We defined several tools:

An renormalization procedure;

An algorithm;

(induce R_{α} on $I^{(n)} = \Delta^{(n)} \cup \Delta^{(n+1)}$)

Partitions of the circle;

(cut $\Delta^{(n)}$ from right, cut from left...)

We defined several tools:

- An renormalization procedure; (induce R_{α} on $I^{(n)} = \Delta^{(n)} \cup \Delta^{(n+1)}$)
- Partitions of the circle;

An algorithm;

(cut $\Delta^{(n)}$ from right, cut from left...)

We defined several tools:

An renormalization procedure;

Partitions of the circle;

An algorithm;

(cut $\Delta^{(n)}$ from right, cut from left...)

We defined several tools:

An renormalization procedure;

(induce R_{lpha} on $I^{(n)} = \Delta^{(n)} \cup \Delta^{(n+1)}$)

Partitions of the circle;

An algorithm;

(cut $\Delta^{(n)}$ from right, cut from left...)

We defined several tools:

An renormalization procedure;

(induce R_{lpha} on $I^{(n)} = \Delta^{(n)} \cup \Delta^{(n+1)}$)

Partitions of the circle;

An algorithm;

(cut $\Delta^{(n)}$ from right, cut from left...)

• . . .

- Three gaps theorem (Steinhaus theorem) for rotations; (using towers)
- Denjoy-Koksma inequality for Birkhoff sums over rotations; (using towers)
- Rotation numbers for homeos and diffeos of S¹ (using the renormalization procedure) [Ref: van Strien-de Melo book]
- Poincaré theorem for homeos of S¹ (using the renormalization procedure) [*Ref: van Strien-de Melo book*]
- Herman result on regularity of conjugacy for diffeos of S¹ (using the renormalization procedure) [*Ref: Sinai-Khanin*]
- A limit theorem for Birkhoff sums of non integrable functions (using the partitions)
 [Ref: Sinai-Ulcigrai, '08]
- A generalization of Beck central limit theorem for rotations (using the cutting/stacking) [*Ref: Bromberg-Ulcigrai, '17*]

• . . .

- Three gaps theorem (Steinhaus theorem) for rotations; (using towers)
- Denjoy-Koksma inequality for Birkhoff sums over rotations; (using towers)
- Rotation numbers for homeos and diffeos of S¹ (using the renormalization procedure) [Ref: van Strien-de Melo book]
- Poincaré theorem for homeos of S¹ (using the renormalization procedure) [*Ref: van Strien-de Melo book*]
- Herman result on regularity of conjugacy for diffeos of S¹ (using the renormalization procedure) [*Ref: Sinai-Khanin*]
- A limit theorem for Birkhoff sums of non integrable functions (using the partitions)
 [Ref: Sinai-Ulcigrai, '08]
- A generalization of Beck central limit theorem for rotations (using the cutting/stacking) [*Ref: Bromberg-Ulcigrai, '17*]

• . . .

- Three gaps theorem (Steinhaus theorem) for rotations; (using towers)
- Denjoy-Koksma inequality for Birkhoff sums over rotations; (using towers)
- Rotation numbers for homeos and diffeos of S¹ (using the renormalization procedure) [Ref: van Strien-de Melo book]
- Poincaré theorem for homeos of S¹ (using the renormalization procedure) [*Ref: van Strien-de Melo book*]
- Herman result on regularity of conjugacy for diffeos of S¹ (using the renormalization procedure) [*Ref: Sinai-Khanin*]
- A limit theorem for Birkhoff sums of non integrable functions (using the partitions)
 [Ref: Sinai-Ulcigrai, '08]
- A generalization of Beck central limit theorem for rotations (using the cutting/stacking) [*Ref: Bromberg-Ulcigrai, '17*]

• . . .

- Three gaps theorem (Steinhaus theorem) for rotations; (using towers)
- Denjoy-Koksma inequality for Birkhoff sums over rotations; (using towers)
- Rotation numbers for homeos and diffeos of S¹ (using the renormalization procedure) [*Ref: van Strien-de Melo book*]
- Poincaré theorem for homeos of S¹ (using the renormalization procedure) [*Ref: van Strien-de Melo book*]
- Herman result on regularity of conjugacy for diffeos of S¹ (using the renormalization procedure) [*Ref: Sinai-Khanin*]
- A limit theorem for Birkhoff sums of non integrable functions (using the partitions)
 [Ref: Sinai-Ulcigrai, '08]
- A generalization of Beck central limit theorem for rotations (using the cutting/stacking) [*Ref: Bromberg-Ulcigrai, '17*]

• . . .

- Three gaps theorem (Steinhaus theorem) for rotations; (using towers)
- Denjoy-Koksma inequality for Birkhoff sums over rotations; (using towers)
- Rotation numbers for homeos and diffeos of S¹ (using the renormalization procedure) [Ref: van Strien-de Melo book]
- Poincaré theorem for homeos of S¹ (using the renormalization procedure) [*Ref: van Strien-de Melo book*]
- Herman result on regularity of conjugacy for diffeos of S¹ (using the renormalization procedure) [*Ref: Sinai-Khanin*]
- A limit theorem for Birkhoff sums of non integrable functions (using the partitions)
 [Ref: Sinai-Ulcigrai, '08]
- A generalization of Beck central limit theorem for rotations (using the cutting/stacking) [*Ref: Bromberg-Ulcigrai, '17*]

- Three gaps theorem (Steinhaus theorem) for rotations; (using towers)
- Denjoy-Koksma inequality for Birkhoff sums over rotations; (using towers)
- Rotation numbers for homeos and diffeos of S¹ (using the renormalization procedure) [*Ref: van Strien-de Melo book*]
- Poincaré theorem for homeos of S¹ (using the renormalization procedure) [*Ref: van Strien-de Melo book*]
- Herman result on regularity of conjugacy for diffeos of S¹ (using the renormalization procedure) [*Ref: Sinai-Khanin*]
- A limit theorem for Birkhoff sums of non integrable functions (using the partitions)
 [Ref: Sinai-Ulcigrai, '08]
- A generalization of Beck central limit theorem for rotations (using the cutting/stacking) [*Ref: Bromberg-Ulcigrai, '17*]

• . . .

- Three gaps theorem (Steinhaus theorem) for rotations; (using towers)
- Denjoy-Koksma inequality for Birkhoff sums over rotations; (using towers)
- Rotation numbers for homeos and diffeos of S¹ (using the renormalization procedure) [*Ref: van Strien-de Melo book*]
- Poincaré theorem for homeos of S¹ (using the renormalization procedure) [*Ref: van Strien-de Melo book*]
- Herman result on regularity of conjugacy for diffeos of S¹ (using the renormalization procedure) [*Ref: Sinai-Khanin*]
- A limit theorem for Birkhoff sums of non integrable functions (using the partitions)
 [*Ref: Sinai-Ulcigrai, '08*]
- A generalization of Beck central limit theorem for rotations (using the cutting/stacking) [*Ref: Bromberg-Ulcigrai, '17*]

Sample of results which can be proved using these tools:

- Three gaps theorem (Steinhaus theorem) for rotations; (using towers)
- Denjoy-Koksma inequality for Birkhoff sums over rotations; (using towers)
- Rotation numbers for homeos and diffeos of S¹ (using the renormalization procedure) [*Ref: van Strien-de Melo book*]
- Poincaré theorem for homeos of S¹ (using the renormalization procedure) [*Ref: van Strien-de Melo book*]
- Herman result on regularity of conjugacy for diffeos of S¹ (using the renormalization procedure) [*Ref: Sinai-Khanin*]
- ▶ ...

. . .

- A limit theorem for Birkhoff sums of non integrable functions (using the partitions)
 [Ref: Sinai-Ulcigrai, '08]
- A generalization of Beck central limit theorem for rotations (using the cutting/stacking)
 [*Ref: Bromberg-Ulcigrai, '17*]

• Rotation number $\rho(f) := \lim_{n \to \infty} \frac{F^n(x) - x}{n}$, (where *F* is lift of *f* and *x* any point in *S*¹)

$[\mathit{Rk}: \ ho(f) \in \mathbb{Q}$ if and only if f has periodic points.]

Theorem (Poincaré)

If f has no periodic points, there exists an (irrational) rotation R_{α} (where $\alpha = \rho(f)$) and a semi-conjugacy h between f and R_{α} (h monotone and surjective).

