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lifts and degree

lift

e S'=R/Z
@ there is a projection 7 : R — S':

X — [x]
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lifts and degree

lift

o f:S' - S' continuous
@ = 7 F: R — R continuous
(Y

moF=fom

@ F unique up to integer traslation
@ Fis called a lift of f
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lifts and degree

degree

@ Fliftof f

@ = F(x+ 1) — F(x) is an integer independient of F, x
@ deg(f) = F(x+ 1) — F(x) degree of f
@ if f homeomorphism, | deg(f)| = 1
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lifts and degree

degree - proof

proof - degree
@ F(x+1)isaliftof f
@ since n(F(x + 1)) = f(r(x + 1)) = f(m(x))
@ = F(x+ 1) — F(x) is an integer independent of x
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lifts and degree

degree - proof

proof - degree
@ F Gliftsof f
(]

F(x+1) — F(x)

)
F(x+1)—G(x+1) — (F(x)—G(x)) =
k — k=0

|
[
>
_|_
|
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X
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lifts and degree

degree - proof

degree - homeomorphisms
@ if deg(f) =0
@ F(x+1)=F(x)forallx eR
@ = F is not monotone
@ = fis not monotone.

topologically mixing
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lifts and degree

degree - proof

degree - homeomorphisms
@ if |deg(f)| > 1
o [F(x+1)— F(x)| > 1
@ = dy € (x,x+ 1) such that |[F(y) — F(x)| =1
@ = fis not invertible.
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linear expanding maps

linear expanding maps

a linear expanding map
@ £, :S' — S (noninvertible) map

o
E>(x) = 2x ( mod 1)

topologically mixing
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linear expanding maps

the map 2x mod 1

the map 2x mod 1

expanding maps on the circle
0000000

topologically mixing
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linear expanding maps

the map 2x mod 1

the map 2x mod 1

expanding maps on the circle
0000000
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periodic points

periodic points

@ let us call

P, (f) = #{fixed points of "}
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periodic points

number of fixed points

@ Py(E))=2"—1
@ periodic points of E, are dense in S
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periodic points

proof

proof
@ exercise
@ Possible hint. Ep(z) = 22 or Ep(€?™0) = e*™/?
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other linear expanding maps

other linear expanding maps

other linear expanding maps
@ for any integer m # 1

(*]
Em(x) = mx ( mod 1)

topologically mixing
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other linear expanding maps

periodic points

@ periodic points of E, are dense in S
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expanding maps on the circle

expanding maps on the circle

@ f:S' — S'is an expanding map on the circle
@ if f is continuous and diferentiable
°

IFO)>1  vxes!
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degree

degree

recall - degree
@ the degree of f: ST — S'
@ is the integer deg(f) satisfying
@ F(t+1)=deg(f)+ F(1)
@ foranylift F: R — Rof f

topologically mixing
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degree

property

@ letf,g:S' —» 8!
@ then

deg(g o f) = deg(g) deg(f)
@ in particular deg(f") = deg(f)"

proof
exercise
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degree

degree and periodic points

o f:S' — S' expanding map
@ = |deg(f)| > 1
@ and

Pr(f) = | deg(f)" — 1
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degree

proof

proof
o take allift F of f

o
| deg(f)] = |F(x + 1) = F(x)| = |F'(¢)| > 1

topologically mixing
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degree
proof
proof
@ it is enough to prove P;(f) = |deg(f) — 1]:
°

Pn(f) = P1(f") = | deg(f") — 1] = | deg(f)" — 1|
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proof
proof
o Fliftof f
@ 7(x) fixed pointof f «<— F(x) —x € Z
@ G(x) = F(x) — x satisfies
@ G(x+1)— G(x) = deg(f) — 1
@ at least | deg(f) — 1| points such that G(&) € Z (the

endpoints project into the same)
G'(x) # 0 = G strictly monotone
= J exactly | deg(f) — 1| fixed points of fin S'




lifts and degree linear expanding maps expanding maps on the circle topologically mixing
0000000 00000000 0000000 @000

topologically mixing

topologically mixing

@ f: X — X is topologically mixing
@ if for any two open sets U,V C X
@ there exists N > 0 such that

°

fUNV#£D  Yn>N
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topologically mixing

rotations

rotations
@ rotations are not topologically mixing
@ (exercise)
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topologically mixing

expanding maps

@ expanding maps on the circle
@ are topologically mixing




lifts and degree linear expanding maps expanding maps on the circle topologically mixing
0000000 00000000 0000000 oooe

topologically mixing

proof

proof
@ take alift F of f
@ |[F(x)|>A>1forallx eR
° |F(b) - F(a)l = Alb— a|
° |F"(b) — F"(a)| > A"|b — a|
@ for all interval / there exists N > 0
@ such that length(FN(1)) > 1
@ = f"(r(/)) oS! forall n> N
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