conjugacy for diffeos of S^{1} (using the renormalization procedure)
[Ref: Sinai-Khanin]
- A limit theorem for Birkhoff sums of non integrable functions (using the partitions)
\rightarrow A generalization of Beck central limit theorem for rotations (using the cutting/stacking)

Inducing and renormalization for rotations

Sample of results which can be proved using these tools:

- Three gaps theorem (Steinhaus theorem) for rotations; (using towers)
- Denjoy-Koksma inequality for Birkhoff sums over rotations; (using towers)
- Rotation numbers for homeos and diffeos of S^{1} (using the renormalization procedure) [Ref: van Strien-de Melo book]
- Poincaré theorem for homeos of S^{1} (using the renormalization procedure)
[Ref: van Strien-de Melo book]
- Herman result on regularity of conjugacy for diffeos of S^{1} (using the renormalization procedure)
[Ref: Sinai-Khanin]
- A limit theorem for Birkhoff sums of non integrable functions (using the partitions)
[Ref: Sinai-Ulcigrai, '08]
\rightarrow A generalization of Beck central limit theorem for rotations
(using the cutting/stacking)

Inducing and renormalization for rotations

Sample of results which can be proved using these tools:

- Three gaps theorem (Steinhaus theorem) for rotations; (using towers)
- Denjoy-Koksma inequality for Birkhoff sums over rotations; (using towers)
- Rotation numbers for homeos and diffeos of S^{1} (using the renormalization procedure) [Ref: van Strien-de Melo book]
- Poincaré theorem for homeos of S^{1} (using the renormalization procedure)
[Ref: van Strien-de Melo book]
- Herman result on regularity of conjugacy for diffeos of S^{1} (using the renormalization procedure)
[Ref: Sinai-Khanin]
- A limit theorem for Birkhoff sums of non integrable functions (using the partitions)
[Ref: Sinai-Ulcigrai, '08]
- A generalization of Beck central limit theorem for rotations (using the cutting/stacking)
[Ref: Bromberg-Ulcigrai, '17]

Homeomorphisms and diffeomorphisms of the circle

Let $f: S^{1} \rightarrow S^{1}$ be a homeomorphism of the circle.

- Rotation number $\rho(f):=\lim _{n \rightarrow \infty} \frac{F^{n}(x)-x}{n}$, (where F is lift of f and x any point in S^{1})

then the conjugacy

Homeomorphisms and diffeomorphisms of the circle

Let $f: S^{1} \rightarrow S^{1}$ be a homeomorphism of the circle.

- Rotation number $\rho(f):=\lim _{n \rightarrow \infty} \frac{F^{n}(x)-x}{n}$, (where F is lift of f and x any point in S^{1})
[Rk: $\rho(f) \in \mathbb{Q}$ if and only if f has periodic points.]

Homeomorphisms and diffeomorphisms of the circle

Let $f: S^{1} \rightarrow S^{1}$ be a homeomorphism of the circle.

- Rotation number $\rho(f):=\lim _{n \rightarrow \infty} \frac{F^{n}(x)-x}{n}$, (where F is lift of f and x any point in S^{1})
[Rk: $\rho(f) \in \mathbb{Q}$ if and only if f has periodic points.]
Theorem (Poincaré)
If f has no periodic points, there exists an (irrational) rotation R_{α} (where $\alpha=\rho(f)$) and a semi-conjugacy h between f and R_{α} (h monotone
 and surjective).

If in addition $f \in \mathscr{C}^{2}$ (or \mathscr{C}^{1} and f^{\prime} has bounded variation), then h is a conjugacy.
\square
If in addition $f \in \mathbb{C}^{2+\nu}$ for some $\nu>0$ and

Homeomorphisms and diffeomorphisms of the circle

Let $f: S^{1} \rightarrow S^{1}$ be a homeomorphism of the circle.

- Rotation number $\rho(f):=\lim _{n \rightarrow \infty} \frac{F^{n}(x)-x}{n}$, (where F is lift of f and x any point in S^{1})
[Rk: $\rho(f) \in \mathbb{Q}$ if and only if f has periodic points.]
Theorem (Poincaré)
If f has no periodic points, there exists an (irrational) rotation R_{α} (where $\alpha=\rho(f)$) and a semi-conjugacy h between f and R_{α} (h monotone

$$
S^{1} \xrightarrow{f} S^{1}
$$

$S^{1} \xrightarrow{R_{\alpha}} S^{1}$ and surjective).

Theorem (Denjoy)
If in addition $f \in \mathscr{C}^{2}$ (or \mathscr{C}^{1} and f^{\prime} has bounded variation), then h is a conjugacy.

Theorem (Herman, see also Sinai-Khanin)
If in addition $f \in \mathbb{C}^{2+\nu}$ for some $\nu>0$ and

Homeomorphisms and diffeomorphisms of the circle

Let $f: S^{1} \rightarrow S^{1}$ be a homeomorphism of the circle.

- Rotation number $\rho(f):=\lim _{n \rightarrow \infty} \frac{F^{n}(x)-x}{n}$, (where F is lift of f and x any point in S^{1})
[Rk: $\rho(f) \in \mathbb{Q}$ if and only if f has periodic points.]
Theorem (Poincaré)
If f has no periodic points, there exists an (irrational) rotation R_{α} (where $\alpha=\rho(f)$) and a semi-conjugacy h between f and R_{α} (h monotone
 and surjective).

Theorem (Denjoy)
If in addition $f \in \mathscr{C}^{2}$ (or \mathscr{C}^{1} and f^{\prime} has bounded variation), then h is a conjugacy.

Theorem (Herman, see also Sinai-Khanin)

If in addition $f \in \mathbb{C}^{2+\nu}$ for some $\nu>0$ and
$\alpha=\left[a_{0}, a_{1}, \ldots\right]$ satisfies $a_{n} \leq C n^{\gamma}$ for some $C, \gamma>0$ (true for a.e. α) then the conjugacy h is \mathscr{C}^{1}.

Corinna Ulcigrai

A Central Limit Theorem for cocycles over rotations

(based on joint work with
Michael Bromberg)

Deterministic walk driven by a rotation

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems;

Deterministic walk driven by a rotation

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

Deterministic walk driven by a rotation

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

Deterministic walk driven by a rotation

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

$$
R_{\alpha}(x)=x+\alpha \bmod 1
$$

Deterministic walk driven by a rotation

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

$$
R_{\alpha}(x)=x+\alpha \bmod 1 \quad f(x)=\chi_{[0, \beta]}-\beta
$$

Deterministic walk driven by a rotation

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

$$
R_{\alpha}(x)=x+\alpha \bmod 1 \quad f(x)=\chi_{[0, \beta]}-\beta
$$

Walk on \mathbb{R} driven by R_{α} and f :

$$
\begin{aligned}
& T:[0,1] \times \mathbb{R} \rightarrow[0,1] \times \mathbb{R} \\
& (x, y) \mapsto\left(R_{\alpha}(x), y+f(x)\right)
\end{aligned}
$$

Deterministic walk driven by a rotation

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

$$
R_{\alpha}(x)=x+\alpha \bmod 1 \quad f(x)=\chi_{[0, \beta]}-\beta
$$

Walk on \mathbb{R} driven by R_{α} and f :

$$
T:[0,1] \times \mathbb{R} \rightarrow[0,1] \times \mathbb{R}
$$

$T^{n}(0,0)=\left(R_{\alpha}^{n}(0)\right.$,
$[0,1] \times \mathbb{R}$

Deterministic walk driven by a rotation

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

$$
R_{\alpha}(x)=x+\alpha \bmod 1 \quad f(x)=\chi_{[0, \beta]}-\beta
$$

Walk on \mathbb{R} driven by R_{α} and f :

$$
\begin{aligned}
& T:[0,1] \times \mathbb{R} \rightarrow[0,1] \times \mathbb{R} \\
& (x, y) \mapsto\left(R_{\alpha}(x), y+f(x)\right)
\end{aligned}
$$

$T^{n}(0,0)=\left(R_{\alpha}^{n}(0)\right.$,
$[0,1] \times \mathbb{R}$

Deterministic walk driven by a rotation

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

$$
R_{\alpha}(x)=x+\alpha \bmod 1 \quad f(x)=\chi_{[0, \beta]}-\beta
$$

Walk on \mathbb{R} driven by R_{α} and f :

$$
\begin{aligned}
& T:[0,1] \times \mathbb{R} \rightarrow[0,1] \times \mathbb{R} \\
& (x, y) \mapsto\left(R_{\alpha}(x), y+f(x)\right)
\end{aligned}
$$

$T^{n}(0,0)=\left(R_{\alpha}^{n}(0)\right.$,
$[0,1] \times \mathbb{R}$

Deterministic walk driven by a rotation

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

$$
R_{\alpha}(x)=x+\alpha \bmod 1 \quad f(x)=\chi_{[0, \beta]}-\beta
$$

Walk on \mathbb{R} driven by R_{α} and f :

$$
\begin{aligned}
& T:[0,1] \times \mathbb{R} \rightarrow[0,1] \times \mathbb{R} \\
& (x, y) \mapsto\left(R_{\alpha}(x), y+f(x)\right)
\end{aligned}
$$