Theorem (Denjoy)

If in addition $f \in \mathscr{C}^2$ (or \mathscr{C}^1 and f' has bounded variation), then h is a conjugacy.

Theorem (Herman, see also Sinai-Khanin)

If in addition $f \in \mathbb{C}^{2+\nu}$ for some $\nu > 0$ and $\alpha = [a_0, a_1, \ldots]$ satisfies $a_n \leq Cn^{\gamma}$ for some $C, \gamma > 0$ (true for a.e. α) then the conjugacy h is \mathscr{C}^1 .

• Rotation number $\rho(f) := \lim_{n \to \infty} \frac{F^n(x) - x}{n}$,

(where F is lift of f and x any point in S^1)

[*Rk*: $\rho(f) \in \mathbb{Q}$ if and only if *f* has periodic points.]

Theorem (Poincaré)

If f has no periodic points, there exists an (irrational) rotation R_{α} (where $\alpha = \rho(f)$) and a semi-conjugacy h between f and R_{α} (h monotone and surjective).

Theorem (Denjoy)

If in addition $f \in \mathscr{C}^2$ (or \mathscr{C}^1 and f' has bounded variation), then h is a conjugacy.

Theorem (Herman, see also Sinai-Khanin)

If in addition $f \in \mathbb{C}^{2+\nu}$ for some $\nu > 0$ and $\alpha = [a_0, a_1, \ldots]$ satisfies $a_n \leq Cn^{\gamma}$ for some $C, \gamma > 0$ (true for a.e. α) then the conjugacy h is \mathscr{C}^1 .

• Rotation number $\rho(f) := \lim_{n \to \infty} \frac{F^n(x) - x}{n}$,

(where F is lift of f and x any point in S^1)

[*Rk*: $ho(f) \in \mathbb{Q}$ if and only if *f* has periodic points.]

Theorem (Poincaré)

If f has no periodic points, there exists an (irrational) rotation R_{α} (where $\alpha = \rho(f)$) and a semi-conjugacy h between f and R_{α} (h monotone and surjective).

Theorem (Denjoy)

If in addition $f \in \mathscr{C}^2$ (or \mathscr{C}^1 and f' has bounded variation), then h is a conjugacy.

Theorem (Herman, see also Sinai-Khanin) If in addition $f \in \mathbb{C}^{2+\nu}$ for some $\nu > 0$ and $\alpha = [a_0, a_1, ...]$ satisfies $a_n \leq Cn^{\gamma}$ for some $C, \gamma > 0$ (true for a.e. α) then the conjugacy h is \mathscr{C}^1 .

• Rotation number $\rho(f) := \lim_{n \to \infty} \frac{F^n(x) - x}{n}$,

(where F is lift of f and x any point in S^1)

[*Rk*: $\rho(f) \in \mathbb{Q}$ if and only if f has periodic points.]

Theorem (Poincaré)

If f has no periodic points, there exists an (irrational) rotation R_{α} (where $\alpha = \rho(f)$) and a semi-conjugacy h between f and R_{α} (h monotone and surjective).

Theorem (Denjoy)

If in addition $f \in \mathscr{C}^2$ (or \mathscr{C}^1 and f' has bounded variation), then h is a conjugacy.

Theorem (Herman, see also Sinai-Khanin)

If in addition $f \in \mathbb{C}^{2+\nu}$ for some $\nu > 0$ and $\alpha = [a_0, a_1, \ldots]$ satisfies $a_n \leq Cn^{\gamma}$ for some $C, \gamma > 0$ (true for a.e. α) then the conjugacy h is \mathscr{C}^1 .

• Rotation number $\rho(f) := \lim_{n \to \infty} \frac{F^n(x) - x}{n}$,

(where F is lift of f and x any point in S^1)

[*Rk*: $\rho(f) \in \mathbb{Q}$ if and only if f has periodic points.]

Theorem (Poincaré)

If f has no periodic points, there exists an (irrational) rotation R_{α} (where $\alpha = \rho(f)$) and a semi-conjugacy h between f and R_{α} (h monotone and surjective).

Theorem (Denjoy)

If in addition $f \in \mathscr{C}^2$ (or \mathscr{C}^1 and f' has bounded variation), then h is a conjugacy.

Theorem (Herman, see also Sinai-Khanin) If in addition $f \in \mathbb{C}^{2+\nu}$ for some $\nu > 0$ and $\alpha = [a_0, a_1, ...]$ satisfies $a_n \leq Cn^{\gamma}$ for some $C, \gamma > 0$ (true for a.e. α) then the conjugacy h is \mathscr{C}^1 . Corinna Ulcigrai

A Central Limit Theorem for cocycles over rotations

(based on joint work with Michael Bromberg)

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

 $(x,y)\mapsto (R_{\alpha}(x),y+f(x))$ $T^n(0,0)=(R^n_{\alpha}(0),\sum_{k=0}^{n-1}f(R^i_{\alpha}(0)))$

$$(x, y) \mapsto (R_{\alpha}(x), y + f(x))$$

 $T^{n}(0, 0) = (R^{n}_{\alpha}(0), \sum_{k=0}^{n-1} f(R^{i}_{\alpha}(0)))$

$$(x, y) \mapsto (R_{\alpha}(x), y + f(x))$$

 $T^{n}(0, 0) = (R^{n}_{\alpha}(0), \sum_{k=0}^{n-1} f(R^{i}_{\alpha}(0)))$

$$R_{lpha}(x) = x + lpha \mod 1$$

$$(x, y) \mapsto (R_{\alpha}(x), y + f(x))$$

 $T^{n}(0, 0) = (R^{n}_{\alpha}(0), \sum_{k=0}^{n-1} f(R^{i}_{\alpha}(0)))$

$$R_{\alpha}(x) = x + \alpha \mod 1$$
 $f(x) = \chi_{[0,\beta]} - \beta$

$$(x, y) \mapsto (R_{\alpha}(x), y + f(x))$$

 $T^{n}(0, 0) = (R^{n}_{\alpha}(0), \sum_{k=0}^{n-1} f(R^{i}_{\alpha}(0)))$

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

$$R_{\alpha}(x) = x + \alpha \mod 1$$
 $f(x) = \chi_{[0,\beta]} - \beta$

Walk on \mathbb{R} driven by R_{α} and f: $T : [0,1] \times \mathbb{R} \rightarrow [0,1] \times \mathbb{R}$ $(x,y) \mapsto (R_{\alpha}(x), y + f(x))$ $T^{n}(0,0) = (R^{n}_{\alpha}(0), \sum_{k=0}^{n-1} f(R^{i}_{\alpha}(0)))$

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

 $[0,1] \times \mathbb{R}$

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

 $[0,1] imes \mathbb{R}$

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

 $[0,1] imes \mathbb{R}$

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

 $T^{n}(0,0) = (R^{n}_{\alpha}(0), \sum^{n-1} f(R^{i}_{\alpha}(0)))$

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

 $T^{n}(0,0) = (R^{n}_{\alpha}(0), \sum^{n-1} f(R^{i}_{\alpha}(0)))$

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

$$(x, y) \mapsto (R_{\alpha}(x), y + f(x))$$

 $T^{n}(0, 0) = (R^{n}_{\alpha}(0), \sum_{k=0}^{n-1} f(R^{i}_{\alpha}(0)))$

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

 $(x, y) \mapsto (R_{\alpha}(x), y + f(x))$

 $T^{n}(0,0) = (R^{n}_{\alpha}(0), \sum^{n-1} f(R^{i}_{\alpha}(0)))$

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

$$egin{aligned} T : [0,1] imes \mathbb{R} &
ightarrow [0,1] imes \mathbb{R} \ (x,y) &\mapsto (R_lpha(x),y+f(x)) \ T^n(0,0) &= (R^n_lpha(0),\sum_{k=0}^{n-1}f(R^i_lpha(0))) \end{aligned}$$

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

$$egin{aligned} T : [0,1] imes \mathbb{R} &
ightarrow [0,1] imes \mathbb{R} \ (x,y) &\mapsto (R_lpha(x),y+f(x)) \ T^n(0,0) &= (R^n_lpha(0),\sum_{k=0}^{n-1}f(R^i_lpha(0))) \end{aligned}$$

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

CLT (Central Limit Theorem): central feature in probability theory / hyperbolic dynamical systems; what about entropy zero dynamics?

