ICTP Summer School on Dynamical Systems Rotations of the circle and renormalization
 Solutions 1

Solutions to Exercise 1.1

Part (a) An orbit of R_{α} for α for $p / q=2 / 7$ and for $p / q=5 / 8$ are in Figure 1. They are obtained dividing the circle in 7 or 8 equal arcs respectively and moving by steps of 2 or 5 respectively.

Figure 1: Orbits of R_{α} for α for $p / q=2 / 7$ and for $p / q=5 / 8$.

Assume now that $\alpha=p / q$ and $(p, q)=1$ i.e. p and q are coprime. We have seen that for every $x \in \mathbb{R} / \mathbb{Z}$ we have $R_{\alpha}^{q}(x)=x$. Assume that $n \in \mathbb{N}^{+}$is also a period, so that $R_{\alpha}^{n}(x)=x$. We want to show that $n \geq q$. We have

$$
R_{\alpha}^{n}(x)=x+n \frac{p}{q} \quad \bmod 1=x \quad \Leftrightarrow \quad x+\frac{n p}{q}=x+k \quad \text { for } \quad \text { some } k \in \mathbb{Z}
$$

Thus $n p=q k$. Since $(q, p)=1$, this shows that q divides n, so that $n \geq q$. We have shown moreover that all periods n are multiples of q.

We claim that $|p|$ gives the winding number, i.e. the number of "turns" that the orbit of any point does around the circle S^{1} before closing up. Consider $z \in S^{1}$. In each iteration of $R_{\alpha}, R_{\alpha}^{k}(z)$ is rotated by an arc of lenght $2 \pi|\alpha|=2 \pi|p| / q$ (counterclockwise if $p>0$, clockwise if $p<0$). Thus, in q iterations, $R_{\alpha}^{q}(z)$ has been rotated by $q 2 \pi \alpha|p| / q=2 \pi|p|$. This shows that it has covered $|p|$ times the full circle lenght 2π, so the winding number is $|p|$.

Part (a) Assume that α is irrational. Let us first show that the each orbit consist of infinitely many distinct points, or, in other words, that for each $z_{1}=e^{2 \pi i x_{1}} \in S^{1}$, for all $m \neq n, R_{\alpha}^{n}\left(e^{2 \pi i x_{1}}\right) \neq R_{\alpha}^{m}\left(e^{2 \pi i x_{1}}\right)$. Let us argue by contradiction. If $R_{\alpha}^{n}\left(e^{2 \pi i x_{1}}\right)$ and $R_{\alpha}^{m}\left(e^{2 \pi i x_{1}}\right)$ were equal,

$$
\begin{aligned}
& e^{2 \pi i\left(x_{1}+m \alpha\right)}=e^{2 \pi i\left(x_{1}+n \alpha\right)}, \quad \text { thus } \\
& 2 \pi\left(x_{1}+m \alpha\right)=2 \pi\left(x_{1}+n \alpha\right)+2 \pi k \text { for some integer } k \in \mathbb{N}, \text { thus simplifying } \\
& m \alpha=n \alpha+k .
\end{aligned}
$$

But since $m \neq n$, this shows that $\alpha=k /(m-n)$, contradicting the assumption that α is irrational.
Part (b) We want to show that for every $z_{1} \in S^{1}$ the orbit of z_{1} is dense in S^{1}, i.e. we have to show that for each $z_{2} \in S^{1}$ and $\epsilon>0$ there is a point of $\mathcal{O}_{f}^{+}\left(z_{1}\right)$ inside the ball $B\left(z_{2}, \epsilon\right)$. Let \mathbb{N} be big enough so that $1 / N<\epsilon$. We have already seen in class that if we consider the points $z_{1}, R_{\alpha}\left(z_{1}\right), \ldots, R_{\alpha}^{N}\left(z_{1}\right)$, since the rotation number is irrational, they are all distinct. Hence, by the Pigeon Hole principle, there exists n, m such that $0 \leq n<m \leq N$ and

$$
d\left(R_{\alpha}^{n}\left(z_{1}\right), R_{\alpha}^{m}\left(z_{1}\right)\right) \leq \frac{1}{N}<\epsilon
$$

