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» Towers and cutting and
stacking;
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» Poincaré theorem for homeos of S!

(using the renormalization procedure) [Ref: van Strien-de Melo book]
» Herman result on regularity of conjugacy for diffeos of S*

(using the renormalization procedure) [Ref: Sinai-Khanin]
> .
» A limit theorem for Birkhoff sums of non integrable functions

(using the partitions) [Ref: Sinai-Ulcigrai, '08]
> A generalization of Beck central limit theorem for rotations
(using the cutting/stacking) [Ref: Bromberg-Ulcigrai, '17]
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(where F is lift of f and x any point in 51)

[Rk: p(f) € Q if and only if f has periodic points.]

Theorem (Poincaré) st _f sl
If f has no periodic points, there exists an
(irrational) rotation R, (where o = p(f)) and a lh lh

semi-conjugacy h between f and R, (h monotone
and surjective).

st —fa,y gt

Theorem (Denjoy)

If in addition f € ¢ (or €* and f' has bounded variation),
then h is a conjugacy.

Theorem (Herman, see also Sinai-Khanin)

If in addition f € C**" for some v > 0 and
a = [ag, a1, . . .| satisfies a, < Cn" for some C,~v > 0 (true for a.e. «)
then the conjugacy h is €.
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Temporal limit theorems
Take A = [0,1] x [a, b]. Define Xy visits r.v. by

P{Xy € [a, b]} = %{0 <n<N:T"((0,0)) € A}

Temporal limit theorems: ce e
> Beck CLT: a = 2 (quadratic irr.), 8 = ; Te e °.
X - L]
AN TN, N,
by

where 4" Gaussian, ay = ¢ log N, by = cv/log N
» Dolgopyat-Sarig: « quadratic irr. (bnd type), 5 € Q, any (xo, ¥o)

Theorem (Bromberg—U')

For any  bounded type (bnd CF entries), any 3 badly approximable wrt
a and any 0 < xp < 1,

A, =A,(a,8,x) and B, := B, (e, B) s.t. Ya< b

b
1 Skfﬁ (RQ,XQ) - A,, 1 _2
#{1<k<n: € [a, b] —>—/e Z dx.
n Bn
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» Renormalization: we use a classical renormalization algorithm
(instead than geometric renormalization),
given by an extension over the Gauss map.
This algorithm produces simultaneosuly:
» the continued fraction entries of o= [a1, a2, ..., an,...];
» the Ostrowski expansion of [ relative to « and its entries (bn)n;
» Refs: Arnoux-Fisher, Ito, Bonanno-lsola, ...

» Symbolic coding: use the Rohlin towers given by the renormalization
algorithm to code the dynamics (Vershik-adic coding); coding leads
to a non-homogeneous Markov chain;

» CLT for (non-homogeneous) Markov chains: proved by Dobrushin
(for technical reasons, we use the CLT for ¢—mixing arrays of Markov
chains by Utev)

Remark: our general framework: allows to extend this (and other limit
theorems) to T interval exchange transformation (bounded type),
when f belongs to a special class of functions

(Becks's functions, related to zero Lyapunov exponents).
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From a rotation on [—1, o] with marked point —1 < 8 < «, the algorithm
produces a sequence of rotations on [—1, a,], with marked points f3,:
Algorithm step n:
» Cut a, copies of
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o, reminder lenght;
» 3, belongs to b,th
copy, or set b, = 0;
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» Renormalize by
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For a sequence of nested inducing intervals [("),
the induced map on /(") is a rotation by a,. We have:
a=1lag,...,an,...] B = Z —1*aMx, (Ostrowski expansion),
k
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where a(k):Hg"(aL Xk:{( 1+(bh—1)an) 1<b,<a
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Towers and cutting and stacking for Ostrowski towers

The Ostrowsky renormalization algorithm gives a presentation of R, as a
sequence of 3 Rohlin towers over the induced maps.

h n

n+1

SML

For the rotation, there
are only two towers (of
heigts g, and g,+1):

a large one (L)

and a small (S) one.

Cut them into 3 towers
by the position of 3,.
Call them {L, M, S} for
large, middle, small.
From stage nto n+1,
do cutting and
stacking.
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» Fact: Symbolic sequences in W(/) form a Markov chain. Write:

» transition matrices with entries in function of a, and b,;

» Markov measures 1), where p:= W, Leb and 1] is the restriction to

[Remark: This is an adic coding: it conjugates R, to a Vershik adic map.
For an adic coding for IETs (via Rauzy-Veech induction) see Bufetov]
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Inducing and renormalization for rotations

Sample of results which can be proved using these tools:

» Three gaps theorem (Steinhaus theorem) for rotations;
(using towers)

» Denjoy-Koksma inequality for Birkhoff sums over rotations;
(using towers)

» Rotation numbers for homeos and diffeos of St

(using the renormalization procedure) [Ref: van Strien-de Melo book]
» Poincaré theorem for homeos of S!

(using the renormalization procedure) [Ref: van Strien-de Melo book]
» Herman result on regularity of conjugacy for diffeos of S?

(using the renormalization procedure) [Ref: Sinai-Khanin]
> .
» A limit theorem for Birkhoff sums of non integrable functions

(using the partitions) [Ref: Sinai-Ulcigrai, '08]
> A generalization of Beck central limit theorem for rotations
(using cutting and stacking) [Ref: Bromberg-Ulcigrai, '17]
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