Take $A = [0, 1] \times [a, b]$. Define X_N visits r.v. by $\mathbb{P}\{X_N \in [a, b]\} := \frac{1}{N}\{0 \le n < N : T^n((0, 0)) \in A\}$

Temporal limit theorems:

▶ Beck CLT: $\alpha = \sqrt{2}$ (quadratic irr.), $\beta = \frac{1}{2}$;

$$\frac{X_N - a_N}{b_N} \to \mathscr{N},$$

where \mathcal{N} Gaussian, $a_N = c_1 \log N$, $b_N = c_2 \sqrt{\log N}$

▶ Dolgopyat-Sarig: α quadratic irr. , $\beta \in \mathbb{Q}$, any (x_0, y_0)

Theorem (Bromberg-U')

For any lpha bounded type (bnd CF entries), any eta badly approximable wrt lpha and any $0 < x_0 < 1$,

 $\exists A_n := A_n(lpha,eta,x)$ and $B_n := B_n(lpha,eta)$ s.t. $\forall a < b$

$$\frac{1}{n} \# \left\{ 1 \le k \le n : \frac{S_k f_\beta \left(R_\alpha, x_0 \right) - A_n}{B_n} \in [a, b] \right\} \to \frac{1}{\sqrt{2\pi}} \int^{\mu} e^{-\frac{x^2}{2}} dx.$$

Take $A = [0, 1] \times [a, b]$. Define X_N visits r.v. by

$$\mathbb{P}\{X_N \in [a, b]\} := \frac{1}{N}\{0 \le n < N : T^n((0, 0)) \in A\}$$

• Beck CLT: $\alpha = \sqrt{2}$ (quadratic irr.), $\beta = \frac{1}{2}$;

$$\frac{X_N - a_N}{b_N} \to \mathcal{N},$$

$$\frac{1}{n}\#\left\{1\leq k\leq n:\;\frac{S_kf_\beta\left(R_\alpha,x_0\right)-A_n}{B_n}\in[a,b]\right\}\;\rightarrow\frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^{\infty}e^{-\frac{x^2}{2}}dx.$$

Take $A = [0, 1] \times [a, b]$. Define X_N visits r.v. by

$$\mathbb{P}\{X_N \in [a, b]\} := \frac{1}{N} \{ 0 \le n < N : T^n((0, 0)) \in A \}$$

• Beck CLT: $\alpha = \sqrt{2}$ (quadratic irr.), $\beta = \frac{1}{2}$;

$$\frac{X_N - a_N}{b_N} \to \mathscr{N},$$

$$\frac{1}{n} \# \left\{ 1 \le k \le n : \frac{S_k f_\beta \left(R_\alpha, x_0 \right) - A_n}{B_n} \in [a, b] \right\} \to \frac{1}{\sqrt{2\pi}} \int_0^{\mu} e^{-\frac{x^2}{2}} dx.$$

Take $A = [0, 1] \times [a, b]$. Define X_N visits r.v. by

$$\mathbb{P}\{X_{N} \in [a, b]\} := \frac{1}{N}\{0 \le n < N : T^{n}((0, 0)) \in A\}$$

• Beck CLT: $\alpha = \sqrt{2}$ (quadratic irr.), $\beta = \frac{1}{2}$;

$$\frac{X_N - a_N}{b_N} \to \mathscr{N},$$

$$\frac{1}{n} \# \left\{ 1 \le k \le n : \frac{S_k f_\beta \left(R_\alpha, x_0 \right) - A_n}{B_n} \in [a, b] \right\} \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{p} e^{-\frac{x^2}{2}} dx.$$

Take $A = [0, 1] \times [a, b]$. Define X_N visits r.v. by

$$\mathbb{P}\{X_{N} \in [a, b]\} := \frac{1}{N}\{0 \le n < N : T^{n}((0, 0)) \in A\}$$

• Beck CLT: $\alpha = \sqrt{2}$ (quadratic irr.), $\beta = \frac{1}{2}$;

$$\frac{X_N - a_N}{b_N} \to \mathscr{N},$$

$$\frac{1}{n}\#\left\{1\leq k\leq n: \frac{S_kf_\beta\left(R_\alpha,x_0\right)-A_n}{B_n}\in\left[a,b\right]\right\}\to \frac{1}{\sqrt{2\pi}}\int\limits_{a}^{b}e^{-\frac{x^2}{2}}dx.$$

Take $A = [0, 1] \times [a, b]$. Define X_N visits r.v. by

$$\mathbb{P}\{X_N \in [a, b]\} := \frac{1}{N}\{0 \le n < N : T^n((0, 0)) \in A\}$$

Temporal limit theorems:

• Beck CLT: $\alpha = \sqrt{2}$ (quadratic irr.), $\beta = \frac{1}{2}$;

$$\frac{X_N - a_N}{b_N} \to \mathcal{N},$$

where \mathscr{N} Gaussian, $a_N = c_1 \log N$, $b_N = c_2 \sqrt{\log N}$

▶ Dolgopyat-Sarig: α quadratic irr. , $\beta \in \mathbb{Q}$, any (x_0, y_0)

Theorem (Bromberg-U')

For any α bounded type (bnd CF entries), any β badly approximable wrt α and any $0 < x_0 < 1$,

$$\frac{1}{n}\#\left\{1\leq k\leq n:\ \frac{S_kf_\beta\left(R_\alpha,x_0\right)-A_n}{B_n}\in[a,b]\right\}\ \rightarrow \frac{1}{\sqrt{2\pi}}\int\limits_a^b e^{-\frac{x^2}{2}}dx.$$

Take $A = [0, 1] \times [a, b]$. Define X_N visits r.v. by

$$\mathbb{P}\{X_N \in [a, b]\} := \frac{1}{N}\{0 \le n < N : T^n((0, 0)) \in A\}$$

Temporal limit theorems:

• Beck CLT: $\alpha = \sqrt{2}$ (quadratic irr.), $\beta = \frac{1}{2}$;

$$\frac{X_N - a_N}{b_N} \to \mathcal{N},$$

where \mathcal{N} Gaussian, $a_N = c_1 \log N$, $b_N = c_2 \sqrt{\log N}$

$$\frac{1}{n}\#\left\{1\leq k\leq n:\ \frac{S_kf_\beta\left(R_\alpha,x_0\right)-A_n}{B_n}\in[a,b]\right\}\rightarrow \frac{1}{\sqrt{2\pi}}\int\limits_a^b e^{-\frac{x^2}{2}}dx.$$

Take $A = [0, 1] \times [a, b]$. Define X_N visits r.v. by

$$\mathbb{P}\{X_N \in [a, b]\} := \frac{1}{N}\{0 \le n < N : T^n((0, 0)) \in A\}$$

Temporal limit theorems:

• Beck CLT: $\alpha = \sqrt{2}$ (quadratic irr.), $\beta = \frac{1}{2}$;

$$\frac{X_N - a_N}{b_N} \to \mathcal{N},$$

where \mathscr{N} Gaussian, $a_N = c_1 \log N$, $b_N = c_2 \sqrt{\log N}$ Dolgopyat-Sarig: α quadratic irr. , $\beta \in \mathbb{Q}$, any (x_0, y_0)

Theorem (Bromberg-U')

For any α bounded type (bnd CF entries), any β badly approximable wrt α and any $0 < x_0 < 1$,

$$\frac{1}{n}\#\left\{1\leq k\leq n: \frac{S_kf_\beta\left(R_\alpha,x_0\right)-A_n}{B_n}\in[a,b]\right\}\to \frac{1}{\sqrt{2\pi}}\int\limits_a^b e^{-\frac{x^2}{2}}dx.$$

Take $A = [0, 1] \times [a, b]$. Define X_N visits r.v. by

$$\mathbb{P}\{X_N \in [a, b]\} := \frac{1}{N}\{0 \le n < N : T^n((0, 0)) \in A\}$$

Temporal limit theorems:

• Beck CLT: $\alpha = \sqrt{2}$ (quadratic irr.), $\beta = \frac{1}{2}$;

$$\frac{X_N - a_N}{b_N} \to \mathcal{N},$$

where \mathscr{N} Gaussian, $a_N = c_1 \log N$, $b_N = c_2 \sqrt{\log N}$

▶ Dolgopyat-Sarig: α quadratic irr. (bnd type), $\beta \in \mathbb{Q}$, any (x_0, y_0)

Theorem (Bromberg-U')