$T^{n}(0,0)=\left(R_{\alpha}^{n}(0)\right.$,
$[0,1] \times \mathbb{R}$

Deterministic walk driven by a rotation

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

$$
R_{\alpha}(x)=x+\alpha \bmod 1 \quad f(x)=\chi_{[0, \beta]}-\beta
$$

Walk on \mathbb{R} driven by R_{α} and f :

$$
\begin{aligned}
& T:[0,1] \times \mathbb{R} \rightarrow[0,1] \times \mathbb{R} \\
& (x, y) \mapsto\left(R_{\alpha}(x), y+f(x)\right)
\end{aligned}
$$

$T^{n}(0,0)=\left(R_{\alpha}^{n}(0)\right.$,
$[0,1] \times \mathbb{R}$

Deterministic walk driven by a rotation

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

$$
R_{\alpha}(x)=x+\alpha \bmod 1 \quad f(x)=\chi_{[0, \beta]}-\beta
$$

Walk on \mathbb{R} driven by R_{α} and f :

$$
\begin{aligned}
& T:[0,1] \times \mathbb{R} \rightarrow[0,1] \times \mathbb{R} \\
& (x, y) \mapsto\left(R_{\alpha}(x), y+f(x)\right)
\end{aligned}
$$

$T^{n}(0,0)=\left(R_{\alpha}^{n}(0)\right.$,
$[0,1] \times \mathbb{R}$

Deterministic walk driven by a rotation

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

$$
R_{\alpha}(x)=x+\alpha \bmod 1 \quad f(x)=\chi_{[0, \beta]}-\beta
$$

Walk on \mathbb{R} driven by R_{α} and f :

$$
\begin{aligned}
& T:[0,1] \times \mathbb{R} \rightarrow[0,1] \times \mathbb{R} \\
& (x, y) \mapsto\left(R_{\alpha}(x), y+f(x)\right)
\end{aligned}
$$

$T^{n}(0,0)=\left(R_{\alpha}^{n}(0)\right.$,
$[0,1] \times \mathbb{R}$

Deterministic walk driven by a rotation

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

$$
R_{\alpha}(x)=x+\alpha \bmod 1 \quad f(x)=\chi_{[0, \beta]}-\beta
$$

Walk on \mathbb{R} driven by R_{α} and f :

$$
\begin{aligned}
& T:[0,1] \times \mathbb{R} \rightarrow[0,1] \times \mathbb{R} \\
& (x, y) \mapsto\left(R_{\alpha}(x), y+f(x)\right)
\end{aligned}
$$

$T^{n}(0,0)=\left(R_{\alpha}^{n}(0)\right.$,

$[0,1] \times \mathbb{R}$

Deterministic walk driven by a rotation

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

$$
R_{\alpha}(x)=x+\alpha \bmod 1 \quad f(x)=\chi_{[0, \beta]}-\beta
$$

Walk on \mathbb{R} driven by R_{α} and f :

$$
\begin{gathered}
T:[0,1] \times \mathbb{R} \rightarrow[0,1] \times \mathbb{R} \\
(x, y) \mapsto\left(R_{\alpha}(x), y+f(x)\right) \\
T^{n}(0,0)=\left(R_{\alpha}^{n}(0), \sum_{k=0}^{n-1} f\left(R_{\alpha}^{i}(0)\right)\right)
\end{gathered}
$$

$[0,1] \times \mathbb{R}$

Deterministic walk driven by a rotation

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

$$
R_{\alpha}(x)=x+\alpha \bmod 1 \quad f(x)=\chi_{[0, \beta]}-\beta
$$

Walk on \mathbb{R} driven by R_{α} and f :

$$
\begin{gathered}
T:[0,1] \times \mathbb{R} \rightarrow[0,1] \times \mathbb{R} \\
(x, y) \mapsto\left(R_{\alpha}(x), y+f(x)\right) \\
T^{n}(0,0)=\left(R_{\alpha}^{n}(0), \sum_{k=0}^{n-1} f\left(R_{\alpha}^{i}(0)\right)\right)
\end{gathered}
$$

$[0,1] \times \mathbb{R}$

Deterministic walk driven by a rotation

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

$$
R_{\alpha}(x)=x+\alpha \bmod 1 \quad f(x)=\chi_{[0, \beta]}-\beta
$$

Walk on \mathbb{R} driven by R_{α} and f :

$$
\begin{gathered}
T:[0,1] \times \mathbb{R} \rightarrow[0,1] \times \mathbb{R} \\
(x, y) \mapsto\left(R_{\alpha}(x), y+f(x)\right) \\
T^{n}(0,0)=\left(R_{\alpha}^{n}(0), \sum_{k=0}^{n-1} f\left(R_{\alpha}^{i}(0)\right)\right)
\end{gathered}
$$

$[0,1] \times \mathbb{R}$

Deterministic walk driven by a rotation

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

$$
R_{\alpha}(x)=x+\alpha \bmod 1 \quad f(x)=\chi_{[0, \beta]}-\beta
$$

Walk on \mathbb{R} driven by R_{α} and f :

$$
\begin{gathered}
T:[0,1] \times \mathbb{R} \rightarrow[0,1] \times \mathbb{R} \\
(x, y) \mapsto\left(R_{\alpha}(x), y+f(x)\right) \\
T^{n}(0,0)=\left(R_{\alpha}^{n}(0), \sum_{k=0}^{n-1} f\left(R_{\alpha}^{i}(0)\right)\right)
\end{gathered}
$$

$[0,1] \times \mathbb{R}$

Deterministic walk driven by a rotation

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

$$
R_{\alpha}(x)=x+\alpha \bmod 1 \quad f(x)=\chi_{[0, \beta]}-\beta
$$

Walk on \mathbb{R} driven by R_{α} and f :

$$
\begin{gathered}
T:[0,1] \times \mathbb{R} \rightarrow[0,1] \times \mathbb{R} \\
(x, y) \mapsto\left(R_{\alpha}(x), y+f(x)\right) \\
T^{n}(0,0)=\left(R_{\alpha}^{n}(0), \sum_{k=0}^{n-1} f\left(R_{\alpha}^{i}(0)\right)\right)
\end{gathered}
$$

$[0,1] \times \mathbb{R}$

Deterministic walk driven by a rotation

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

$$
R_{\alpha}(x)=x+\alpha \bmod 1 \quad f(x)=\chi_{[0, \beta]}-\beta
$$

Walk on \mathbb{R} driven by R_{α} and f :

$$
\begin{gathered}
T:[0,1] \times \mathbb{R} \rightarrow[0,1] \times \mathbb{R} \\
(x, y) \mapsto\left(R_{\alpha}(x), y+f(x)\right) \\
T^{n}(0,0)=\left(R_{\alpha}^{n}(0), \sum_{k=0}^{n-1} f\left(R_{\alpha}^{i}(0)\right)\right)
\end{gathered}
$$

$[0,1] \times \mathbb{R}$

Deterministic walk driven by a rotation

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

$$
R_{\alpha}(x)=x+\alpha \bmod 1 \quad f(x)=\chi_{[0, \beta]}-\beta
$$

Walk on \mathbb{R} driven by R_{α} and f :

$$
\begin{gathered}
T:[0,1] \times \mathbb{R} \rightarrow[0,1] \times \mathbb{R} \\
(x, y) \mapsto\left(R_{\alpha}(x), y+f(x)\right) \\
T^{n}(0,0)=\left(R_{\alpha}^{n}(0), \sum_{k=0}^{n-1} f\left(R_{\alpha}^{i}(0)\right)\right)
\end{gathered}
$$

$[0,1] \times \mathbb{R}$

Deterministic walk driven by a rotation

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

$$
R_{\alpha}(x)=x+\alpha \bmod 1 \quad f(x)=\chi_{[0, \beta]}-\beta
$$

Walk on \mathbb{R} driven by R_{α} and f :

$$
\begin{gathered}
T:[0,1] \times \mathbb{R} \rightarrow[0,1] \times \mathbb{R} \\
(x, y) \mapsto\left(R_{\alpha}(x), y+f(x)\right) \\
T^{n}(0,0)=\left(R_{\alpha}^{n}(0), \sum_{k=0}^{n-1} f\left(R_{\alpha}^{i}(0)\right)\right)
\end{gathered}
$$

$[0,1] \times \mathbb{R}$

Deterministic walk driven by a rotation

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

$$
R_{\alpha}(x)=x+\alpha \bmod 1 \quad f(x)=\chi_{[0, \beta]}-\beta
$$

Walk on \mathbb{R} driven by R_{α} and f :

$$
\begin{gathered}
T:[0,1] \times \mathbb{R} \rightarrow[0,1] \times \mathbb{R} \\
(x, y) \mapsto\left(R_{\alpha}(x), y+f(x)\right) \\
T^{n}(0,0)=\left(R_{\alpha}^{n}(0), \sum_{k=0}^{n-1} f\left(R_{\alpha}^{i}(0)\right)\right)
\end{gathered}
$$

