Dynamical systems

Expanding maps on the circle

Jana Rodriguez Hertz

ICTP

2018

remember

- $\mathbb{S}^{1}=\mathbb{R} / \mathbb{Z}$
- there is a projection $\pi: \mathbb{R} \rightarrow \mathbb{S}^{1}$:

$$
x \mapsto[x]
$$

lift

- $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ continuous
- $\Rightarrow \exists F: \mathbb{R} \rightarrow \mathbb{R}$ continuous
-

$$
\pi \circ F=f \circ \pi
$$

- F unique up to integer traslation
- F is called a lift of f

degree

degree

- F lift of f
- $\Rightarrow F(x+1)-F(x)$ is an integer independient of F, x
- $\operatorname{deg}(f)=F(x+1)-F(x)$ degree of f
- if f homeomorphism, $|\operatorname{deg}(f)|=1$

degree - proof

proof - degree

- $F(x+1)$ is a lift of f
- since $\pi(F(x+1))=f(\pi(x+1))=f(\pi(x))$
- $\Rightarrow F(x+1)-F(x)$ is an integer independent of x
lifts and degree

degree - proof

proof - degree

- F, G lifts of f

0

$$
\begin{aligned}
F(x+1)-F(x) & -(G(x+1)-G(x))= \\
F(x+1)-G(x+1) & -(F(x)-G(x))= \\
k & -k=0
\end{aligned}
$$

degree - proof

degree - homeomorphisms

- if $\operatorname{deg}(f)=0$
- $F(x+1)=F(x)$ for all $x \in \mathbb{R}$
- $\Rightarrow F$ is not monotone
- $\Rightarrow f$ is not monotone.

degree - proof

degree - homeomorphisms

- if $|\operatorname{deg}(f)|>1$
- $|F(x+1)-F(x)|>1$
- $\Rightarrow \exists y \in(x, x+1)$ such that $|F(y)-F(x)|=1$
- $\Rightarrow f$ is not invertible.

linear expanding maps

a linear expanding map

- $E_{2}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ (noninvertible) map
-

$$
E_{2}(x)=2 x \quad(\bmod 1)
$$

linear expanding maps

the $\operatorname{map} 2 x \bmod 1$

the map $2 x \bmod 1$

A 1
linear expanding maps

the $\operatorname{map} 2 x \bmod 1$

the map $2 x \bmod 1$

A 1

periodic points

number of periodic points

- let us call

$$
P_{n}(f)=\#\left\{\text { fixed points of } f^{n}\right\}
$$

number of fixed points

number of fixed points

- $P_{n}\left(E_{2}\right)=2^{n}-1$
- periodic points of E_{2} are dense in \mathbb{S}^{1}

proof

proof

- exercise
- Possible hint. $E_{2}(z)=z^{2}$ or $E_{2}\left(e^{2 \pi i \theta}\right)=e^{4 \pi i \theta}$

other linear expanding maps

other linear expanding maps

- for any integer $m \neq 1$

0

$$
E_{m}(x)=m x \quad(\bmod 1)
$$

periodic points

periodic points

- $P_{n}\left(E_{m}\right)=\left|m^{n}-1\right|$
- periodic points of E_{m} are dense in \mathbb{S}^{1}

expanding maps on the circle

expanding maps on the circle

- $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ is an expanding map on the circle
- if f is continuous and diferentiable
-

$$
\left|f^{\prime}(x)\right|>1 \quad \forall x \in \mathbb{S}^{1}
$$

degree

recall - degree

- the degree of $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$
- is the integer $\operatorname{deg}(f)$ satisfying
- $F(t+1)=\operatorname{deg}(f)+F(t)$
- for any lift $F: \mathbb{R} \rightarrow \mathbb{R}$ of f

property

degree and composition

- let $f, g: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$
- then

$$
\operatorname{deg}(g \circ f)=\operatorname{deg}(g) \operatorname{deg}(f)
$$

- in particular $\operatorname{deg}\left(f^{n}\right)=\operatorname{deg}(f)^{n}$

proof

exercise

degree and periodic points

degree and periodic points

- $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ expanding map
- $\Rightarrow|\operatorname{deg}(f)|>1$
- and

$$
P_{n}(f)=\left|\operatorname{deg}(f)^{n}-1\right|
$$

degree

proof

proof

- take a lift F of f
-

$$
|\operatorname{deg}(f)|=|F(x+1)-F(x)|=\left|F^{\prime}(\xi)\right|>1
$$

proof

proof

- it is enough to prove $P_{1}(f)=|\operatorname{deg}(f)-1|$:

0

$$
P_{n}(f)=P_{1}\left(f^{n}\right)=\left|\operatorname{deg}\left(f^{n}\right)-1\right|=\left|\operatorname{deg}(f)^{n}-1\right|
$$

proof

proof

- F lift of f
- $\pi(x)$ fixed point of $f \Longleftrightarrow F(x)-x \in \mathbb{Z}$
- $G(x)=F(x)-x$ satisfies
- $G(x+1)-G(x)=\operatorname{deg}(f)-1$
- \exists at least $|\operatorname{deg}(f)-1|$ points such that $G(\xi) \in \mathbb{Z}$ (the endpoints project into the same)
- $G^{\prime}(x) \neq 0 \Rightarrow G$ strictly monotone
- $\Rightarrow \exists$ exactly $|\operatorname{deg}(f)-1|$ fixed points of f in $\mathbb{S}^{1} \square$

topologically mixing

topologically mixing

- $f: X \rightarrow X$ is topologically mixing
- if for any two open sets $U, V \subset X$
- there exists $N>0$ such that
-

$$
f^{n}(U) \cap V \neq \emptyset \quad \forall n>N
$$

rotations

rotations

- rotations are not topologically mixing
- (exercise)

expanding maps

expanding maps

- expanding maps on the circle
- are topologically mixing

proof

proof

- take a lift F of f
- $\left|F^{\prime}(x)\right| \geq \lambda>1$ for all $x \in \mathbb{R}$
- $|F(b)-F(a)| \geq \lambda|b-a|$
- $\left|F^{n}(b)-F^{n}(a)\right| \geq \lambda^{n}|b-a|$
- for all interval I there exists $N>0$
- such that length $\left(F^{N}(I)\right)>1$
- $\Rightarrow f^{n}(\pi(I)) \supset \mathbb{S}^{1}$ for all $n \geq N_{\square}$