For any α bounded type (bnd CF entries), any β badly approximable wrt α and any $0 < x_0 < 1$,

$$\frac{1}{n}\#\left\{1\leq k\leq n: \frac{S_kf_\beta\left(R_\alpha,x_0\right)-A_n}{B_n}\in[a,b]\right\}\to \frac{1}{\sqrt{2\pi}}\int\limits_a^b e^{-\frac{x^2}{2}}dx.$$

Take $A = [0, 1] \times [a, b]$. Define X_N visits r.v. by

$$\mathbb{P}\{X_N \in [a, b]\} := \frac{1}{N}\{0 \le n < N : T^n((0, 0)) \in A\}$$

Temporal limit theorems:

• Beck CLT: $\alpha = \sqrt{2}$ (quadratic irr.), $\beta = \frac{1}{2}$;

$$\frac{X_N - a_N}{b_N} \to \mathcal{N},$$

where \mathscr{N} Gaussian, $a_N = c_1 \log N$, $b_N = c_2 \sqrt{\log N}$

▶ Dolgopyat-Sarig: α quadratic irr. (bnd type), $\beta \in \mathbb{Q}$, any (x_0, y_0)

Theorem (Bromberg-U')

For any α bounded type (bnd CF entries), any β badly approximable wrt α and any $0 < x_0 < 1$,

$$\frac{1}{n}\#\left\{1\leq k\leq n: \frac{S_kf_\beta\left(R_\alpha,x_0\right)-A_n}{B_n}\in[a,b]\right\}\to \frac{1}{\sqrt{2\pi}}\int\limits_a^b e^{-\frac{x^2}{2}}dx.$$

- Renormalization: we use a classical renormalization algorithm (instead than geometric renormalization), given by an *extension* over the *Gauss map*. This algorithm produces simultaneosuly:
 - the continued fraction entries of $\alpha = [a_1, a_2, \dots, a_n, \dots];$
 - the Ostrowski expansion of β relative to α and its entries $(b_n)_n$;
 - Refs: Arnoux-Fisher, Ito, Bonanno-Isola, ...

Symbolic coding: use the Rohlin towers given by the renormalization algorithm to code the dynamics (Vershik-adic coding); coding leads to a non-homogeneous Markov chain;

CLT for (*non-homogeneous*) Markov chains: proved by Dobrushin (for technical reasons, we use the CLT for φ-mixing arrays of Markov chains by Utev)

Renormalization: we use a classical renormalization algorithm (instead than geometric renormalization),

given by an *extension* over the *Gauss map*.

This algorithm produces simultaneosuly:

- the continued fraction entries of $\alpha = [a_1, a_2, \dots, a_n, \dots];$
- the Ostrowski expansion of β relative to α and its entries $(b_n)_n$;
- ▶ Refs: Arnoux-Fisher, Ito, Bonanno-Isola, ...

Symbolic coding: use the Rohlin towers given by the renormalization algorithm to code the dynamics (Vershik-adic coding); coding leads to a non-homogeneous Markov chain;

CLT for (*non-homogeneous*) Markov chains: proved by Dobrushin (for technical reasons, we use the CLT for φ-mixing arrays of Markov chains by Utev)

- Renormalization: we use a classical renormalization algorithm (instead than geometric renormalization), given by an *extension* over the *Gauss map*. This algorithm produces simultaneosuly:
 - the continued fraction entries of $\alpha = [a_1, a_2, \dots, a_n, \dots];$
 - the Ostrowski expansion of β relative to α and its entries $(b_n)_n$;
 - Refs: Arnoux-Fisher, Ito, Bonanno-Isola, ...

Symbolic coding: use the Rohlin towers given by the renormalization algorithm to code the dynamics (Vershik-adic coding); coding leads to a non-homogeneous Markov chain;

CLT for (*non-homogeneous*) Markov chains: proved by Dobrushin (for technical reasons, we use the CLT for φ-mixing arrays of Markov chains by Utev)

- Renormalization: we use a classical renormalization algorithm (instead than geometric renormalization), given by an *extension* over the *Gauss map*. This algorithm produces simultaneosuly:
 - the continued fraction entries of $\alpha = [a_1, a_2, \dots, a_n, \dots];$
 - the Ostrowski expansion of β relative to α and its entries $(b_n)_n$;
 - Refs: Arnoux-Fisher, Ito, Bonanno-Isola, ...

Symbolic coding: use the Rohlin towers given by the renormalization algorithm to code the dynamics (Vershik-adic coding); coding leads to a non-homogeneous Markov chain;

CLT for (*non-homogeneous*) Markov chains: proved by Dobrushin (for technical reasons, we use the CLT for φ-mixing arrays of Markov chains by Utev)

- Renormalization: we use a classical renormalization algorithm (instead than geometric renormalization), given by an *extension* over the *Gauss map*. This algorithm produces simultaneosuly:
 - the continued fraction entries of $\alpha = [a_1, a_2, \dots, a_n, \dots]$;
 - the Ostrowski expansion of β relative to α and its entries $(b_n)_n$;
 - Refs: Arnoux-Fisher, Ito, Bonanno-Isola, ...

Symbolic coding: use the Rohlin towers given by the renormalization algorithm to code the dynamics (Vershik-adic coding); coding leads to a non-homogeneous Markov chain;

CLT for (*non-homogeneous*) Markov chains: proved by Dobrushin (for technical reasons, we use the CLT for φ-mixing arrays of Markov chains by Utev)

- Renormalization: we use a classical renormalization algorithm (instead than geometric renormalization), given by an *extension* over the *Gauss map*. This algorithm produces simultaneosuly:
 - the continued fraction entries of $\alpha = [a_1, a_2, \dots, a_n, \dots]$;
 - the Ostrowski expansion of β relative to α and its entries $(b_n)_n$;
 - Refs: Arnoux-Fisher, Ito, Bonanno-Isola, ...

Symbolic coding: use the Rohlin towers given by the renormalization algorithm to code the dynamics (Vershik-adic coding); coding leads to a non-homogeneous Markov chain;

CLT for (*non-homogeneous*) Markov chains: proved by Dobrushin (for technical reasons, we use the CLT for φ-mixing arrays of Markov chains by Utev)

- Renormalization: we use a classical renormalization algorithm (instead than geometric renormalization), given by an *extension* over the *Gauss map*. This algorithm produces simultaneosuly:
 - the continued fraction entries of $\alpha = [a_1, a_2, \dots, a_n, \dots]$;
 - the Ostrowski expansion of β relative to α and its entries $(b_n)_n$;
 - Refs: Arnoux-Fisher, Ito, Bonanno-Isola, ...

Symbolic coding: use the Rohlin towers given by the renormalization algorithm to code the dynamics (Vershik-adic coding); coding leads to a non-homogeneous Markov chain;

CLT for (*non-homogeneous*) Markov chains: proved by Dobrushin (for technical reasons, we use the CLT for φ-mixing arrays of Markov chains by Utev)

- Renormalization: we use a classical renormalization algorithm (instead than geometric renormalization), given by an *extension* over the *Gauss map*. This algorithm produces simultaneosuly:
 - the continued fraction entries of $\alpha = [a_1, a_2, \dots, a_n, \dots]$;
 - the Ostrowski expansion of β relative to α and its entries $(b_n)_n$;
 - Refs: Arnoux-Fisher, Ito, Bonanno-Isola, ...

Symbolic coding: use the Rohlin towers given by the renormalization algorithm to code the dynamics (Vershik-adic coding); coding leads to a non-homogeneous Markov chain;

CLT for (*non-homogeneous*) Markov chains: proved by Dobrushin (for technical reasons, we use the CLT for φ-mixing arrays of Markov chains by Utev)

- Renormalization: we use a classical renormalization algorithm (instead than geometric renormalization), given by an *extension* over the *Gauss map*. This algorithm produces simultaneosuly:
 - the continued fraction entries of $\alpha = [a_1, a_2, \dots, a_n, \dots]$;
 - the Ostrowski expansion of β relative to α and its entries $(b_n)_n$;
 - Refs: Arnoux-Fisher, Ito, Bonanno-Isola, ...

