ICTP Summer School on Dynamical Systems Rotations of the circle and renormalization
 Solutions 2

Solutions to Exercise 2.1

Part (a) See Lecture Notes
Part (b) Let us recall that $a_{0}(x)$ is the integer part of $1 / x$. Thus, since

$$
\frac{3}{4}<x<\frac{4}{5} \quad \Leftrightarrow \quad \frac{4}{3}<\frac{1}{x}<\frac{5}{4}
$$

we have that $a_{0}(x)=[1 / x]=1$. Then $G(x)=1 / x-1$ and since from the previous inequality

$$
\frac{4}{3}-1<\frac{1}{x}-1<\frac{5}{4}-1 \quad \Leftrightarrow \quad \frac{1}{3}<G(x)<\frac{1}{4}
$$

so that $3<1 / G(x)<4$. Thus $a_{1}(x)=[1 / G(x)]=3$.
Recall from the lecture that $a_{k}(x)=\left[1 / G^{k}(x)\right]$. Thus, since $G^{2}(x)=x$, the continued fraction entries of x are periodic with period 2. Since the first two entries by part (a) are $a_{0}(x)=1$ and $a_{1}(x)=3$, we have that $a_{n}(x)=1$ for any n even and $a_{n}(x)=3$ for any n odd. From the periodic expression for the continued fraction $x=[1,3,1,3,1,3, \ldots]$.

Alternatively, one can also compute x explicitly. Since $a_{0}(x)=1$ by Part (a), $G(x)=\frac{1}{x}-a_{0}(x)=\frac{1}{x}-1$. Similarly, since $a_{1}(x)=3$ again by Part (a),

$$
G^{2}(x)=\frac{1}{G(x)}-a_{1}(x)=\frac{1}{G(x)}-3=\frac{1}{\frac{1}{x}-1}-3
$$

Thus, if $G^{2}(x)=x$, this means that

$$
x=\frac{1}{\frac{1}{x}-1}-3 \quad \Leftrightarrow \quad \frac{(4 x-4}{-x+1}
$$

This leads to a quadratic equation for x, namely $x^{2}-3 x+1$, which one can solve. Only one of the two solutions lies in the prescribed interval (one can also see that the any branch of G^{2} which correspond to prescribing the two first entries intersect the diagonal in a unique point). Explicitely, x has the form

$$
x=\frac{-3+\sqrt{3^{2}+4 \cdot 3}}{2 a}=-\frac{3}{2}+\frac{\sqrt{21}}{2} .
$$

One can also compute x explicitly from the knowledge that $x=[1,3,1,3,1,3, \ldots]$, by remarking that then $x=[1,3+x]$, i.e.

$$
x=\frac{1}{1+\frac{1}{3+x}} \quad \Leftrightarrow \quad \frac{1}{x}-1=\frac{1}{3+x}
$$

which leads to the same degree two equation.
Part (c) Let $x=\left[3, x_{0}, 3, x_{1}, 3, x_{2}, \ldots\right]$ where x_{i} is an increasing sequence of integers, that is satisfy $\lim _{i \rightarrow \infty} x_{i}=$ ∞. Since the $2 n^{t h}$ entry is equal to 3 and the following digit is x_{n} and the Gauss map acts as a shift on entries of the continued fraction expansion, we have that $G^{2 n}(x)=\left[3, x_{n}, \ldots\right]$ so that

$$
G^{2 n}(y) \in P_{2} \cap G^{-1}\left(P_{x_{n}}\right)=P_{2} \cap G^{-1}\left(\frac{1}{x_{n}+1}, \frac{1}{x_{n}}\right]
$$

Let us call this intersection I^{n}. The preimage $G^{-1}\left(P_{x_{n}}\right)$ consists of countably many intervals, of the form

$$
\left[\frac{1}{i+\frac{1}{x_{n}}}, \frac{1}{i+\frac{1}{x_{n}+1}}\right), \quad i \in \mathbb{N} .
$$

Since we are interesting it with $P_{2}=(1 / 4,1 / 3]$, we have that

$$
G^{2 n}(y) \in I_{n}=\left(\frac{1}{3+\frac{1}{x_{n}}}, \frac{1}{3+\frac{1}{x_{n}+1}}\right)
$$

Since as n tends to infinity and hence $x_{n} \rightarrow+\infty$ both the endpoints of the interval I_{n} tend to $1 / 3$, this shows by the pinching or sandwitch theorem that $G^{2 n}(y) \rightarrow 1 / 3$ as $n \rightarrow \infty$.