$[0,1] \times \mathbb{R}$

Deterministic walk driven by a rotation

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

$$
R_{\alpha}(x)=x+\alpha \bmod 1 \quad f(x)=\chi_{[0, \beta]}-\beta
$$

Walk on \mathbb{R} driven by R_{α} and f :

$$
\begin{gathered}
T:[0,1] \times \mathbb{R} \rightarrow[0,1] \times \mathbb{R} \\
(x, y) \mapsto\left(R_{\alpha}(x), y+f(x)\right) \\
T^{n}(0,0)=\left(R_{\alpha}^{n}(0), \sum_{k=0}^{n-1} f\left(R_{\alpha}^{i}(0)\right)\right)
\end{gathered}
$$

$[0,1] \times \mathbb{R}$

Deterministic walk driven by a rotation

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

$$
R_{\alpha}(x)=x+\alpha \bmod 1 \quad f(x)=\chi_{[0, \beta]}-\beta
$$

Walk on \mathbb{R} driven by R_{α} and f :

$$
\begin{gathered}
T:[0,1] \times \mathbb{R} \rightarrow[0,1] \times \mathbb{R} \\
(x, y) \mapsto\left(R_{\alpha}(x), y+f(x)\right) \\
T^{n}(0,0)=\left(R_{\alpha}^{n}(0), \sum_{k=0}^{n-1} f\left(R_{\alpha}^{i}(0)\right)\right)
\end{gathered}
$$

$[0,1] \times \mathbb{R}$

Deterministic walk driven by a rotation

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

$$
R_{\alpha}(x)=x+\alpha \bmod 1 \quad f(x)=\chi_{[0, \beta]}-\beta
$$

Walk on \mathbb{R} driven by R_{α} and f :

$$
\begin{gathered}
T:[0,1] \times \mathbb{R} \rightarrow[0,1] \times \mathbb{R} \\
(x, y) \mapsto\left(R_{\alpha}(x), y+f(x)\right) \\
T^{n}(0,0)=\left(R_{\alpha}^{n}(0), \sum_{k=0}^{n-1} f\left(R_{\alpha}^{i}(0)\right)\right)
\end{gathered}
$$

$[0,1] \times \mathbb{R}$

Temporal limit theorems

where \mathscr{N} Gaussian, $a_{N}=c_{1} \log N, b_{N}=c_{2} \sqrt{\log N}$
\rightarrow Dolgonyat-Sarig: α quadratic irr. $\quad \beta \in \mathbb{(})$, any $\left(x_{0}, y_{0}\right)$
Theorem (Bromberg-U')

Temporal limit theorems

Take $A=[0,1] \times[a, b]$. Define X_{N} visits r.v. by
$\mathbb{P}\left\{X_{N} \in[a, b]\right\}:=\frac{1}{N}\left\{0 \leq n<N: T^{n}((0,0)) \in A\right\}$

Temporal limit theorems:

\rightarrow Beck CLT: $\alpha=\sqrt{2}$ (quadratic irr.), $\beta=\frac{1}{2}$;

where \mathscr{N} Gaussian, $a_{N}=c_{1} \log N, b_{N}=c_{2} \sqrt{\log N}$

Theorem (Bromberg-U')
For any α bounded type (bnd CF entries), any β badly approximable wrt α

Temporal limit theorems

Take $A=[0,1] \times[a, b]$. Define X_{N} visits r.v. by

Theorem (Bromberg-U')
For any α bounded type (bnd CF entries), any β badly approximable wrt α and any $0<x_{0}<1$,

Temporal limit theorems

Take $A=[0,1] \times[a, b]$. Define X_{N} visits r.v. by

$$
\mathbb{P}\left\{X_{N} \in[a, b]\right\}:=\frac{1}{N}\left\{0 \leq n<N: T^{n}((0,0)) \in A\right\}
$$

Temporal limit theorems:

where \mathscr{N} Gaussian, $a_{N}=c_{1} \log N, b_{N}=c_{2} \sqrt{\log N}$

Theorem (Bromberg-U')
For any α bounded type (bnd CF entries), any β badly approximable wrt
α and any $0<x_{0}<1$,
$\exists A_{n}:=A_{n}(\alpha, \beta, x)$ and $B_{n}:=B_{n}(\alpha, \beta)$

Temporal limit theorems

Take $A=[0,1] \times[a, b]$. Define X_{N} visits r.v. by

$$
\mathbb{P}\left\{X_{N} \in[a, b]\right\}:=\frac{1}{N}\left\{0 \leq n<N: T^{n}((0,0)) \in A\right\}
$$

Temporal limit theorems:

where \mathscr{N} Gaussian, $a_{N}=c_{1} \log N, b_{N}=c_{2} \sqrt{\log N}$
any $\left(x_{0}, y_{0}\right)$
Theorem (Bromberg-U')
For any α bounded type (bnd CF entries), any β badly approximable wrt
α and any $0<x_{0}<1$,
$\exists A_{n}:=A_{n}(\alpha, \beta, x)$ and $B_{n}:=B_{n}(\alpha, \beta)$ s.t. $\forall a<b$
\square

Temporal limit theorems

Take $A=[0,1] \times[a, b]$. Define X_{N} visits r.v. by

$$
\mathbb{P}\left\{X_{N} \in[a, b]\right\}:=\frac{1}{N}\left\{0 \leq n<N: T^{n}((0,0)) \in A\right\}
$$

Temporal limit theorems:

- Beck CLT: $\alpha=\sqrt{2}$ (quadratic irr.), $\beta=\frac{1}{2}$;

where \mathscr{N} Gaussian, $a_{N}=c_{1} \log N, b_{N}=c_{2} \sqrt{\log N}$

- Dolgopyat-Sarig: α quadratic irr.

Theorem (Bromberg-U')
For any α bounded type (bnd CF entries), any β badly approximable wrt
α and any $0<x_{0}<1$,
$\exists A_{n}:=A_{n}(\alpha, \beta, x)$ and $B_{n}:=B_{n}(\alpha, \beta)$ s.t. $\forall a<b$
\square
$\left.\frac{S_{k} f_{\beta}\left(R_{\alpha}, x_{0}\right)-A_{n}}{B_{n}} \in[a, b]\right\}$

Temporal limit theorems

Take $A=[0,1] \times[a, b]$. Define X_{N} visits r.v. by

$$
\mathbb{P}\left\{X_{N} \in[a, b]\right\}:=\frac{1}{N}\left\{0 \leq n<N: T^{n}((0,0)) \in A\right\}
$$

Temporal limit theorems:

- Beck CLT: $\alpha=\sqrt{2}$ (quadratic irr.), $\beta=\frac{1}{2}$;

$$
\frac{X_{N}-a_{N}}{b_{N}} \rightarrow \mathscr{N}
$$

where \mathscr{N} Gaussian, $a_{N}=c_{1} \log N, b_{N}=c_{2} \sqrt{\log N}$

Temporal limit theorems

Take $A=[0,1] \times[a, b]$. Define X_{N} visits r.v. by

$$
\mathbb{P}\left\{X_{N} \in[a, b]\right\}:=\frac{1}{N}\left\{0 \leq n<N: T^{n}((0,0)) \in A\right\}
$$

Temporal limit theorems:

- Beck CLT: $\alpha=\sqrt{2}$ (quadratic irr.), $\beta=\frac{1}{2}$;

$$
\frac{X_{N}-a_{N}}{b_{N}} \rightarrow \mathscr{N}
$$

where \mathscr{N} Gaussian, $a_{N}=c_{1} \log N, b_{N}=c_{2} \sqrt{\log N}$

- Dolgopyat-Sarig: α quadratic irr. $\quad, \beta \in \mathbb{Q}$, any $\left(x_{0}, y_{0}\right)$

Theorem (Bromberg-U')
For any α bounded type (bnd CF entries), any β badly approximable wrt
α and any $0<x_{0}<1$,
$\exists A_{n}:=A_{n}(\alpha, \beta, x)$ and $B_{n}:=B_{n}(\alpha, \beta)$ s.t. $\forall a<b$

Temporal limit theorems

Take $A=[0,1] \times[a, b]$. Define X_{N} visits r.v. by

$$
\mathbb{P}\left\{X_{N} \in[a, b]\right\}:=\frac{1}{N}\left\{0 \leq n<N: T^{n}((0,0)) \in A\right\}
$$

Temporal limit theorems:

- Beck CLT: $\alpha=\sqrt{2}$ (quadratic irr.), $\beta=\frac{1}{2}$;

$$
\frac{X_{N}-a_{N}}{b_{N}} \rightarrow \mathscr{N}
$$

where \mathscr{N} Gaussian, $a_{N}=c_{1} \log N, b_{N}=c_{2} \sqrt{\log N}$

- Dolgopyat-Sarig: α quadratic irr. (bnd type), $\beta \in \mathbb{Q}$, any (x_{0}, y_{0})

Theorem (Bromberg-U')
For any α bounded type (bnd CF entries), any β badly approximable wrt
\square
$\exists A_{n}:=A_{n}(\alpha, \beta, x)$ and $B_{n}:=B_{n}(\alpha, \beta)$ s.t. $\forall a<b$

