Dynamical systems

Expanding maps on the circle. Semiconjugacy

Jana Rodriguez Hertz

ICTP
2018
coding

coding

Consider $E_{2}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ such that $f(x)=2 x \bmod 1$

semiconjugacy

semiconjugacy

- $f: X \rightarrow X$ and $g: Y \rightarrow Y$ maps
- $h: Y \rightarrow X$ is a semiconjugacy from g to f
- if

$$
f \circ h=h \circ g
$$

- we also say that f is a factor of g

semiconjugacy

semiconjugacy

$$
h \begin{array}{cccc}
& & & g \\
& Y & \rightarrow & Y \\
& \downarrow & & \downarrow \\
X & \rightarrow & X & \\
& f & &
\end{array}
$$

f is a factor of g

E_{2} is a factor of σ

E_{2} is a factor of σ

- E_{2} is a factor of σ on Σ_{2}^{+}
- that is, there exists a continuous surjective h such that -

E_{2} is a factor of σ

the semiconjugacy h

Let us define $h: \Sigma_{2}^{+} \rightarrow \mathbb{S}^{1}$

-
E_{2} is a factor of σ

proof

definition of h

- define

$$
h(\underline{x})=\bigcap_{n=0}^{\infty} E_{2}^{-n}\left(\Delta_{x_{n}}\right)
$$

E_{2} is a factor of σ

proof

h is well defined

- $E_{2}^{-n}\left(\Delta_{x_{n}}\right)$ consists of 2^{n} intervals of length $\frac{1}{2^{n+1}}$
-

$$
\bigcap_{n=0}^{N} E_{2}^{-n}\left(\Delta_{x_{n}}\right)
$$

is an interval of length $\frac{1}{2^{N+1}}$

- h is a well-defined function
E_{2} is a factor of σ

proof

h is a semiconjugacy

- h is continuous (excercise)
- h is surjective (excercise)
-

$$
h \circ \sigma=E_{2} \circ h
$$

general expanding maps

general expanding maps

- now let $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ be a general expanding map
- suppose $\operatorname{deg}(f)=2$
- \Rightarrow there is only one fixed point p
- \Rightarrow there is only one point $q \neq p$ such that $f(q)=p$
- call $\Delta_{0}=[p, q]$ and $\Delta_{1}=[q, p]$

expanding maps are factors of σ

theorem

- $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ expanding map
- $\operatorname{deg}(f)=2$
- $\Rightarrow f$ is a factor of σ on Σ_{2}^{+}
- $\exists h: \Sigma_{2}^{+} \rightarrow \mathbb{S}^{1}$ such that $f^{n}(h(\underline{x})) \in \Delta_{x_{n}}$ for all $n \geq 0$

proof

definition of h

- following the previous theorem, let us define

$$
h(\underline{x})=\bigcap_{n=0}^{\infty} f^{-n}\left(\Delta_{x_{n}}\right)
$$

proof

h is well defined

-

$$
\bigcap_{n=0}^{N} f^{-n}\left(\Delta_{x_{n}}\right) \neq \emptyset
$$

is an interval (induction)

- $f^{n}(\xi), f^{n}(\eta) \in \Delta_{x_{n}}$ for all n
- $\Rightarrow \xi=\eta$

proof

h is a semiconjugacy

- h is continuous
- h is surjective
- $f \circ h=h \circ \sigma_{\square}$

hints

hints

- define

$$
\Delta_{x_{0} x_{1} \ldots x_{N}}:=\bigcap_{n=0}^{N} f^{-n}\left(\Delta_{x_{n}}\right)
$$

hints

hints

- prove by induction
-

$$
\Delta_{x_{0} \ldots x_{N}}=\left[a_{N}, b_{N}\right]
$$

- with $f^{N+1}\left(a_{N}\right)=f^{N+1}\left(b_{N}\right)=p$
- f^{N+1} is injective in $\left(a_{N}, b_{N}\right)$

