

 $E_{\rm 2}$ is a factor of σ 00000

Expanding maps are factors of σ 0000000

Dynamical systems Expanding maps on the circle. Semiconjugacy

Jana Rodriguez Hertz

ICTP

2018

coding ●○○

coding

coding

 E_2 is a factor of σ

Expanding maps are factors of σ 0000000

Consider $E_2 : \mathbb{S}^1 \to \mathbb{S}^1$ such that $f(x) = 2x \mod 1$

coding ○●○

semiconjugacy

 E_2 is a factor of σ 00000 Expanding maps are factors of σ 0000000

semiconjugacy

semiconjugacy

- $f: X \to X$ and $g: Y \to Y$ maps
- $h: Y \rightarrow X$ is a semiconjugacy from g to f
- if

 $f \circ h = h \circ g$

• we also say that *f* is a factor of *g*

coding ○○●

semiconjugacy

 E_2 is a factor of σ

Expanding maps are factors of σ 0000000

semiconjugacy

 E_2 is a factor of σ •0000 Expanding maps are factors of σ 0000000

 E_2 is a factor of σ

E_2 is a factor of σ

E_2 is a factor of σ

- E_2 is a factor of σ on Σ_2^+
- that is, there exists a continuous surjective h such that

۲

 E_2 is a factor of σ

Expanding maps are factors of σ 0000000

 E_2 is a factor of σ

the semiconjugacy h

Let us define $h: \Sigma_2^+ \to \mathbb{S}^1$

 E_2 is a factor of σ

proof

 E_2 is a factor of σ

proof

 E_2 is a factor of σ

proof

h is a semiconjugacy

- *h* is continuous (excercise)
- *h* is surjective (excercise)

0

$h \circ \sigma = E_2 \circ h$

introduction

 E_2 is a factor of σ

Expanding maps are factors of σ

general expanding maps

general expanding maps

- now let $f : \mathbb{S}^1 \to \mathbb{S}^1$ be a general expanding map
- suppose deg(f) = 2
- \Rightarrow there is only one fixed point *p*
- \Rightarrow there is only one point $q \neq p$ such that f(q) = p
- call $\Delta_0 = [p, q]$ and $\Delta_1 = [q, p]$

theorem

 E_2 is a factor of σ

expanding maps are factors of $\boldsymbol{\sigma}$

theorem

- $f : \mathbb{S}^1 \to \mathbb{S}^1$ expanding map
- $\deg(f) = 2$
- \Rightarrow *f* is a factor of σ on Σ_2^+
- $\exists h : \Sigma_2^+ \to \mathbb{S}^1$ such that $f^n(h(\underline{x})) \in \Delta_{x_n}$ for all $n \ge 0$

proof

proof

 E_2 is a factor of σ

Expanding maps are factors of σ $\circ o \bullet \circ \circ \circ \circ$

definition of h

• following the previous theorem, let us define

$$h(\underline{x}) = \bigcap_{n=0}^{\infty} f^{-n}(\Delta_{x_n})$$

proof

proof

proof

proof

 $E_{\rm 2}$ is a factor of σ 00000

Expanding maps are factors of σ 0000000

h is a semiconjugacy

- *h* is continuous
- h is surjective
- $f \circ h = h \circ \sigma_{\Box}$

proof

hints

proof

hints

hints

• prove by induction

۲

$$\Delta_{x_0...x_N} = [a_N, b_N]$$

• with
$$f^{N+1}(a_N) = f^{N+1}(b_N) = p$$

• f^{N+1} is injective in (a_N, b_N)