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coding

coding

Consider E2 : S1 → S1 such that f (x) = 2x mod 1

x = 00001100110011 . . .
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semiconjugacy

semiconjugacy

semiconjugacy
f : X → X and g : Y → Y maps
h : Y → X is a semiconjugacy from g to f
if

f ◦ h = h ◦ g

we also say that f is a factor of g
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semiconjugacy

semiconjugacy

semiconjugacy

g
Y → Y

h ↓ ↓ h
X → X

f

f is a factor of g
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E2 is a factor of σ

E2 is a factor of σ

E2 is a factor of σ
E2 is a factor of σ on Σ+

2

that is, there exists a continuous surjective h such that

σ
Σ+

2 → Σ+
2

h ↓ ↓ h
S1 → S1

E2
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E2 is a factor of σ

the semiconjugacy h

Let us define h : Σ+
2 → S1

∆0 ∆1

x = 00001100110011 . . .

h(x) ∈ ∆0 E5
2 (h(x)) ∈ ∆1

E2(h(x)) ∈ ∆0 E6
2 (h(x)) ∈ ∆0

E2
2 (h(x)) ∈ ∆0 E7

2 (h(x)) ∈ ∆0
E3

2 (h(x)) ∈ ∆0 E8
2 (h(x)) ∈ ∆1

E4
2 (h(x)) ∈ ∆1

...
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E2 is a factor of σ

proof

definition of h
define

h(x) =
∞⋂

n=0

E−n
2 (∆xn )
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E2 is a factor of σ

proof

h is well defined
E−n

2 (∆xn ) consists of 2n intervals of length 1
2n+1

N⋂
n=0

E−n
2 (∆xn )

is an interval of length 1
2N+1

h is a well-defined function
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E2 is a factor of σ

proof

h is a semiconjugacy
h is continuous (excercise)
h is surjective (excercise)

h ◦ σ = E2 ◦ h
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introduction

general expanding maps

general expanding maps

now let f : S1 → S1 be a general expanding map
suppose deg(f ) = 2
⇒ there is only one fixed point p
⇒ there is only one point q 6= p such that f (q) = p
call ∆0 = [p,q] and ∆1 = [q,p]
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theorem

expanding maps are factors of σ

theorem
f : S1 → S1 expanding map
deg(f ) = 2
⇒ f is a factor of σ on Σ+

2

∃ h : Σ+
2 → S1 such that f n(h(x)) ∈ ∆xn for all n ≥ 0
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proof

proof

definition of h
following the previous theorem, let us define

h(x) =
∞⋂

n=0

f−n(∆xn )
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proof

proof

h is well defined

N⋂
n=0

f−n(∆xn ) 6= ∅

is an interval (induction)
f n(ξ), f n(η) ∈ ∆xn for all n
⇒ ξ = η
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proof

proof

h is a semiconjugacy
h is continuous
h is surjective
f ◦ h = h ◦ σ
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proof

hints

hints
define

∆x0x1...xN :=
N⋂

n=0

f−n(∆xn )
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proof

hints

hints
prove by induction

∆x0...xN = [aN ,bN ]

with f N+1(aN) = f N+1(bN) = p
f N+1 is injective in (aN ,bN)
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