Symbolic coding: use the Rohlin towers given by the renormalization algorithm to *code* the dynamics (*Vershik-adic* coding); coding leads to a *non-homogeneous* Markov chain;

CLT for (*non-homogeneous*) Markov chains: proved by Dobrushin (for technical reasons, we use the CLT for φ-mixing arrays of Markov chains by Utev)

- Renormalization: we use a classical renormalization algorithm (instead than geometric renormalization), given by an *extension* over the *Gauss map*. This algorithm produces simultaneosuly:
 - the continued fraction entries of $\alpha = [a_1, a_2, \dots, a_n, \dots]$;
 - the Ostrowski expansion of β relative to α and its entries $(b_n)_n$;
 - Refs: Arnoux-Fisher, Ito, Bonanno-Isola, ...

Symbolic coding: use the Rohlin towers given by the renormalization algorithm to code the dynamics (Vershik-adic coding); coding leads to a non-homogeneous Markov chain;

 CLT for (non-homogeneous) Markov chains: proved by Dobrushin (for technical reasons, we use the CLT for φ-mixing arrays of Markov chains by Utev)

- Renormalization: we use a classical renormalization algorithm (instead than geometric renormalization), given by an *extension* over the *Gauss map*. This algorithm produces simultaneosuly:
 - the continued fraction entries of $\alpha = [a_1, a_2, \dots, a_n, \dots]$;
 - the Ostrowski expansion of β relative to α and its entries $(b_n)_n$;
 - Refs: Arnoux-Fisher, Ito, Bonanno-Isola, ...

Symbolic coding: use the Rohlin towers given by the renormalization algorithm to *code* the dynamics (*Vershik-adic* coding); coding leads to a *non-homogeneous* Markov chain;

 CLT for (*non-homogeneous*) Markov chains: proved by Dobrushin (for technical reasons, we use the CLT for φ-mixing arrays of Markov chains by Utev)

- Renormalization: we use a classical renormalization algorithm (instead than geometric renormalization), given by an *extension* over the *Gauss map*. This algorithm produces simultaneosuly:
 - the continued fraction entries of $\alpha = [a_1, a_2, \dots, a_n, \dots]$;
 - the Ostrowski expansion of β relative to α and its entries $(b_n)_n$;
 - Refs: Arnoux-Fisher, Ito, Bonanno-Isola, ...

Symbolic coding: use the Rohlin towers given by the renormalization algorithm to *code* the dynamics (*Vershik-adic* coding); coding leads to a *non-homogeneous* Markov chain;

CLT for (*non-homogeneous*) Markov chains: proved by Dobrushin (for technical reasons, we use the CLT for φ-mixing arrays of Markov chains by Utev)

- Renormalization: we use a classical renormalization algorithm (instead than geometric renormalization), given by an *extension* over the *Gauss map*. This algorithm produces simultaneosuly:
 - the continued fraction entries of $\alpha = [a_1, a_2, \dots, a_n, \dots]$;
 - the Ostrowski expansion of β relative to α and its entries $(b_n)_n$;
 - Refs: Arnoux-Fisher, Ito, Bonanno-Isola, ...

Symbolic coding: use the Rohlin towers given by the renormalization algorithm to *code* the dynamics (*Vershik-adic* coding); coding leads to a *non-homogeneous* Markov chain;

CLT for (*non-homogeneous*) Markov chains: proved by Dobrushin (for technical reasons, we use the CLT for φ-mixing arrays of Markov chains by Utev)

-1

From a rotation on $[-1, \alpha]$ with marked point $-1 < \beta < \alpha$, the algorithm produces a sequence of rotations on $[-1, \alpha_n]$, with marked points β_n :

 α_n

Algorithm step n:

- ▶ β_n belongs to b_n th copy, or set $b_n = 0$; β'_n induced marked point;
- Renormalize by $-1/\alpha_n$.

For a sequence of nested *inducing intervals* $I^{(n)}$, the induced map on $I^{(n)}$ is a rotation by α_n . We have:

0

$$lpha = [a_1, \dots, a_n, \dots], \qquad eta = \sum_k -1^k lpha^{(k)} x_k \quad (\text{Ostrowski expansion}),$$

where $lpha^{(k)} = \prod_k \mathscr{G}^k(lpha), \qquad x_k = egin{cases} (-1 + (b_n - 1) lpha_n) & 1 \le b_n \le a_n \\ 0 & b_n = 0 \end{cases}$

From a rotation on $[-1, \alpha]$ with marked point $-1 < \beta < \alpha$, the algorithm produces a sequence of rotations on $[-1, \alpha_n]$, with marked points β_n :

Algorithm step n:

- Cut a_n copies of [0, α_n);
 α'_n reminder lenght
- β_n belongs to b_nth copy, or set b_n = 0;
 β'_n induced marked point;
- Renormalize by $-1/\alpha_n$.

For a sequence of nested *inducing intervals* $I^{(n)}$, the induced map on $I^{(n)}$ is a rotation by α_n . We have:

$$\alpha = [a_1, \dots, a_n, \dots], \qquad \beta = \sum_k -1^k \alpha^{(k)} x_k \quad \text{(Ostrowski expansion)},$$

where $\alpha^{(k)} = \prod_k \mathscr{G}^k(\alpha), \qquad x_k = \begin{cases} (-1 + (b_n - 1)\alpha_n) & 1 \le b_n \le a_n \\ 0 & b_n = 0 \end{cases}$

From a rotation on $[-1, \alpha]$ with marked point $-1 < \beta < \alpha$, the algorithm produces a sequence of rotations on $[-1, \alpha_n]$, with marked points β_n :

Algorithm step n:

 β_n belongs to b_nth copy, or set b_n = 0;
 β'_n induced marked point;

• Renormalize by $-1/\alpha_n$.

For a sequence of nested *inducing intervals* $I^{(n)}$, the induced map on $I^{(n)}$ is a rotation by α_n . We have:

$$lpha = [a_1, \dots, a_n, \dots], \qquad eta = \sum_k -1^k lpha^{(k)} x_k \quad (\text{Ostrowski expansion}),$$

where $lpha^{(k)} = \prod_k \mathscr{G}^k(lpha), \qquad x_k = egin{cases} (-1 + (b_n - 1) lpha_n) & 1 \le b_n \le a_n \\ 0 & b_n = 0 \end{cases}$

From a rotation on $[-1, \alpha]$ with marked point $-1 < \beta < \alpha$, the algorithm produces a sequence of rotations on $[-1, \alpha_n]$, with marked points β_n :

Algorithm step n:

 Cut a_n copies of [0, α_n);

 $lpha_n^\prime$ reminder lenght;

- β_n belongs to b_nth copy, or set b_n = 0;
 β'_n induced marked point;
- Renormalize by $-1/\alpha_n$.

For a sequence of nested *inducing intervals* $I^{(n)}$, the induced map on $I^{(n)}$ is a rotation by α_n . We have:

$$\alpha = [a_1, \dots, a_n, \dots], \qquad \beta = \sum_k -1^k \alpha^{(k)} x_k \quad \text{(Ostrowski expansion)},$$

where $\alpha^{(k)} = \prod_k \mathscr{G}^k(\alpha), \qquad x_k = \begin{cases} (-1 + (b_n - 1)\alpha_n) & 1 \le b_n \le a_n \\ 0 & b_n = 0 \end{cases}$

From a rotation on $[-1, \alpha]$ with marked point $-1 < \beta < \alpha$, the algorithm produces a sequence of rotations on $[-1, \alpha_n]$, with marked points β_n :

Algorithm step n:

 Cut a_n copies of [0, α_n);

 $lpha_n^\prime$ reminder lenght;

- β_n belongs to b_nth copy, or set b_n = 0;
 β'_n induced marked point;
- Renormalize by $-1/\alpha_n$.

$$\alpha = [a_1, \dots, a_n, \dots], \qquad \beta = \sum_k -1^k \alpha^{(k)} x_k \quad \text{(Ostrowski expansion)},$$

where $\alpha^{(k)} = \prod_k \mathscr{G}^k(\alpha), \qquad x_k = \begin{cases} (-1 + (b_n - 1)\alpha_n) & 1 \le b_n \le a_n \\ 0 & b_n = 0 \end{cases}$

From a rotation on $[-1, \alpha]$ with marked point $-1 < \beta < \alpha$, the algorithm produces a sequence of rotations on $[-1, \alpha_n]$, with marked points β_n :

Algorithm step n:

 Cut a_n copies of [0, α_n);

 $lpha_n'$ reminder lenght;

- β_n belongs to b_nth copy, or set b_n = 0;
 β'_n induced marked point;
- Renormalize by $-1/\alpha_n$.