Temporal limit theorems

Take $A=[0,1] \times[a, b]$. Define X_{N} visits r.v. by
$\mathbb{P}\left\{X_{N} \in[a, b]\right\}:=\frac{1}{N}\left\{0 \leq n<N: T^{n}((0,0)) \in A\right\}$
Temporal limit theorems:

- Beck CLT: $\alpha=\sqrt{2}$ (quadratic irr.), $\beta=\frac{1}{2}$;

$$
\frac{X_{N}-a_{N}}{b_{N}} \rightarrow \mathscr{N}
$$

where \mathscr{N} Gaussian, $a_{N}=c_{1} \log N, b_{N}=c_{2} \sqrt{\log N}$

- Dolgopyat-Sarig: α quadratic irr. (bnd type), $\beta \in \mathbb{Q}$, any (x_{0}, y_{0})

Theorem (Bromberg-U')
For any α bounded type (bnd CF entries), any β badly approximable wrt α and any $0<x_{0}<1$,
$\exists A_{n}:=A_{n}(\alpha, \beta, x)$ and $B_{n}:=B_{n}(\alpha, \beta)$ s.t. $\forall a<b$

$$
\frac{1}{n} \#\left\{1 \leq k \leq n: \frac{S_{k} f_{\beta}\left(R_{\alpha}, x_{0}\right)-A_{n}}{B_{n}} \in[a, b]\right\} \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{a}^{b} e^{-\frac{x^{2}}{2}} d x
$$

Tools in the proof

- Renormalization: we use a classical renormalization algorithm
(instead than geometric renormalization),
given by an extension over the Gauss map.
This algorithm produces simultaneosuly:
\Rightarrow the continued fraction entries of $\alpha=\left[a_{1}, a_{2}, \ldots, a_{n}, \ldots\right]$;
\Rightarrow the Ostrowski expansion of β relative to α and its entries $\left(b_{n}\right)_{n}$;
- Refs: Arnoux-Fisher, Ito, Bonanno-Isola,
- Symbolic coding: use the Rohlin towers given by the renormalization algorithm to code the dynamics (Vershik-adic coding); coding leads to a non-homogeneous Markov chain;
- CLT for (non-homogeneous) Markov chains: proved by Dobrushin (for technical reasons, we use the CLT for φ-mixing arrays of Markov chains by Utev)

Remark: our general framework: allows to extend this (and other limit theorems) to T interval exchange transformation (bounded type), when f belongs to a special class of functions (Becks's functions, related to zero Lyapunov exponents).

Tools in the proof

- Renormalization: we use a classical renormalization algorithm (instead than geometric renormalization), given by an extension over the Gauss map.

```
v the continued fraction entries of \alpha=[a1, a},\mp@code{2},\ldots,\mp@subsup{a}{n}{},\ldots]
* the Ostrowski expansion of \beta relative to \alpha and its entries (bn)n;
> Refs: Arnoux-Fisher, Ito, Bonanno-Isola,
```

- Symbolic coding: use the Rohlin towers given by the renormalization algorithm to code the dynamics (Vershik-adic coding); coding leads to a non-homogeneous Markov chain;
- CLT for (non-homogeneous) Markov chains: proved by Dobrushin (for technical reasons, we use the CLT for φ-mixing arrays of Markov chains by Utev)

Remark: our general framework: allows to extend this (and other limit theorems) to T interval exchange transformation (bounded type),
when f belongs to a special class of functions
(Becks's functions, related to zero Lyapunov exponents).

Tools in the proof

- Renormalization: we use a classical renormalization algorithm (instead than geometric renormalization), given by an extension over the Gauss map. This algorithm produces simultaneosuly:
$\begin{aligned} & >\text { the continued fraction entries of } \alpha=\left[a_{1}, a_{2}, \ldots, a_{n}, \ldots\right] ; \\ > & \text { the Ostrowski expansion of } \beta \text { relative to } \alpha \text { and its entries }\left(b_{n}\right)_{n} \text {; } \\ > & \text { Refs: Arnoux-Fisher, Ito, Bonanno-Isola, } \ldots\end{aligned}$
\rightarrow Symbolic coding: use the Rohlin towers given by the renormalization algorithm to code the dynamics (Vershik-adic coding); coding leads to a non-homogeneous Markov chain;
$>$ CLT for (non-homogeneous) Markov chains: proved by Dobrushin (for technical reasons, we use the CLT for φ-mixing arrays of Markov chains by Utev)

Remark: our general framework: allows to extend this (and other limit
theorems) to T interval exchange transformation (bounded type),
when f belongs to a special class of functions
(Becks's functions, related to zero Lyapunov exponents).

Tools in the proof

- Renormalization: we use a classical renormalization algorithm (instead than geometric renormalization), given by an extension over the Gauss map. This algorithm produces simultaneosuly:
- the continued fraction entries of $\alpha=\left[a_{1}, a_{2}, \ldots, a_{n}, \ldots\right]$;
\Rightarrow the Ostrowski expansion of β relative to α and its entries $\left(b_{n}\right)_{n}$;
$>$ Symbolic coding: use the Rohlin towers given by the renormalization algorithm to code the dynamics (Vershik-adic coding); coding leads to a non-homogeneous Markov chain;
$>$ CLT for (non-homogeneous) Markov chains: proved by Dobrushin (for technical reasons, we use the CLT for φ-mixing arrays of Markov chains by Utev)

Remark: our general framework: allows to extend this (and other limit
theorems) to T interval exchange transformation (bounded type),
when f belongs to a special class of functions
(Becks's functions, related to zero Lyapunov exponents)

Tools in the proof

- Renormalization: we use a classical renormalization algorithm (instead than geometric renormalization), given by an extension over the Gauss map. This algorithm produces simultaneosuly:
- the continued fraction entries of $\alpha=\left[a_{1}, a_{2}, \ldots, a_{n}, \ldots\right]$;
- the Ostrowski expansion of β relative to α and its entries $\left(b_{n}\right)_{n}$;
\square

Remark: our general framework: allows to extend this (and other limit
theorems) to T interval exchange transformation (bounded type),
when f belongs to a special class of functions
(Becks's functions, related to zero Lyapunov exponents).

Tools in the proof

- Renormalization: we use a classical renormalization algorithm (instead than geometric renormalization), given by an extension over the Gauss map. This algorithm produces simultaneosuly:
- the continued fraction entries of $\alpha=\left[a_{1}, a_{2}, \ldots, a_{n}, \ldots\right]$;
- the Ostrowski expansion of β relative to α and its entries $\left(b_{n}\right)_{n}$;
- Refs: Arnoux-Fisher, Ito, Bonanno-Isola, ...

Remark: our general framework: allows to extend this (and other limit theorems) to T interval exchange transformation (bounded type),
when f belongs to a special class of functions
(Becks's functions, related to zero Lyapunov exponents)

Tools in the proof

- Renormalization: we use a classical renormalization algorithm (instead than geometric renormalization), given by an extension over the Gauss map.
This algorithm produces simultaneosuly:
- the continued fraction entries of $\alpha=\left[a_{1}, a_{2}, \ldots, a_{n}, \ldots\right]$;
- the Ostrowski expansion of β relative to α and its entries $\left(b_{n}\right)_{n}$;
- Refs: Arnoux-Fisher, Ito, Bonanno-Isola, ...
- Symbolic coding: use the Rohlin towers given by the renormalization algorithm to code the dynamics (Vershik-adic coding); coding leads to a non-homogeneous Markov chain;
- CLT for (non-homogeneous) Markov chains: proved by Dobrushin (for technical reasons, we use the CLT for φ-mixing arrays of Markov chains by Utev)

Remark: our general framework: allows to extend this (and other limit
theorems) to T interval exchange transformation (bounded type),
when f belongs to a special class of functions
(Becks's functions, related to zero Lyapunov exponents)

Tools in the proof

- Renormalization: we use a classical renormalization algorithm (instead than geometric renormalization), given by an extension over the Gauss map.
This algorithm produces simultaneosuly:
- the continued fraction entries of $\alpha=\left[a_{1}, a_{2}, \ldots, a_{n}, \ldots\right]$;
- the Ostrowski expansion of β relative to α and its entries $\left(b_{n}\right)_{n}$;
- Refs: Arnoux-Fisher, Ito, Bonanno-Isola, ...
- Symbolic coding: use the Rohlin towers given by the renormalization algorithm to code the dynamics (Vershik-adic coding);
$>$ CLT for (non-homogeneous) Markov chains: proved by Dobrushin (for technical reasons, we use the CLT for φ-mixing arrays of Markov chains by Utev)

Remark: our general framework: allows to extend this (and other limit
theorems) to T interval exchange transformation (bounded type),
when f belongs to a special class of functions
(Becks's functions, related to zero Lyapunov exponents)

Tools in the proof

- Renormalization: we use a classical renormalization algorithm (instead than geometric renormalization), given by an extension over the Gauss map.
This algorithm produces simultaneosuly:
- the continued fraction entries of $\alpha=\left[a_{1}, a_{2}, \ldots, a_{n}, \ldots\right]$;
- the Ostrowski expansion of β relative to α and its entries $\left(b_{n}\right)_{n}$;
- Refs: Arnoux-Fisher, Ito, Bonanno-Isola, ...
- Symbolic coding: use the Rohlin towers given by the renormalization algorithm to code the dynamics (Vershik-adic coding); coding leads to a non-homogeneous Markov chain;
$>$ CLT for (non-homogeneous) Markov chains: proved by Dobrushin (for technical reasons, we use the CLT for φ-mixing arrays of Markov chains by Utev)