This means that for some θ with $|\theta|<1 / N$ we have

$$
\begin{equation*}
R_{\alpha}^{m}\left(z_{1}\right)=e^{2 \pi i \theta} R_{\alpha}^{n}\left(z_{1}\right) \quad \Leftrightarrow \quad e^{2 \pi i m \alpha} z_{1}=e^{2 \pi i \theta} e^{2 \pi i n \alpha} z_{1} \quad \Leftrightarrow \quad \frac{e^{2 \pi i m \alpha}}{e^{2 \pi i n \alpha}}=e^{2 \pi i \theta} \tag{1}
\end{equation*}
$$

Consider now R_{α}^{m-n}. We claim that it is again a rotation by an angle smaller than $2 \pi \epsilon$. Indeed, from (1), we see that

$$
R_{\alpha}^{m-n}\left(z_{1}\right)=e^{2 \pi i(m-n) \alpha} z_{1}=\frac{e^{2 \pi i m \alpha}}{e^{2 \pi i n \alpha}} z_{1}=e^{2 \pi i \theta} z_{1}=R_{\theta}\left(z_{1}\right)
$$

so that $R_{\alpha}^{m-n}=R_{\theta}$ is a rotation and that the rotation angle is $2 \pi \theta$ with $|\theta|<1 / N$. Thus, if we consider the iteratates $R_{\alpha}^{(m-n)}\left(z_{1}\right), R_{\alpha}^{2(m-n)}\left(z_{1}\right), R_{\alpha}^{3(m-n)}\left(z_{1}\right), \ldots$, we see that the orbit contains the points

$$
e^{2 \pi i x_{1}}, e^{2 \pi i\left(x_{1}+\theta\right)}, e^{2 \pi i\left(x_{1}+2 \theta\right)}, \ldots, e^{2 \pi i\left(x_{1}+k \theta\right)}, \ldots
$$

whose spacing on S^{1} is less than $\pi \epsilon$, or in other words whose distance is less than ϵ (recall that the distance is the arc lenght divided by $2 \pi)$. Thus, there will be a $j>0$ such that $R_{\alpha}^{j(m-n)}\left(z_{1}\right)$ enters the ball $B\left(z_{2}, \epsilon\right)$. This concludes the proof that every orbit is dense.

Solutions to Exercise 1.2

Let us consider the orbit of the origin 0 under the rotation R_{α} (remark that $R_{\alpha}^{n}(0)=\{n \alpha\}$). Remark first that, reasoning as in class and using the pigeon hole principle, one can show that given $n \in \mathbb{N}$ there exists $0<q \leq n$ such that $q \alpha \bmod 1 \leq \frac{1}{n}$. Thus, there exists $p \in \mathbb{Z}$ such that

$$
|q \alpha-p| \leq \frac{1}{n} \quad \Leftrightarrow \quad\left|\alpha-\frac{p}{q}\right| \leq \frac{1}{q n} \leq \frac{1}{q^{2}}
$$

where in the last inequality we used that $q \leq n$. Assume now by contradiction that there are only finitely many fractions p / q where $p \in \mathbb{Z}, q \in \mathbb{N}$ and p, q coprime that solve the equation

$$
\left|\alpha-\frac{p}{q}\right| \leq \frac{1}{q^{2}}, \quad \text { say } \quad\left\{\frac{p_{1}}{q_{1}}, \ldots, \frac{p_{N}}{q_{N}}\right\}
$$

Choose $n>0$ such that

$$
\begin{equation*}
\frac{1}{n}<\min _{i=1, \ldots, N}\left|\alpha-\frac{p_{i}}{q_{i}}\right| \tag{2}
\end{equation*}
$$

By the initial remark, we can find $0 \leq q \leq n$ and $p \in \mathbb{Z}$ such that p / q satisfies

$$
\left|\alpha-\frac{p}{q}\right| \leq \frac{1}{n q} \leq \frac{1}{q^{2}}
$$

Thus, it is a solution to our equation. We can assume that p / q has been simplifyed so that p, q are coprime, since if not we can simplify it and get a new solution p^{\prime} / q^{\prime} where still $q^{\prime} \leq q \leq 1 / \delta$. We claim that it is different than all the other solutions $p_{i} / q_{i}, i=1, \ldots, N$. This is because, since $q \geq 1$,

$$
\left|\alpha-\frac{p}{q}\right| \leq \frac{1}{n q} \leq \frac{1}{n}<\min _{i=1, \ldots, N}\left|\alpha-\frac{p_{i}}{q_{i}}\right|,
$$

where in the last inequality we used the choice of n, see (2). so that p / q is strictly closer than all the previous solutions. This gives a contradiction.