$$\alpha = [a_1, \dots, a_n, \dots], \qquad \beta = \sum_k -1^k \alpha^{(k)} x_k \quad \text{(Ostrowski expansion)},$$

where $\alpha^{(k)} = \prod_k \mathscr{G}^k(\alpha), \qquad x_k = \begin{cases} (-1 + (b_n - 1)\alpha_n) & 1 \le b_n \le a_n \\ 0 & b_n = 0 \end{cases}$

From a rotation on $[-1, \alpha]$ with marked point $-1 < \beta < \alpha$, the algorithm produces a sequence of rotations on $[-1, \alpha_n]$, with marked points β_n :

Algorithm step n:

 Cut a_n copies of [0, α_n);

 $lpha_n^\prime$ reminder lenght;

- β_n belongs to b_nth copy, or set b_n = 0;
 β'_n induced marked point;
- Renormalize by $-1/\alpha_n$.

$$lpha = [a_1, \dots, a_n, \dots], \qquad eta = \sum_k -1^k lpha^{(k)} x_k \quad (\text{Ostrowski expansion}),$$

where $lpha^{(k)} = \prod_k \mathscr{G}^k(lpha), \qquad x_k = egin{cases} (-1 + (b_n - 1) lpha_n) & 1 \le b_n \le a_n \\ 0 & b_n = 0 \end{cases}$

From a rotation on $[-1, \alpha]$ with marked point $-1 < \beta < \alpha$, the algorithm produces a sequence of rotations on $[-1, \alpha_n]$, with marked points β_n :

 α_n

Algorithm step n:

 Cut a_n copies of [0, α_n);

 $lpha_n^\prime$ reminder lenght;

- β_n belongs to b_nth copy, or set b_n = 0;
 β'_n induced marked point;
- Renormalize by $-1/\alpha_n$.

For a sequence of nested *inducing intervals* $I^{(n)}$, the induced map on $I^{(n)}$ is a rotation by α_n . We have:

0

$$lpha = [a_1, \dots, a_n, \dots], \qquad eta = \sum_k -1^k lpha^{(k)} x_k \quad (\text{Ostrowski expansion}),$$

where $lpha^{(k)} = \prod_k \mathscr{G}^k(lpha), \qquad x_k = egin{cases} (-1 + (b_n - 1) lpha_n) & 1 \le b_n \le a_n \\ 0 & b_n = 0 \end{cases}$

From a rotation on $[-1, \alpha]$ with marked point $-1 < \beta < \alpha$, the algorithm produces a sequence of rotations on $[-1, \alpha_n]$, with marked points β_n :

 α_n

Algorithm step n:

- Cut a_n copies of

 (0, α_n);
 α'_n reminder lenght;
- β_n belongs to b_nth copy, or set b_n = 0;
 β'_n induced marked point;
- Renormalize by $-1/\alpha_n$.

For a sequence of nested *inducing intervals* $I^{(n)}$, the induced map on $I^{(n)}$ is a rotation by α_n . We have:

 $\alpha'_n 0$

0

$$\alpha = [a_1, \dots, a_n, \dots], \qquad \beta = \sum_k -1^k \alpha^{(k)} x_k \quad \text{(Ostrowski expansion)},$$

where $\alpha^{(k)} = \prod_k \mathscr{G}^k(\alpha), \qquad x_k = \begin{cases} (-1 + (b_n - 1)\alpha_n) & 1 \le b_n \le a_n \\ 0 & b_n = 0 \end{cases}$

From a rotation on $[-1, \alpha]$ with marked point $-1 < \beta < \alpha$, the algorithm produces a sequence of rotations on $[-1, \alpha_n]$, with marked points β_n :

Algorithm step n:

 Cut a_n copies of [0, α_n);

 α'_n reminder lenght;

 $\beta_n \text{ belongs to } b_n \text{th} \\ \text{copy, or set } b_n = 0;$

 β'_n induced marked point;

• Renormalize by $-1/\alpha_n$.

$$\alpha = [a_1, \dots, a_n, \dots], \qquad \beta = \sum_k -1^k \alpha^{(k)} x_k \quad \text{(Ostrowski expansion)},$$

where $\alpha^{(k)} = \prod_k \mathscr{G}^k(\alpha), \qquad x_k = \begin{cases} (-1 + (b_n - 1)\alpha_n) & 1 \le b_n \le a_n \\ 0 & b_n = 0 \end{cases}$

From a rotation on $[-1, \alpha]$ with marked point $-1 < \beta < \alpha$, the algorithm produces a sequence of rotations on $[-1, \alpha_n]$, with marked points β_n :

Algorithm step n:

Cut a_n copies of
 [0, α_n);

 α'_n reminder lenght;

- β_n belongs to b_nth copy, or set b_n = 0;
 β'_n induced marked point;
- Renormalize by $-1/\alpha_n$.

$$\alpha = [a_1, \dots, a_n, \dots], \qquad \beta = \sum_k -1^k \alpha^{(k)} x_k \quad \text{(Ostrowski expansion)},$$

where $\alpha^{(k)} = \prod_k \mathscr{G}^k(\alpha), \qquad x_k = \begin{cases} (-1 + (b_n - 1)\alpha_n) & 1 \le b_n \le a_n \\ 0 & b_n = 0 \end{cases}$

From a rotation on $[-1, \alpha]$ with marked point $-1 < \beta < \alpha$, the algorithm produces a sequence of rotations on $[-1, \alpha_n]$, with marked points β_n :

Algorithm step n:

 Cut a_n copies of [0, α_n);
 α'_n reminder lenght;

 β_n belongs to b_nth copy, or set b_n = 0;
 β'_n induced marked point;

• Renormalize by $-1/\alpha_n$.

$$\alpha = [a_1, \dots, a_n, \dots], \qquad \beta = \sum_k -1^k \alpha^{(k)} x_k \quad \text{(Ostrowski expansion)},$$

where $\alpha^{(k)} = \prod_k \mathscr{G}^k(\alpha), \qquad x_k = \begin{cases} (-1 + (b_n - 1)\alpha_n) & 1 \le b_n \le a_n \\ 0 & b_n = 0 \end{cases}$

From a rotation on $[-1, \alpha]$ with marked point $-1 < \beta < \alpha$, the algorithm produces a sequence of rotations on $[-1, \alpha_n]$, with marked points β_n :

Algorithm step n:

Cut *a_n* copies of [0, *α_n*);

 α'_n reminder lenght;

- β_n belongs to b_nth copy, or set b_n = 0;
 β'_n induced marked point;
- Renormalize by $-1/\alpha_n$.

$$lpha = [a_1, \dots, a_n, \dots], \qquad eta = \sum_k -1^k lpha^{(k)} x_k \quad (\text{Ostrowski expansion}),$$

where $lpha^{(k)} = \prod_k \mathscr{G}^k(lpha), \qquad x_k = egin{cases} (-1 + (b_n - 1) lpha_n) & 1 \le b_n \le a_n \\ 0 & b_n = 0 \end{cases}$

From a rotation on $[-1, \alpha]$ with marked point $-1 < \beta < \alpha$, the algorithm produces a sequence of rotations on $[-1, \alpha_n]$, with marked points β_n :

Algorithm step n:

Cut *a_n* copies of [0, *α_n*);

 α'_n reminder lenght;

- β_n belongs to b_nth copy, or set b_n = 0;
 β'_n induced marked point;
- Renormalize by $-1/\alpha_n$.

$$\alpha = [a_1, \dots, a_n, \dots], \qquad \beta = \sum_k -1^k \alpha^{(k)} x_k \quad \text{(Ostrowski expansion)},$$

where $\alpha^{(k)} = \prod_k \mathscr{G}^k(\alpha), \qquad x_k = \begin{cases} (-1 + (b_n - 1)\alpha_n) & 1 \le b_n \le a_n \\ 0 & b_n = 0 \end{cases}$

From a rotation on $[-1, \alpha]$ with marked point $-1 < \beta < \alpha$, the algorithm produces a sequence of rotations on $[-1, \alpha_n]$, with marked points β_n :

Algorithm step n:

• Cut a_n copies of $[0, \alpha_n);$

 α'_n reminder lenght;

- β_n belongs to b_nth copy, or set b_n = 0;
 β'_n induced marked point;
- Renormalize by $-1/\alpha_n$.