Remark: our general framework: allows to extend this (and other limit
theorems) to T interval exchange transformation (bounded type),
when f belongs to a special class of functions
(Becks's functions, related to zero Lyapunov exponents)

Tools in the proof

- Renormalization: we use a classical renormalization algorithm (instead than geometric renormalization), given by an extension over the Gauss map.
This algorithm produces simultaneosuly:
- the continued fraction entries of $\alpha=\left[a_{1}, a_{2}, \ldots, a_{n}, \ldots\right]$;
- the Ostrowski expansion of β relative to α and its entries $\left(b_{n}\right)_{n}$;
- Refs: Arnoux-Fisher, Ito, Bonanno-Isola, ...
- Symbolic coding: use the Rohlin towers given by the renormalization algorithm to code the dynamics (Vershik-adic coding); coding leads to a non-homogeneous Markov chain;
- CLT for (non-homogeneous) Markov chains:
(for technical reasons, we use the CLT for φ-mixing arrays of Markov chains by Utev)

Remark: our general framework: allows to extend this (and other limit theorems) to T interval exchange transformation (bounded type),
when f belongs to a special class of functions
(Becks's functions, related to zero Lyapunov exponents)

Tools in the proof

- Renormalization: we use a classical renormalization algorithm (instead than geometric renormalization), given by an extension over the Gauss map.
This algorithm produces simultaneosuly:
- the continued fraction entries of $\alpha=\left[a_{1}, a_{2}, \ldots, a_{n}, \ldots\right]$;
- the Ostrowski expansion of β relative to α and its entries $\left(b_{n}\right)_{n}$;
- Refs: Arnoux-Fisher, Ito, Bonanno-Isola, ...
- Symbolic coding: use the Rohlin towers given by the renormalization algorithm to code the dynamics (Vershik-adic coding); coding leads to a non-homogeneous Markov chain;
- CLT for (non-homogeneous) Markov chains: proved by Dobrushin (for technical reasons, we use the CLT for φ-mixing arrays of Markov chains by Utev)

Remark: our general framework: allows to extend this (and other limit
theorems) to T interval exchange transformation (bounded type),
when f belongs to a special class of functions
(Becks's functions, related to zero Lyapunov exponents)

Tools in the proof

- Renormalization: we use a classical renormalization algorithm (instead than geometric renormalization), given by an extension over the Gauss map.
This algorithm produces simultaneosuly:
- the continued fraction entries of $\alpha=\left[a_{1}, a_{2}, \ldots, a_{n}, \ldots\right]$;
- the Ostrowski expansion of β relative to α and its entries $\left(b_{n}\right)_{n}$;
- Refs: Arnoux-Fisher, Ito, Bonanno-Isola, ...
- Symbolic coding: use the Rohlin towers given by the renormalization algorithm to code the dynamics (Vershik-adic coding); coding leads to a non-homogeneous Markov chain;
- CLT for (non-homogeneous) Markov chains: proved by Dobrushin (for technical reasons, we use the CLT for φ-mixing arrays of Markov chains by Utev)

Remark: our general framework: allows to extend this (and other limit theorems) to T interval exchange transformation (bounded type),
when f belongs to a special class of functions
(Becks's functions, related to zero Lyapunov exponents)

Tools in the proof

- Renormalization: we use a classical renormalization algorithm (instead than geometric renormalization), given by an extension over the Gauss map.
This algorithm produces simultaneosuly:
- the continued fraction entries of $\alpha=\left[a_{1}, a_{2}, \ldots, a_{n}, \ldots\right]$;
- the Ostrowski expansion of β relative to α and its entries $\left(b_{n}\right)_{n}$;
- Refs: Arnoux-Fisher, Ito, Bonanno-Isola, ...
- Symbolic coding: use the Rohlin towers given by the renormalization algorithm to code the dynamics (Vershik-adic coding); coding leads to a non-homogeneous Markov chain;
- CLT for (non-homogeneous) Markov chains: proved by Dobrushin (for technical reasons, we use the CLT for φ-mixing arrays of Markov chains by Utev)

Remark: our general framework: allows to extend this (and other limit theorems) to T interval exchange transformation (bounded type), when f belongs to a special class of functions (Becks's functions, related to zero Lyapunov exponents).

Ostrowski renormalization

From a rotation on $[-1, \alpha]$ with marked point $-1<\beta<\alpha$, the algorithm produces a sequence of rotations on $\left[-1, \alpha_{n}\right]$, with marked points β_{n} :

- Cut a_{n} copies of $\left[0, \alpha_{n}\right)$;
α_{n}^{\prime} reminder lenght;
- β_{n} belongs to b_{n} th
copy, or set $b_{n}=0$;
β_{n}^{\prime} induced marked point;
- Renormalize by $-1 / \alpha_{n}$.
For a sequence of nested inducing intervals $I^{(n)}$,
the induced map on $I^{(n)}$ is a rotation by α_{n}. We have:

where $\quad \alpha^{(k)}=\prod_{k} \mathscr{G}^{k}(\alpha), \quad x_{k}= \begin{cases}\left(-1+\left(b_{n}-1\right) \alpha_{n}\right) & 1 \leq b_{n} \leq a_{n} \\ 0 & b_{n}=0\end{cases}$

Ostrowski renormalization

From a rotation on $[-1, \alpha]$ with marked point $-1<\beta<\alpha$, the algorithm produces a sequence of rotations on $\left[-1, \alpha_{n}\right]$, with marked points β_{n} :

Algorithm step n:

point;

- Renormalize by $-1 / \alpha_{n}$.
For a sequence of nested inducing intervals $I^{(n)}$
the induced map on $I^{(n)}$ is a rotation by α_{n}. We have:

where $\quad \alpha^{(k)}=\prod_{k} \mathscr{G}^{k}(\alpha), \quad x_{k}= \begin{cases}\left(-1+\left(b_{n}-1\right) \alpha_{n}\right) & 1 \leq b_{n} \leq a_{n} \\ 0 & b_{n}=0\end{cases}$

Ostrowski renormalization

From a rotation on $[-1, \alpha]$ with marked point $-1<\beta<\alpha$, the algorithm produces a sequence of rotations on $\left[-1, \alpha_{n}\right]$, with marked points β_{n} :

Algorithm step n:

\rightarrow Cut an copies of

For a sequence of nested inducing intervals $I^{(n)}$
the induced map on $f^{(n)}$ is a rotation by α_{n}. We have:

where

Ostrowski renormalization

From a rotation on $[-1, \alpha]$ with marked point $-1<\beta<\alpha$, the algorithm produces a sequence of rotations on $\left[-1, \alpha_{n}\right]$, with marked points β_{n} :

Algorithm step n:

- Cut a_{n} copies of $\left[0, \alpha_{n}\right)$;
α_{n}^{\prime} reminder lenght:
$\begin{aligned} & \beta_{n} \text { belongs to } b_{n} \text { th } \\ & \text { copy, or set } b_{n}=0 ; \\ & \beta_{n}^{\prime} \text { induced marked }\end{aligned}$
point;
- Renormalize by

For a sequence of nested inducing intervals $I^{(n)}$
the induced map on $I^{(n)}$ is a rotation by α_{n}. We have:

Ostrowski renormalization

From a rotation on $[-1, \alpha]$ with marked point $-1<\beta<\alpha$, the algorithm produces a sequence of rotations on $\left[-1, \alpha_{n}\right]$, with marked points β_{n} :

Algorithm step n:

- Cut a_{n} copies of $\left[0, \alpha_{n}\right)$;

α_{n}^{\prime} reminder lenght;
- β_{n} belongs to b_{n} th copy, or set $b_{n}=0$; β_{n}^{\prime} induced marked point;
- Renormalize by $-1 / \alpha_{n}$.
For a sequence of nested inducing intervals $I^{(n)}$ the induced map on $I^{(n)}$ is a rotation by α_{n}. We have:

Ostrowski renormalization

From a rotation on $[-1, \alpha]$ with marked point $-1<\beta<\alpha$, the algorithm produces a sequence of rotations on $\left[-1, \alpha_{n}\right]$, with marked points β_{n} :

Algorithm step n:

- Cut a_{n} copies of $\left[0, \alpha_{n}\right)$;

α_{n}^{\prime} reminder lenght;
- β_{n} belongs to b_{n} th copy, or set $b_{n}=0$; β_{n}^{\prime} induced marked point;
- Renormalize by $-1 / \alpha_{n}$.
For a sequence of nested inducing intervals $I^{(n)}$ the induced map on $I^{(n)}$ is a rotation by α_{n}. We have:

Ostrowski renormalization

From a rotation on $[-1, \alpha]$ with marked point $-1<\beta<\alpha$, the algorithm produces a sequence of rotations on $\left[-1, \alpha_{n}\right]$, with marked points β_{n} :

Algorithm step n:

