linear expanding maps

expanding maps on the circle

topologically mixing

Dynamical systems Expanding maps on the circle

Jana Rodriguez Hertz

ICTP

2018

lifts	and	degree
000000		

linear expanding maps

expanding maps on the circle

topologically mixing

lifts and degree

remember • $S^1 = \mathbb{R}/\mathbb{Z}$ • there is a projection $\pi : \mathbb{R} \to S^1$: $x \mapsto [x]$

linear expanding maps

expanding maps on the circle

topologically mixing

lifts and degree

lift

lifts and degree

linear expanding maps

expanding maps on the circle

topologically mixing

degree

- F lift of f
- \Rightarrow F(x + 1) F(x) is an integer independient of F, x
- $\deg(f) = F(x+1) F(x)$ degree of f
- if f homeomorphism, $|\deg(f)| = 1$

linear expanding maps

expanding maps on the circle

topologically mixing

lifts and degree

proof - degree

- F(x+1) is a lift of f
- since $\pi(F(x+1)) = f(\pi(x+1)) = f(\pi(x))$
- \Rightarrow F(x+1) F(x) is an integer independent of x

linear expanding maps

expanding maps on the circle

topologically mixing

lifts and degree

degree - proof

proof - degree F, G lifts of f

$$F(x+1) - F(x) - (G(x+1) - G(x)) =$$

F(x+1) - G(x+1) - (F(x) - G(x)) =
k - k = 0

linear expanding maps

expanding maps on the circle

topologically mixing

lifts and degree

degree - homeomorphisms

- if deg(f) = 0
- F(x+1) = F(x) for all $x \in \mathbb{R}$
- ⇒ F is not monotone
- \Rightarrow *f* is not monotone.

linear expanding maps

expanding maps on the circle

topologically mixing

lifts and degree

degree - homeomorphisms

- if | deg(*f*)| > 1
- |F(x+1) F(x)| > 1
- $\Rightarrow \exists y \in (x, x + 1)$ such that |F(y) F(x)| = 1
- \Rightarrow *f* is not invertible.

linear expanding maps

expanding maps on the circle

topologically mixing

linear expanding maps

linear expanding maps

a linear expanding map • $E_2 : \mathbb{S}^1 \to \mathbb{S}^1$ (noninvertible) map • $E_2(x) = 2x \pmod{1}$

linear expanding maps

expanding maps on the circle

topologically mixing

linear expanding maps

the map $2x \mod 1$

the map $2x \mod 1$

linear expanding maps

expanding maps on the circle

topologically mixing

linear expanding maps

the map $2x \mod 1$

the map $2x \mod 1$

linear expanding maps

expanding maps on the circle

topologically mixing

periodic points

periodic points

number of periodic points

Iet us call

$$P_n(f) = \#\{\text{fixed points of } f^n\}$$

linear expanding maps

expanding maps on the circle

topologically mixing

periodic points

number of fixed points

number of fixed points

•
$$P_n(E_2) = 2^n - 1$$

• periodic points of E_2 are dense in \mathbb{S}^1

periodic points

proof

linear expanding maps

expanding maps on the circle

topologically mixing

proof

- exercise
- Possible hint. $E_2(z) = z^2$ or $E_2(e^{2\pi i\theta}) = e^{4\pi i\theta}$

linear expanding maps

expanding maps on the circle

topologically mixing

other linear expanding maps

other linear expanding maps

other linear expanding maps

• for any integer $m \neq 1$

۲

$$E_m(x) = mx \pmod{1}$$

linear expanding maps

expanding maps on the circle

topologically mixing

other linear expanding maps

periodic points

periodic points

•
$$P_n(E_m) = |m^n - 1|$$

• periodic points of E_m are dense in \mathbb{S}^1

linear expanding maps

expanding maps on the circle

topologically mixing

expanding maps on the circle

expanding maps on the circle

expanding maps on the circle

- $f : \mathbb{S}^1 \to \mathbb{S}^1$ is an expanding map on the circle
- if f is continuous and diferentiable

۹

 $|f'(x)| > 1 \qquad \forall x \in \mathbb{S}^1$

linear expanding maps

expanding maps on the circle

topologically mixing

degree

recall - degree

- the degree of $f : \mathbb{S}^1 \to \mathbb{S}^1$
- is the integer deg(f) satisfying
- $F(t+1) = \deg(f) + F(t)$
- for any lift $F : \mathbb{R} \to \mathbb{R}$ of f

linear expanding maps

expanding maps on the circle

topologically mixing

degree

property

proof

exercise

linear expanding maps

expanding maps on the circle

topologically mixing

degree

degree and periodic points

degree and periodic points

- $f: \mathbb{S}^1 \to \mathbb{S}^1$ expanding map
- $\bullet \Rightarrow |\deg(f)| > 1$
- and

 $P_n(f) = |\deg(f)^n - 1|$

linear expanding maps

expanding maps on the circle

topologically mixing

degree

proof

• take a lift F of f

۲

$|\deg(f)| = |F(x+1) - F(x)| = |F'(\xi)| > 1$

linear expanding maps

expanding maps on the circle

topologically mixing

degree

proof

• it is enough to prove $P_1(f) = |\deg(f) - 1|$:

۲

$$P_n(f) = P_1(f^n) = |\deg(f^n) - 1| = |\deg(f)^n - 1|$$

linear expanding maps

expanding maps on the circle

topologically mixing

degree

proof

proof

- F lift of f
- $\pi(x)$ fixed point of $f \iff F(x) x \in \mathbb{Z}$
- G(x) = F(x) x satisfies
- $G(x+1) G(x) = \deg(f) 1$
- ∃ at least |deg(f) − 1| points such that G(ξ) ∈ Z (the endpoints project into the same)
- $G'(x) \neq 0 \Rightarrow G$ strictly monotone
- $\Rightarrow \exists$ exactly $| \deg(f) 1 |$ fixed points of f in \mathbb{S}^1

linear expanding maps

expanding maps on the circle

topologically mixing

topologically mixing

۲

topologically mixing

topologically mixing

- $f: X \to X$ is topologically mixing
- if for any two open sets $U, V \subset X$
- there exists *N* > 0 such that

 $f^n(U) \cap V \neq \emptyset \qquad \forall n > N$

topologically mixing

rotations

linear expanding maps

expanding maps on the circle

topologically mixing

rotations

- rotations are not topologically mixing
- (exercise)

linear expanding maps

expanding maps on the circle

topologically mixing

topologically mixing

expanding maps

expanding maps

- expanding maps on the circle
- are topologically mixing

linear expanding maps

expanding maps on the circle

topologically mixing

topologically mixing

proof

proof

- take a lift F of f
- $|F'(x)| \ge \lambda > 1$ for all $x \in \mathbb{R}$
- $|F(b) F(a)| \ge \lambda |b a|$
- $|F^n(b) F^n(a)| \ge \lambda^n |b a|$
- for all interval *I* there exists N > 0
- such that $length(F^N(I)) > 1$
- $\Rightarrow f^n(\pi(I)) \supset \mathbb{S}^1$ for all $n \ge N_{\square}$