$$\alpha = [a_1, \dots, a_n, \dots], \qquad \beta = \sum_k -1^k \alpha^{(k)} x_k \quad \text{(Ostrowski expansion)},$$

where $\alpha^{(k)} = \prod_k \mathscr{G}^k(\alpha), \qquad x_k = \begin{cases} (-1 + (b_n - 1)\alpha_n) & 1 \le b_n \le a_n \\ 0 & b_n = 0 \end{cases}$

From a rotation on $[-1, \alpha]$ with marked point $-1 < \beta < \alpha$, the algorithm produces a sequence of rotations on $[-1, \alpha_n]$, with marked points β_n :

Algorithm step n:

• Cut a_n copies of $[0, \alpha_n);$

 α'_n reminder lenght;

- β_n belongs to b_nth copy, or set b_n = 0;
 β'_n induced marked point;
- Renormalize by $-1/\alpha_n$.

$$\alpha = [a_1, \dots, a_n, \dots], \qquad \beta = \sum_k -1^k \alpha^{(k)} x_k \quad \text{(Ostrowski expansion)},$$

where $\alpha^{(k)} = \prod_k \mathscr{G}^k(\alpha), \qquad x_k = \begin{cases} (-1 + (b_n - 1)\alpha_n) & 1 \le b_n \le a_n \\ 0 & b_n = 0 \end{cases}$

- For the rotation, there are only two towers (of heigts q_n and q_{n+1}): a large one (L) and a small (S) one.
- Cut them into 3 towers by the position of β_n .
- Call them {L, M, S} for large, middle, small.
- From stage n to n + 1, do cutting and stacking.

- For the rotation, there are only two towers (of heigts q_n and q_{n+1}): a large one (L) and a small (S) one.
- Cut them into 3 towers by the position of β_n.
- Call them {L, M, S} for large, middle, small.
- From stage n to n + 1, do cutting and stacking.

- For the *rotation*, there are only two towers (of heigts q_n and q_{n+1}):
 a *large* one (L) and a *small* (S) one.
- Cut them into 3 towers by the position of β_n.
- Call them {L, M, S} for large, middle, small.
- From stage n to n + 1, do cutting and stacking.

- For the *rotation*, there are only two towers (of heigts q_n and q_{n+1}):
 a *large* one (L) and a *small* (S) one.
- Cut them into 3 towers by the position of β_n .
- Call them {L, M, S} for large, middle, small.
- From stage n to n + 1, do cutting and stacking.

- Cut them into 3 towers by the position of β_n .
- Call them {L, M, S} for large, middle, small.
- From stage n to n + 1, do cutting and stacking.

- For the *rotation*, there are only two towers (of heigts q_n and q_{n+1}):
 a *large* one (L) and a *small* (S) one.
- Cut them into 3 towers by the position of β_n .
- Call them {L, M, S} for large, middle, small.
- From stage n to n + 1, do cutting and stacking.

- For the *rotation*, there are only two towers (of heigts q_n and q_{n+1}):
 a *large* one (L) and a *small* (S) one.
- Cut them into 3 towers by the position of β_n .
- Call them {L, M, S} for large, middle, small.
- From stage n to n + 1, do cutting and stacking.

- For the *rotation*, there are only two towers (of heigts q_n and q_{n+1}):
 a *large* one (L) and a *small* (S) one.
- Cut them into 3 towers by the position of β_n .
- Call them {L, M, S} for large, middle, small.
- From stage n to n + 1, do cutting and stacking.

The Ostrowsky renormalization algorithm gives a presentation of R_{α} as a sequence of 3 Rohlin towers over the induced maps.

For the rotation, there are only two towers (of heigts q_n and q_{n+1}): a large one (L) and a small (S) one.

- Cut them into 3 towers by the position of β_n.
- Call them {L, M, S} for large, middle, small.
- From stage n to n + 1, do cutting and stacking.

For the symbolic coding, use two consecutive renormalization steps.

▶ Label subtowers of step n inside step n + 1Labels (J, j), $J \in \{L, M, S\}$, $0 \le j \le a_n$.

- Coding map Ψ: code a point x ∈ I by Ψ(x) = {(J_n, j_n)}_n if, for any n, x belongs to the subtower labelled by (J_n, j_n) at stage n.
- Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
 - transition matrices with entries in function of a_n and b_n;
 - Markov measures μ^J_n, where μ := Ψ_{*}Leb and μ^J_n is the restriction to n cylinders, conditioned to x in the J interval at stage n.

For the symbolic coding, use two consecutive renormalization steps.

- Coding map Ψ: code a point x ∈ I by Ψ(x) = {(J_n, j_n)}_n if, for any n, x belongs to the subtower labelled by (J_n, j_n) at stage n.
- Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
 - transition matrices with entries in function of a_n and b_n;
 - Markov measures μ^J_n, where μ := Ψ_{*}Leb and μ^J_n is the restriction to n cylinders, conditioned to x in the J interval at stage n.

For the symbolic coding, use two consecutive renormalization steps.

- Coding map Ψ: code a point x ∈ I by Ψ(x) = {(J_n, j_n)}_n if, for any n, x belongs to the subtower labelled by (J_n, j_n) at stage n.
- Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
 - transition matrices with entries in function of a_n and b_n;
 - Markov measures μ^J_n, where μ := Ψ_{*}Leb and μ^J_n is the restriction to n cylinders, conditioned to x in the J interval at stage n.

For the symbolic coding, use two consecutive renormalization steps.

	(M,a _n)	
	(M,2)	
	(M,1)	
S,0)	(M,0)	

- Coding map Ψ: code a point x ∈ I by Ψ(x) = {(J_n, j_n)}_n if, for any n, x belongs to the subtower labelled by (J_n, j_n) at stage n.
- Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
 - transition matrices with entries in function of a_n and b_n;
 - Markov measures μ^J_n, where μ := Ψ_{*}Leb and μ^J_n is the restriction to n cylinders, conditioned to x in the J interval at stage n.

For the symbolic coding, use two consecutive renormalization steps.

	(M,a _n)	(L,a _n)
	(M,2)	(L,2)
	(M,1)	(L,1)
5,0)	(M,0)	(L,0)

6

- Coding map Ψ: code a point x ∈ I by Ψ(x) = {(J_n, j_n)}_n if, for any n, x belongs to the subtower labelled by (J_n, j_n) at stage n.
- Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
 - transition matrices with entries in function of a_n and b_n;
 - Markov measures μ^J_n, where μ := Ψ_{*}Leb and μ^J_n is the restriction to n cylinders, conditioned to x in the J interval at stage n.

For the symbolic coding, use two consecutive renormalization steps.

► Label subtowers of step *n* inside step n + 1Labels (J,j), $J \in \{L, M, S\}$, $0 \le j \le a_n$.

	(M,a _n)	(L,a _n)
	(M,2)	(L,2)
	(M,1)	(L,1)
,0)	(M,0)	(L,0)

(S

- Coding map Ψ: code a point x ∈ I by Ψ(x) = {(J_n, j_n)}_n if, for any n, x belongs to the subtower labelled by (J_n, j_n) at stage n.
- Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
 - transition matrices with entries in function of a_n and b_n;
 - Markov measures μ^J_n, where μ := Ψ_{*}Leb and μ^J_n is the restriction to n cylinders, conditioned to x in the J interval at stage n.

For the symbolic coding, use two consecutive renormalization steps.

► Label subtowers of step *n* inside step n + 1Labels (J,j), $J \in \{L, M, S\}$, $0 \le j \le a_n$.

	(M,a _n)	(L,a _n)
	(M,2)	(L,2)
	(M,1)	(L,1)
,0)	(M,0)	(L,0)

(S

- Coding map Ψ: code a point x ∈ I by Ψ(x) = {(J_n, j_n)}_n if, for any n, x belongs to the subtower labelled by (J_n, j_n) at stage n.
- Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
 - transition matrices with entries in function of a_n and b_n;
 - Markov measures μ^J_n, where μ := Ψ_{*}Leb and μ^J_n is the restriction to n cylinders, conditioned to x in the J interval at stage n.

For the symbolic coding, use two consecutive renormalization steps.

► Label subtowers of step *n* inside step n + 1Labels (J,j), $J \in \{L, M, S\}$, $0 \le j \le a_n$.

- Coding map Ψ: code a point x ∈ I by Ψ(x) = {(J_n, j_n)}_n if, for any n, x belongs to the subtower labelled by (J_n, j_n) at stage n.
- Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
 - transition matrices with entries in function of a_n and b_n;
 - Markov measures μ^J_n, where μ := Ψ_{*}Leb and μ^J_n is the restriction to n cylinders, conditioned to x in the J interval at stage n.