- Cut a_{n} copies of $\left[0, \alpha_{n}\right)$;

0 α_{n}^{\prime} reminder lenght;

- β_{n} belongs to b_{n} th copy, or set $b_{n}=0$; β_{n}^{\prime} induced marked point;
- Renormalize by $-1 / \alpha_{n}$.
For a sequence of nested inducing intervals $I^{(n)}$ the induced map on $I^{(n)}$ is a rotation by α_{n}. We have:

Ostrowski renormalization

From a rotation on $[-1, \alpha]$ with marked point $-1<\beta<\alpha$, the algorithm produces a sequence of rotations on $\left[-1, \alpha_{n}\right]$, with marked points β_{n} :

Algorithm step n:

- Cut a_{n} copies of $\left[0, \alpha_{n}\right)$;

0 α_{n}^{\prime} reminder lenght;

- β_{n} belongs to b_{n} th copy, or set $b_{n}=0$; β_{n}^{\prime} induced marked point;
- Renormalize by $-1 / \alpha_{n}$.
For a sequence of nested inducing intervals $I^{(n)}$ the induced map on $I^{(n)}$ is a rotation by α_{n}. We have:

Ostrowski renormalization

From a rotation on $[-1, \alpha]$ with marked point $-1<\beta<\alpha$, the algorithm produces a sequence of rotations on $\left[-1, \alpha_{n}\right]$, with marked points β_{n} :

Algorithm step n:

- Cut a_{n} copies of
 $\left[0, \alpha_{n}\right.$); α_{n}^{\prime} reminder lenght;
belongs to b_{n} th copy, or set $b_{n}=0$; β_{n}^{\prime} induced marked point;
- Renormalize by $-1 / \alpha_{n}$.
For a sequence of nested inducing intervals $I^{(n)}$ the induced map on $I^{(n)}$ is a rotation by α_{n}. We have:

Ostrowski renormalization

From a rotation on $[-1, \alpha]$ with marked point $-1<\beta<\alpha$, the algorithm produces a sequence of rotations on $\left[-1, \alpha_{n}\right]$, with marked points β_{n} :

Algorithm step n:

- Cut a_{n} copies of $\left[0, \alpha_{n}\right.$);
α_{n}^{\prime} reminder lenght;
- β_{n} belongs to b_{n} th copy, or set $b_{n}=0$;
β_{n}^{\prime} induced marked point;
- Renormalize by

For a sequence of nested inducing intervals $I^{(n)}$
the induced map on $I^{(n)}$ is a rotation by α_{n}. We have:

Ostrowski renormalization

From a rotation on $[-1, \alpha]$ with marked point $-1<\beta<\alpha$, the algorithm produces a sequence of rotations on $\left[-1, \alpha_{n}\right]$, with marked points β_{n} :

Algorithm step n:

- Cut a_{n} copies of $\left[0, \alpha_{n}\right.$);
α_{n}^{\prime} reminder lenght;
- β_{n} belongs to b_{n} th copy, or set $b_{n}=0$; β_{n}^{\prime} induced marked point;
- Renormalize by

For a sequence of nested inducing intervals $I^{(n)}$ the induced map on $I^{(n)}$ is a rotation by α_{n}. We have:

Ostrowski renormalization

From a rotation on $[-1, \alpha]$ with marked point $-1<\beta<\alpha$, the algorithm produces a sequence of rotations on $\left[-1, \alpha_{n}\right]$, with marked points β_{n} :

Algorithm step n:

- Cut a_{n} copies of $\left[0, \alpha_{n}\right)$;
α_{n}^{\prime} reminder lenght;
- β_{n} belongs to b_{n} th copy, or set $b_{n}=0$; β_{n}^{\prime} induced marked point;
- Renormalize by $-1 / \alpha_{n}$.
For a sequence of nested inducing intervals $I^{(n)}$,
the induced map on $I^{(n)}$ is a rotation by α_{n}. We have:

Ostrowski renormalization

From a rotation on $[-1, \alpha]$ with marked point $-1<\beta<\alpha$, the algorithm produces a sequence of rotations on $\left[-1, \alpha_{n}\right]$, with marked points β_{n} :

Algorithm step n:

- Cut a_{n} copies of $\left[0, \alpha_{n}\right)$;
α_{n}^{\prime} reminder lenght;
- β_{n} belongs to b_{n} th copy, or set $b_{n}=0$; β_{n}^{\prime} induced marked point;
- Renormalize by $-1 / \alpha_{n}$.
For a sequence of nested inducing intervals $I^{(n)}$, the induced map on $I^{(n)}$ is a rotation by α_{n}.

Ostrowski renormalization

From a rotation on $[-1, \alpha]$ with marked point $-1<\beta<\alpha$, the algorithm produces a sequence of rotations on $\left[-1, \alpha_{n}\right]$, with marked points β_{n} :

Algorithm step n:

- Cut a_{n} copies of $\left[0, \alpha_{n}\right)$;
α_{n}^{\prime} reminder lenght;
- β_{n} belongs to b_{n} th copy, or set $b_{n}=0$; β_{n}^{\prime} induced marked point;
- Renormalize by $-1 / \alpha_{n}$.
For a sequence of nested inducing intervals $I^{(n)}$, the induced map on $I^{(n)}$ is a rotation by α_{n}. We have:

$$
\alpha=\left[a_{1}, \ldots, a_{n}, \ldots\right],
$$

\square

Ostrowski renormalization

From a rotation on $[-1, \alpha]$ with marked point $-1<\beta<\alpha$, the algorithm produces a sequence of rotations on $\left[-1, \alpha_{n}\right]$, with marked points β_{n} :

Algorithm step n:

- Cut a_{n} copies of $\left[0, \alpha_{n}\right)$;
α_{n}^{\prime} reminder lenght;
- β_{n} belongs to b_{n} th copy, or set $b_{n}=0$; β_{n}^{\prime} induced marked point;
- Renormalize by $-1 / \alpha_{n}$.
For a sequence of nested inducing intervals $I^{(n)}$, the induced map on $I^{(n)}$ is a rotation by α_{n}. We have:

$$
\alpha=\left[a_{1}, \ldots, a_{n}, \ldots\right], \quad \beta=\sum_{k}-1^{k} \alpha^{(k)} x_{k} \quad \text { (Ostrowski expansion), }
$$

Ostrowski renormalization

From a rotation on $[-1, \alpha]$ with marked point $-1<\beta<\alpha$, the algorithm produces a sequence of rotations on $\left[-1, \alpha_{n}\right]$, with marked points β_{n} :

Algorithm step n:

- Cut a_{n} copies of $\left[0, \alpha_{n}\right)$;
α_{n}^{\prime} reminder lenght;
- β_{n} belongs to b_{n} th copy, or set $b_{n}=0$; β_{n}^{\prime} induced marked point;
- Renormalize by $-1 / \alpha_{n}$.
For a sequence of nested inducing intervals $I^{(n)}$, the induced map on $I^{(n)}$ is a rotation by α_{n}. We have:

$$
\alpha=\left[a_{1}, \ldots, a_{n}, \ldots\right], \quad \beta=\sum_{k}-1^{k} \alpha^{(k)} x_{k} \quad \text { (Ostrowski expansion), }
$$

where $\quad \alpha^{(k)}=\prod_{k} \mathscr{G}^{k}(\alpha), \quad x_{k}= \begin{cases}\left(-1+\left(b_{n}-1\right) \alpha_{n}\right) & 1 \leq b_{n} \leq a_{n} \\ 0 & b_{n}=0\end{cases}$

Towers and cutting and stacking for Ostrowski towers

The Ostrowsky renormalization algorithm gives a presentation of R_{α} as a sequence of 3 Rohlin towers over the induced maps.

- For the rotation, there
 heigts q_{n} and $\left.q_{n+1}\right)$:
a large one (L) and a small (S) one.
\rightarrow Cut them into 3 towers by the position of β_{n}.

- From stage n to $n+1$, do cutting and stacking.

Towers and cutting and stacking for Ostrowski towers

The Ostrowsky renormalization algorithm gives a presentation of R_{α} as a sequence of 3 Rohlin towers over the induced maps.

- For the rotation, there are only two towers (of heigts q_{n} and $\left.q_{n+1}\right)$: a large one (L) and a small (S) one.

Towers and cutting and stacking for Ostrowski towers

The Ostrowsky renormalization algorithm gives a presentation of R_{α} as a sequence of 3 Rohlin towers over the induced maps.

- For the rotation, there are only two towers (of heigts q_{n} and q_{n+1}): a large one (L) and a small (S) one.
- Cut them into 3 towers by the position of β_{n}.
- From stage n to $n+1$, do cutting and stacking.

Towers and cutting and stacking for Ostrowski towers

The Ostrowsky renormalization algorithm gives a presentation of R_{α} as a sequence of 3 Rohlin towers over the induced maps.

- For the rotation, there are only two towers (of heigts q_{n} and q_{n+1}): a large one (L) and a small (S) one.
- Cut them into 3 towers by the position of β_{n}.
- Call them $\{L, M, S\}$ for large, middle, small.
- From stage n to $n+1$, do cutting and

Towers and cutting and stacking for Ostrowski towers

The Ostrowsky renormalization algorithm gives a presentation of R_{α} as a sequence of 3 Rohlin towers over the induced maps.

