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lifts and degree

lift

remember
S1 = R/Z
there is a projection π : R→ S1:

x 7→ [x ]
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lifts and degree

lift

lift
f : S1 → S1 continuous
⇒ ∃ F : R→ R continuous

π ◦ F = f ◦ π

F unique up to integer traslation
F is called a lift of f
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lifts and degree

degree

degree
F lift of f
⇒ F (x + 1)− F (x) is an integer independient of F , x
deg(f ) = F (x + 1)− F (x) degree of f
if f homeomorphism, | deg(f )| = 1
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lifts and degree

degree - proof

proof - degree
F (x + 1) is a lift of f
since π(F (x + 1)) = f (π(x + 1)) = f (π(x))
⇒ F (x + 1)− F (x) is an integer independent of x
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lifts and degree

degree - proof

proof - degree
F ,G lifts of f

F (x + 1)− F (x) − (G(x + 1)−G(x)) =
F (x + 1)−G(x + 1) − (F (x)−G(x)) =

k − k = 0
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lifts and degree

degree - proof

degree - homeomorphisms
if deg(f ) = 0
F (x + 1) = F (x) for all x ∈ R
⇒ F is not monotone
⇒ f is not monotone.
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lifts and degree

degree - proof

degree - homeomorphisms
if | deg(f )| > 1
|F (x + 1)− F (x)| > 1
⇒ ∃y ∈ (x , x + 1) such that |F (y)− F (x)| = 1
⇒ f is not invertible.
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linear expanding maps

linear expanding maps

a linear expanding map

E2 : S1 → S1 (noninvertible) map

E2(x) = 2x ( mod 1)
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linear expanding maps

the map 2x mod 1

the map 2x mod 1
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linear expanding maps

the map 2x mod 1

the map 2x mod 1
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periodic points

periodic points

number of periodic points
let us call

Pn(f ) = #{fixed points of f n}
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periodic points

number of fixed points

number of fixed points
Pn(E2) = 2n − 1
periodic points of E2 are dense in S1
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periodic points

proof

proof
exercise
Possible hint. E2(z) = z2 or E2(e2πiθ) = e4πiθ
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other linear expanding maps

other linear expanding maps

other linear expanding maps
for any integer m 6= 1

Em(x) = mx ( mod 1)
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other linear expanding maps

periodic points

periodic points
Pn(Em) = |mn − 1|
periodic points of Em are dense in S1
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expanding maps on the circle

expanding maps on the circle

expanding maps on the circle

f : S1 → S1 is an expanding map on the circle
if f is continuous and diferentiable

|f ′(x)| > 1 ∀x ∈ S1
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degree

degree

recall - degree

the degree of f : S1 → S1

is the integer deg(f ) satisfying
F (t + 1) = deg(f ) + F (t)
for any lift F : R→ R of f
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degree

property

degree and composition

let f ,g : S1 → S1

then
deg(g ◦ f ) = deg(g) deg(f )

in particular deg(f n) = deg(f )n

proof
exercise
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degree

degree and periodic points

degree and periodic points

f : S1 → S1 expanding map
⇒ | deg(f )| > 1
and

Pn(f ) = | deg(f )n − 1|
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degree

proof

proof
take a lift F of f

| deg(f )| = |F (x + 1)− F (x)| = |F ′(ξ)| > 1
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degree

proof

proof
it is enough to prove P1(f ) = | deg(f )− 1|:

Pn(f ) = P1(f n) = | deg(f n)− 1| = | deg(f )n − 1|
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degree

proof

proof
F lift of f
π(x) fixed point of f ⇐⇒ F (x)− x ∈ Z
G(x) = F (x)− x satisfies
G(x + 1)−G(x) = deg(f )− 1
∃ at least | deg(f )− 1| points such that G(ξ) ∈ Z (the
endpoints project into the same)
G′(x) 6= 0⇒ G strictly monotone
⇒ ∃ exactly | deg(f )− 1| fixed points of f in S1
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topologically mixing

topologically mixing

topologically mixing
f : X → X is topologically mixing
if for any two open sets U,V ⊂ X
there exists N > 0 such that

f n(U) ∩ V 6= ∅ ∀n > N
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topologically mixing

rotations

rotations
rotations are not topologically mixing
(exercise)
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topologically mixing

expanding maps

expanding maps
expanding maps on the circle
are topologically mixing
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topologically mixing

proof

proof
take a lift F of f
|F ′(x)| ≥ λ > 1 for all x ∈ R
|F (b)− F (a)| ≥ λ|b − a|
|F n(b)− F n(a)| ≥ λn|b − a|
for all interval I there exists N > 0
such that length(F N(I)) > 1
⇒ f n(π(I)) ⊃ S1 for all n ≥ N
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