For the symbolic coding, use two consecutive renormalization steps.

► Label subtowers of step *n* inside step n + 1Labels (J,j), $J \in \{L, M, S\}$, $0 \le j \le a_n$.

- Coding map Ψ: code a point x ∈ I by Ψ(x) = {(J_n, j_n)}_n if, for any n, x belongs to the subtower labelled by (J_n, j_n) at stage n.
- Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
 - transition matrices with entries in function of a_n and b_n;
 - Markov measures μ^J_n, where μ := Ψ_{*}Leb and μ^J_n is the restriction to n cylinders, conditioned to x in the J interval at stage n.

For the symbolic coding, use two consecutive renormalization steps.

► Label subtowers of step *n* inside step n + 1Labels (J,j), $J \in \{L, M, S\}$, $0 \le j \le a_n$.

- Coding map Ψ : code a point $x \in I$ by $\Psi(x) = \{(J_n, j_n)\}_n$
 - if, for any n, x belongs to the subtower labelled by (J_n, j_n) at stage n.
- Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
 - transition matrices with entries in function of a_n and b_n;
 - Markov measures μ^J_n, where μ := Ψ_{*}Leb and μ^J_n is the restriction to n cylinders, conditioned to x in the J interval at stage n.

For the symbolic coding, use two consecutive renormalization steps.

► Label subtowers of step *n* inside step n + 1Labels (J,j), $J \in \{L, M, S\}$, $0 \le j \le a_n$.

- Coding map Ψ: code a point x ∈ I by Ψ(x) = {(J_n, j_n)}_n if, for any n, x belongs to the subtower labelled by (J_n, j_n) at stage n.
- Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
 - transition matrices with entries in function of a_n and b_n;
 - Markov measures μ^J_n, where μ := Ψ_{*}Leb and μ^J_n is the restriction to n cylinders, conditioned to x in the J interval at stage n.

For the symbolic coding, use two consecutive renormalization steps.

► Label subtowers of step *n* inside step n + 1Labels (J,j), $J \in \{L, M, S\}$, $0 \le j \le a_n$.

- Coding map Ψ: code a point x ∈ I by Ψ(x) = {(J_n, j_n)}_n if, for any n, x belongs to the subtower labelled by (J_n, j_n) at stage n.
- Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
 - transition matrices with entries in function of a_n and b_n;
 - Markov measures μ^J_n, where μ := Ψ_{*}Leb and μ^J_n is the restriction to n cylinders, conditioned to x in the J interval at stage n.

For the symbolic coding, use two consecutive renormalization steps.

► Label subtowers of step *n* inside step n + 1Labels (J,j), $J \in \{L, M, S\}$, $0 \le j \le a_n$.

- Coding map Ψ: code a point x ∈ I by Ψ(x) = {(J_n, j_n)}_n if, for any n, x belongs to the subtower labelled by (J_n, j_n) at stage n.
- Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
 - transition matrices with entries in function of a_n and b_n;
 - Markov measures μ^J_n, where μ := Ψ_{*}Leb and μ^J_n is the restriction to n cylinders, conditioned to x in the J interval at stage n.

For the symbolic coding, use two consecutive renormalization steps.

► Label subtowers of step *n* inside step n + 1Labels (J,j), $J \in \{L, M, S\}$, $0 \le j \le a_n$.

- Coding map Ψ: code a point x ∈ I by Ψ(x) = {(J_n, j_n)}_n if, for any n, x belongs to the subtower labelled by (J_n, j_n) at stage n.
- Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
 - transition matrices with entries in function of a_n and b_n;
 - Markov measures μ^J_n, where μ := Ψ_{*}Leb and μ^J_n is the restriction to n cylinders, conditioned to x in the J interval at stage n.
For the symbolic coding, use two consecutive renormalization steps.

► Label subtowers of step *n* inside step n + 1Labels (J,j), $J \in \{L, M, S\}$, $0 \le j \le a_n$.

- Coding map Ψ: code a point x ∈ I by Ψ(x) = {(J_n, j_n)}_n if, for any n, x belongs to the subtower labelled by (J_n, j_n) at stage n.
- Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
 - transition matrices with entries in function of a_n and b_n;
 - Markov measures μ^J_n, where μ := Ψ_{*}Leb and μ^J_n is the restriction to n cylinders, conditioned to x in the J interval at stage n.

For the symbolic coding, use two consecutive renormalization steps.

► Label subtowers of step *n* inside step n + 1Labels (J,j), $J \in \{L, M, S\}$, $0 \le j \le a_n$.

- Coding map Ψ: code a point x ∈ I by Ψ(x) = {(J_n, j_n)}_n if, for any n, x belongs to the subtower labelled by (J_n, j_n) at stage n.
- Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
 - transition matrices with entries in function of a_n and b_n;
 - Markov measures μ^J_n, where μ := Ψ_{*}Leb and μ^J_n is the restriction to n cylinders, conditioned to x in the J interval at stage n.

For the symbolic coding, use two consecutive renormalization steps.

► Label subtowers of step *n* inside step n + 1Labels (J,j), $J \in \{L, M, S\}$, $0 \le j \le a_n$.

- Coding map Ψ: code a point x ∈ I by Ψ(x) = {(J_n, j_n)}_n if, for any n, x belongs to the subtower labelled by (J_n, j_n) at stage n.
- Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
 - transition matrices with entries in function of a_n and b_n;
 - Markov measures μ^J_n, where μ := Ψ_{*}Leb and μ^J_n is the restriction to n cylinders, conditioned to x in the J interval at stage n.

For the symbolic coding, use two consecutive renormalization steps.

► Label subtowers of step *n* inside step n + 1Labels (J,j), $J \in \{L, M, S\}$, $0 \le j \le a_n$.

- Coding map Ψ: code a point x ∈ I by Ψ(x) = {(J_n, j_n)}_n if, for any n, x belongs to the subtower labelled by (J_n, j_n) at stage n.
- Fact: Symbolic sequences in $\Psi(I)$ form a Markov chain. Write:
 - transition matrices with entries in function of a_n and b_n;
 - Markov measures μ^J_n, where μ := Ψ_{*}Leb and μ^J_n is the restriction to n cylinders, conditioned to x in the J interval at stage n.

Inducing and renormalization for rotations

• . . .

Sample of results which can be proved using these tools:

- Three gaps theorem (Steinhaus theorem) for rotations; (using towers)
- Denjoy-Koksma inequality for Birkhoff sums over rotations; (using towers)
- Rotation numbers for homeos and diffeos of S¹ (using the renormalization procedure) [Ref: van Strien-de Melo book]
- Poincaré theorem for homeos of S¹ (using the renormalization procedure) [*Ref: van Strien-de Melo book*]
- Herman result on regularity of conjugacy for diffeos of S¹ (using the renormalization procedure) [*Ref: Sinai-Khanin*]
- A limit theorem for Birkhoff sums of non integrable functions (using the partitions)
 [Ref: Sinai-Ulcigrai, '08]
- A generalization of Beck central limit theorem for rotations (using cutting and stacking)
 [*Ref: Bromberg-Ulcigrai, '17*]

Inducing and renormalization for rotations

Sample of results which can be proved using these tools:

- Three gaps theorem (Steinhaus theorem) for rotations; (using towers)
- Denjoy-Koksma inequality for Birkhoff sums over rotations; (using towers)
- Rotation numbers for homeos and diffeos of S¹ (using the renormalization procedure) [*Ref: van Strien-de Melo book*]
- Poincaré theorem for homeos of S¹ (using the renormalization procedure) [*Ref: van Strien-de Melo book*]
- Herman result on regularity of conjugacy for diffeos of S¹ (using the renormalization procedure) [*Ref: Sinai-Khanin*]
- ▶ ...

. . .

- A limit theorem for Birkhoff sums of non integrable functions (using the partitions)
 [Ref: Sinai-Ulcigrai, '08]
- A generalization of Beck central limit theorem for rotations (using cutting and stacking)
 [*Ref: Bromberg-Ulcigrai, '17*]

MFO Oberwolfach Dynamische Systeme

Corinna Ulcigrai

A Central Limit Theorem for cocycles over rotations

(based on joint work with Michael Bromberg)

Oberwolfach, July 10, 2017