- For the rotation, there are only two towers (of heigts q_{n} and q_{n+1}): a large one (L) and a small (S) one.
- Cut them into 3 towers by the position of β_{n}.
- Call them $\{L, M, S\}$ for large, middle, small.
- From stage n to $n+1$, do cutting and stacking.

Towers and cutting and stacking for Ostrowski towers

The Ostrowsky renormalization algorithm gives a presentation of R_{α} as a sequence of 3 Rohlin towers over the induced maps.

- For the rotation, there are only two towers (of heigts q_{n} and q_{n+1}): a large one (L) and a small (S) one.
- Cut them into 3 towers by the position of β_{n}.
- Call them $\{L, M, S\}$ for large, middle, small.
- From stage n to $n+1$, do cutting and stacking.

Towers and cutting and stacking for Ostrowski towers

The Ostrowsky renormalization algorithm gives a presentation of R_{α} as a sequence of 3 Rohlin towers over the induced maps.

- For the rotation, there are only two towers (of heigts q_{n} and q_{n+1}): a large one (L) and a small (S) one.
- Cut them into 3 towers by the position of β_{n}.
- Call them $\{L, M, S\}$ for large, middle, small.
- From stage n to $n+1$, do cutting and stacking.

Towers and cutting and stacking for Ostrowski towers

The Ostrowsky renormalization algorithm gives a presentation of R_{α} as a sequence of 3 Rohlin towers over the induced maps.

- For the rotation, there are only two towers (of heigts q_{n} and q_{n+1}): a large one (L) and a small (S) one.
- Cut them into 3 towers by the position of β_{n}.

- Call them $\{L, M, S\}$ for large, middle, small.
- From stage n to $n+1$, do cutting and stacking.

Towers and cutting and stacking for Ostrowski towers

The Ostrowsky renormalization algorithm gives a presentation of R_{α} as a sequence of 3 Rohlin towers over the induced maps.

- For the rotation, there are only two towers (of heigts q_{n} and q_{n+1}): a large one (L) and a small (S) one.
- Cut them into 3 towers by the position of β_{n}.
- Call them $\{L, M, S\}$ for large, middle, small.
- From stage n to $n+1$, do cutting and stacking.

Towers and cutting and stacking for Ostrowski towers

The Ostrowsky renormalization algorithm gives a presentation of R_{α} as a sequence of 3 Rohlin towers over the induced maps.

n

- For the rotation, there are only two towers (of heigts q_{n} and q_{n+1}): a large one (L) and a small (S) one.
- Cut them into 3 towers by the position of β_{n}.
- Call them $\{L, M, S\}$ for large, middle, small.
- From stage n to $n+1$, do cutting and stacking.

The adic symbolic coding

For the symbolic coding, use two consecutive renormalization steps.

- Label subtowers of step n inside step $n+1$

$>$ Coding map $\Psi:$ code a point $x \in I$ by $\Psi(x)=\left\{\left(J_{n}, j_{n}\right)\right\}_{n}$ if, for any n, x belongs to the subtower labelled by $\left(J_{n}, j_{n}\right)$ at stage n.
\rightarrow Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
- transition matrices with entries in function of a_{n} and b_{n};
\rightarrow Markov measures μ_{n}^{\prime}, where $\mu:=\boldsymbol{\psi}$ Leb and μ_{n}^{J} is the restriction to n cylinders, conditioned to x in the J interval at stage n.
[Remark: This is an adic coding: it conjugates R_{α} to a Vershik adic map.
For an adic coding for IETs (via Rauzy-Veech induction) see Bufetov]

The adic symbolic coding

For the symbolic coding, use two consecutive renormalization steps.

- Label subtowers of step n inside step $n+1$

$>$ Coding map $\Psi:$ code a point $x \in I$ by $\Psi(x)=\left\{\left(J_{n}, j_{n}\right)\right\}_{n}$
if, for any n, x belongs to the subtower labelled by $\left(J_{n}, j_{n}\right)$ at stage n.
- Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
- transition matrices with entries in function of a_{n} and b_{n};
- Markov measures μ_{n}, where $\mu:=\Psi_{*}$ Leb and μ_{n} is the restriction to
n cylinders, conditioned to x in the J interval at stage n.
[Remark: This is an adic coding: it conjugates $R_{\text {a }}$ to a Vershik adic map.
For an adic coding for IETs (via Rauzy-Veech induction) see Bufetov]

The adic symbolic coding

For the symbolic coding, use two consecutive renormalization steps.

- Label subtowers of step n inside step $n+1$

- Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
- transition matrices with entries in function of a_{n} and b_{n};
- Markov measures μ_{n}, where $\mu:=\Psi_{*}$ Leb and μ_{n} is the restriction to
n cylinders, conditioned to x in the J interval at stage n.
[Remark: This is an adic coding: it conjugates $R_{\text {a }}$ to a Vershik adic map.
For an adic coding for IETs (via Rauzy-Veech induction) see Bufetov]

The adic symbolic coding

For the symbolic coding, use two consecutive renormalization steps.

- Label subtowers of step n inside step $n+1$

Coding map Ψ : code a point $x \in I$ by $\Psi(x)=\left\{\left(J_{n}, j_{n}\right)\right\}_{n}$
if, for any n, x belongs to the subtower labelled by $\left(J_{n}, j_{n}\right)$ at stage n.

- Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
- transition matrices with entries in function of a_{n} and b_{n};
- Markov measures μ_{n}, where $\mu:=\Psi_{*}$ Leb and μ_{n}^{J} is the restriction to
n cylinders, conditioned to x in the J interval at stage n.
[Remark: This is an adic coding: it conjugates $R_{\text {a }}$ to a Vershik adic map.
For an adic coding for IETs (via Rauzy-Veech induction) see Bufetov]

The adic symbolic coding

For the symbolic coding, use two consecutive renormalization steps.

- Label subtowers of step n inside step $n+1$

$\left(M, a_{n}\right)$	$\left(L, a_{n}\right)$
\ldots	\ldots
$(M, 2)$	$(L, 2)$
$(\mathrm{M}, 1)$	$(\mathrm{L}, 1)$
	$(\mathrm{M}, 0)$

if, for any n, x belongs to the subtower labelled by $\left(J_{n}, j_{n}\right)$ at stage n.

- Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
\rightarrow transition matrices with entries in function of a_{n} and b_{n};
- Markov measures μ_{n}^{J}, where $\mu:=\Psi_{*}$ Leb and μ_{n}^{J} is the restriction to n cylinders, conditioned to x in the J interval at stage n.

The adic symbolic coding

For the symbolic coding, use two consecutive renormalization steps.

- Label subtowers of step n inside step $n+1$ Labels $(J, j), \quad J \in\{L, M, S\}, 0 \leq j \leq a_{n}$.

$\left(M, a_{n}\right)$	$\left(L, a_{n}\right)$
\ldots	\ldots
$(M, 2)$	$(L, 2)$
$(\mathrm{M}, 1)$	$(\mathrm{L}, 1)$
	$(\mathrm{M}, 0)$

The adic symbolic coding

For the symbolic coding, use two consecutive renormalization steps.

- Label subtowers of step n inside step $n+1$ Labels $(J, j), \quad J \in\{L, M, S\}, 0 \leq j \leq a_{n}$.

$\left(M, a_{n}\right)$	$\left(L, a_{n}\right)$
\ldots	\ldots
$(M, 2)$	$(L, 2)$
$(\mathrm{M}, 1)$	$(\mathrm{L}, 1)$
	$(\mathrm{M}, 0)$

The adic symbolic coding

For the symbolic coding, use two consecutive renormalization steps.

- Label subtowers of step n inside step $n+1$ Labels $(J, j), \quad J \in\{L, M, S\}, 0 \leq j \leq a_{n}$.

$\left(M, a_{n}\right)$	$\left(L, a_{n}\right)$
\ldots	\ldots
$(M, 2)$	$(L, 2)$
$(\mathrm{M}, 1)$	$(\mathrm{L}, 1)$
	$(\mathrm{M}, 0)$

if, for any n, x belongs to the subtower labelled by $\left(J_{n}, j_{n}\right)$ at stage n.

- Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
- transition matrices with entries in function of a_{n} and b_{n};
\rightarrow Markov measures μ_{n}^{J}, where $\mu:=\Psi_{*}$ Leb and μ_{n}^{J} is the restriction to
n cylinders, conditioned to x in the J interval at stage n.
[Remark: This is an adic coding: it conjugates R_{α} to a Vershik adic map.
For an adic coding for IETs (via Rauzy-Veech induction) see Bufetov]

The adic symbolic coding

For the symbolic coding, use two consecutive renormalization steps.

- Label subtowers of step n inside step $n+1$ Labels $(J, j), \quad J \in\{L, M, S\}, 0 \leq j \leq a_{n}$.