Solutions to Exercise

We will use Weyl Theorem to answer this question. We will show that the frequency of the digit k as leading digit in the sequence $\left(2^{n}\right)_{n \in \mathbb{N}}$ is given by

$$
\lim _{N \rightarrow \infty} \frac{\operatorname{Card}\left\{0 \leq n<N \quad \text { s.t. the leading digit of } 2^{n} \text { is } k\right\}}{N}=\log _{10}\left(1+\frac{1}{k}\right)
$$

where $\log _{10}$ denotes the logarithm in base 10 (that is, $\log _{10}(a)=b$ if and only if $10^{a}=b$).
Notice that the leading digit of 2^{n} is k if and only if there exists an integer $r \geq 0$ such that

$$
k 10^{r} \leq 2^{n}<(k+1) 10^{r}
$$

For example, $2 \cdot 100 \leq 256<3 \cdot 100$ shows that the leading digit of 256 is 2 .
Taking logarithms in base 10 and using the properties of logarithms $\left(\right.$ as $\log _{10}(a b)=\log _{10}(a)+\log _{10}(b)$ and $\log _{10} 10^{r}=r$), this shows that

$$
\begin{aligned}
& \log _{10}\left(k 10^{r}\right) \leq \log _{10} 2^{n}<\log _{10}\left((k+1) 10^{r}\right) \\
& \log _{10} k+r \leq n \log _{10} 2<\log _{10}(k+1)+r
\end{aligned}
$$

Thus, equivalently,

$$
\left(n \log _{10} 2 \bmod 1\right) \in I_{k}=\left[\log _{10} k, \log _{10}(k+1)\right]
$$

Notice that if we call $\alpha=\log _{10} 2$, the sequence

$$
\begin{aligned}
& \left(n \log _{10} 2 \bmod 1\right)_{n \in \mathbb{N}}=0, \quad \log _{10} 2 \bmod 1, \quad 2 \log _{10} 2 \bmod 1, \quad 3 \log _{10} \bmod 1, \ldots \\
& =0, \quad \log _{10} 2 \bmod 1, \quad \log _{10} 2+\log _{10} 2 \bmod 1, \quad 2 \log _{10} 2+\log _{10} 2 \bmod 1, \ldots
\end{aligned}
$$

is the orbit $\mathcal{O}_{R_{\alpha}}^{+}(0)$ of 0 under the rotation by α. Thus,

$$
\begin{aligned}
& \left.\frac{\operatorname{Card}\{0 \leq n<N}{} \text { such that the leading digit of } 2^{n} \text { is } k\right\} \\
& \left.\frac{\operatorname{Card}\{0 \leq n<N}{} \text { such that }\left(n \log _{10} 2 \bmod 1\right) \in I_{k}\right\} \\
& N
\end{aligned}=
$$

One can show that $\log _{10} 2$ is irrational, thus R_{α} is an irrational rotation and hence by Weyl theorem the orbit of any point, in particular 0 , is equidistributed. This gives that

$$
\begin{aligned}
\lim _{N \rightarrow \infty} & \frac{\operatorname{Card}\left\{0 \leq n<N \quad \text { s.t. the leading digit of } 2^{n} \text { is } k\right\}}{N}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} \chi_{I_{k}}\left(R_{\alpha}^{n}(0)\right) \\
& =\lambda\left(I_{k}\right)=\log _{10}(k+1)-\log _{10} k=\log _{10}\left(1+\frac{1}{k}\right)
\end{aligned}
$$