$\left(M, a_{n}\right)$	$\left(L, a_{n}\right)$
\ldots	\ldots
$(M, 2)$	$(L, 2)$
$(\mathrm{M}, 1)$	$(\mathrm{L}, 1)$
	$(\mathrm{M}, 0)$

- Coding map Ψ :
if, for any n, x belongs to the subtower labelled by $\left(J_{n}, j_{n}\right)$ at stage n. - Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
- transition matrices with entries in function of a_{n} and b_{n};
$>$ Markov measures μ_{n}, where $\mu:=\Psi_{*}$ Leb and μ_{n} is the restriction to
n cylinders, conditioned to x in the J interval at stage n.

The adic symbolic coding

For the symbolic coding, use two consecutive renormalization steps.

- Label subtowers of step n inside step $n+1$ Labels $(J, j), \quad J \in\{L, M, S\}, 0 \leq j \leq a_{n}$.

$\left(M, a_{n}\right)$	$\left(L, a_{n}\right)$
\ldots	\ldots
$(M, 2)$	$(L, 2)$
$(\mathrm{M}, 1)$	$(\mathrm{L}, 1)$
	$(\mathrm{M}, 0)$

- Coding map Ψ : code a point $x \in I$ by $\Psi(x)=\left\{\left(J_{n}, j_{n}\right)\right\}_{n}$
- Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
- transition matrices with entries in function of a_{n} and b_{n};
$>$ Markov measures μ_{n}, where $\mu:=\Psi_{*}$ Leb and μ_{n}^{J} is the restriction to
n cylinders, conditioned to x in the J interval at stage n.

The adic symbolic coding

For the symbolic coding, use two consecutive renormalization steps.

- Label subtowers of step n inside step $n+1$ Labels $(J, j), \quad J \in\{L, M, S\}, 0 \leq j \leq a_{n}$.

$\left(M, a_{n}\right)$	$\left(L, a_{n}\right)$
	\ldots
	\ldots
	$(M, 2)$
	$(\mathrm{L}, 2)$
$(\mathrm{M}, 1)$	$(\mathrm{L}, 1)$
	$(M, 0)$

- Coding map Ψ : code a point $x \in I$ by $\Psi(x)=\left\{\left(J_{n}, j_{n}\right)\right\}_{n}$ if, for any n, x belongs to the subtower labelled by $\left(J_{n}, j_{n}\right)$ at stage n.
- transition matrices with entries in function of a_{n} and b_{n};

The adic symbolic coding

For the symbolic coding, use two consecutive renormalization steps.

- Label subtowers of step n inside step $n+1$ Labels $(J, j), \quad J \in\{L, M, S\}, 0 \leq j \leq a_{n}$.

- Coding map Ψ : code a point $x \in I$ by $\Psi(x)=\left\{\left(J_{n}, j_{n}\right)\right\}_{n}$ if, for any n, x belongs to the subtower labelled by $\left(J_{n}, j_{n}\right)$ at stage n.
- Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain.

The adic symbolic coding

For the symbolic coding, use two consecutive renormalization steps.

- Label subtowers of step n inside step $n+1$ Labels $(J, j), \quad J \in\{L, M, S\}, 0 \leq j \leq a_{n}$.

- Coding map Ψ : code a point $x \in I$ by $\Psi(x)=\left\{\left(J_{n}, j_{n}\right)\right\}_{n}$ if, for any n, x belongs to the subtower labelled by $\left(J_{n}, j_{n}\right)$ at stage n.
- Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
- transition matrices with entries in function of a_{n} and b_{n};
n cylinders, conditioned to x in the J interval at stage n.

The adic symbolic coding

For the symbolic coding, use two consecutive renormalization steps.

- Label subtowers of step n inside step $n+1$ Labels $(J, j), \quad J \in\{L, M, S\}, 0 \leq j \leq a_{n}$.

- Coding map Ψ : code a point $x \in I$ by $\Psi(x)=\left\{\left(J_{n}, j_{n}\right)\right\}_{n}$ if, for any n, x belongs to the subtower labelled by $\left(J_{n}, j_{n}\right)$ at stage n.
- Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
- transition matrices with entries in function of a_{n} and b_{n};
- Markov measures μ_{n}^{J},

The adic symbolic coding

For the symbolic coding, use two consecutive renormalization steps.

- Label subtowers of step n inside step $n+1$ Labels $(J, j), \quad J \in\{L, M, S\}, 0 \leq j \leq a_{n}$.

- Coding map Ψ : code a point $x \in I$ by $\Psi(x)=\left\{\left(J_{n}, j_{n}\right)\right\}_{n}$ if, for any n, x belongs to the subtower labelled by $\left(J_{n}, j_{n}\right)$ at stage n.
- Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
- transition matrices with entries in function of a_{n} and b_{n};
- Markov measures μ_{n}^{J}, where $\mu:=\Psi_{*}$ Leb

The adic symbolic coding

For the symbolic coding, use two consecutive renormalization steps.

- Label subtowers of step n inside step $n+1$ Labels $(J, j), \quad J \in\{L, M, S\}, 0 \leq j \leq a_{n}$.

- Coding map Ψ : code a point $x \in I$ by $\Psi(x)=\left\{\left(J_{n}, j_{n}\right)\right\}_{n}$ if, for any n, x belongs to the subtower labelled by $\left(J_{n}, j_{n}\right)$ at stage n.
- Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
- transition matrices with entries in function of a_{n} and b_{n};
- Markov measures μ_{n}^{J}, where $\mu:=\Psi_{*} L e b$ and μ_{n}^{J} is the restriction to n cylinders, conditioned to x in the J interval at stage n.

The adic symbolic coding

For the symbolic coding, use two consecutive renormalization steps.

- Label subtowers of step n inside step $n+1$ Labels $(J, j), \quad J \in\{L, M, S\}, 0 \leq j \leq a_{n}$.

- Coding map Ψ : code a point $x \in I$ by $\Psi(x)=\left\{\left(J_{n}, j_{n}\right)\right\}_{n}$ if, for any n, x belongs to the subtower labelled by $\left(J_{n}, j_{n}\right)$ at stage n.
- Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
- transition matrices with entries in function of a_{n} and b_{n};
- Markov measures μ_{n}^{J}, where $\mu:=\Psi_{*} L e b$ and μ_{n}^{J} is the restriction to n cylinders, conditioned to x in the J interval at stage n.
[Remark: This is an adic coding: it conjugates R_{α} to a Vershik adic map.

The adic symbolic coding

For the symbolic coding, use two consecutive renormalization steps.

- Label subtowers of step n inside step $n+1$ Labels $(J, j), \quad J \in\{L, M, S\}, 0 \leq j \leq a_{n}$.

- Coding map Ψ : code a point $x \in I$ by $\Psi(x)=\left\{\left(J_{n}, j_{n}\right)\right\}_{n}$ if, for any n, x belongs to the subtower labelled by $\left(J_{n}, j_{n}\right)$ at stage n.
- Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
- transition matrices with entries in function of a_{n} and b_{n};
- Markov measures μ_{n}^{J}, where $\mu:=\Psi_{*} L e b$ and μ_{n}^{J} is the restriction to n cylinders, conditioned to x in the J interval at stage n.
[Remark: This is an adic coding: it conjugates R_{α} to a Vershik adic map. For an adic coding for IETs (via Rauzy-Veech induction) see Bufetov]

Inducing and renormalization for rotations

Sample of results which can be proved using these tools:

```
> Three gaps theorem (Steinhaus theorem) for rotations;
    (using towers)
- Deniov-Koksma inequality for Birkhoff sums over rotations;
    (using towers)
- Rotation numbers for homeos and diffeos of \(S^{1}\)
    (using the renormalization procedure) [Ref: van Strien-de Melo book]
- Poincaré theorem for homeos of \(S^{1}\)
    (using the renormalization procedure) [Ref: van Strien-de Melo book]
- Herman result on regularity of conjugacy for diffeos of \(S^{1}\)
(using the renormalization procedure) [Ref: Sinai-Khanin]
- A limit theorem for Birkhoff sums of non integrable functions
    (using the partitions) [Ref: Sinai-Ulcigrai, 08]
- A generalization of Beck central limit theorem for rotations
(using cutting and stacking) [Ref: Bromberg-Ulcigrai, '17]
```


Inducing and renormalization for rotations

Sample of results which can be proved using these tools:

- Three gaps theorem (Steinhaus theorem) for rotations; (using towers)
- Denjoy-Koksma inequality for Birkhoff sums over rotations; (using towers)
- Rotation numbers for homeos and diffeos of S^{1} (using the renormalization procedure) [Ref: van Strien-de Melo book]
- Poincaré theorem for homeos of S^{1} (using the renormalization procedure)
[Ref: van Strien-de Melo book]
- Herman result on regularity of conjugacy for diffeos of S^{1} (using the renormalization procedure)
[Ref: Sinai-Khanin]
- A limit theorem for Birkhoff sums of non integrable functions (using the partitions)
[Ref: Sinai-Ulcigrai, '08]
- A generalization of Beck central limit theorem for rotations (using cutting and stacking)
[Ref: Bromberg-Ulcigrai, '17]

MFO Oberwolfach
 Dynamische Systeme

Corinna Ulcigrai

A Central Limit Theorem for cocycles over rotations

(based on joint work with
Michael Bromberg)
Oberwolfach, July 10, 2017

