Dynamical systems

Expanding maps on the circle. Classification

Jana Rodriguez Hertz

ICTP
2018

Index

(1) coding

- semiconjugacy
- points of non-injectivity
(2) classification
- theorem
- classification
- proof

expanding maps are factors of σ

theorem

expanding maps are factors of σ

theorem

- $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ expanding map

expanding maps are factors of σ

theorem

- $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ expanding map
- $\operatorname{deg}(f)=2$

expanding maps are factors of σ

theorem

- $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ expanding map
- $\operatorname{deg}(f)=2$
- $\Rightarrow f$ is a factor of σ on Σ_{2}^{+}

expanding maps are factors of σ

theorem

- $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ expanding map
- $\operatorname{deg}(f)=2$
- $\Rightarrow f$ is a factor of σ on Σ_{2}^{+}
- $\exists h: \Sigma_{2}^{+} \rightarrow \mathbb{S}^{1}$ such that $f^{n}(h(\underline{x})) \in \Delta_{x_{n}}$ for all $n \geq 0$

Index

- semiconjugacy
- points of non-injectivity
(2) classification
- theorem
- classification
- proof
points of non-injectivity

points of non-injectivity

points of non-injectivity

points of non-injectivity

points of non-injectivity

points of non-injectivity

- if $h(\underline{x})=h(\underline{y})=x$

points of non-injectivity

points of non-injectivity

- if $h(\underline{x})=h(\underline{y})=x$
- then there exists $n \geq 0$

points of non-injectivity

points of non-injectivity

- if $h(\underline{x})=h(\underline{y})=x$
- then there exists $n \geq 0$
- such that

$$
f^{n}(x)=p
$$

points of non-injectivity

points of non-injectivity

points of non-injectivity

- if $h(\underline{x})=h(\underline{y})=x$
- then there exists $n \geq 0$
- such that

$$
f^{n}(x)=p
$$

- where $f(p)=p$
points of non-injectivity

proof

comments on the proof - points of non-injectivity

points of non-injectivity

proof

comments on the proof - points of non-injectivity

- f is injective on Δ_{i}^{o}
points of non-injectivity

proof

comments on the proof - points of non-injectivity

- f is injective on Δ_{i}^{o}
- $f\left(\partial \Delta_{i}\right)=p$
points of non-injectivity

proof

comments on the proof - points of non-injectivity

- f is injective on Δ_{i}^{o}
- $f\left(\partial \Delta_{i}\right)=p$
- if $x \in \Delta_{0}^{o} \cup \Delta_{1}^{o}$

proof

comments on the proof - points of non-injectivity

- f is injective on Δ_{i}^{o}
- $f\left(\partial \Delta_{i}\right)=p$
- if $x \in \Delta_{0}^{o} \cup \Delta_{1}^{o}$
- then first symbol of \underline{x} such that $h(\underline{x})=x$

proof

comments on the proof - points of non-injectivity

- f is injective on Δ_{i}^{o}
- $f\left(\partial \Delta_{i}\right)=p$
- if $x \in \Delta_{0}^{o} \cup \Delta_{1}^{o}$
- then first symbol of \underline{x} such that $h(\underline{x})=x$
- is 0 or 1 (no ambiguity)
points of non-injectivity

proof

comments on the proof - points of injectivity

points of non-injectivity

proof

comments on the proof $-f^{2}$

points of non-injectivity

proof

proof - points of injectivity

points of non-injectivity

proof

proof - points of injectivity

- let $h(\underline{x})=h(\underline{y})=x$ with $\underline{x} \neq \underline{y}$
points of non-injectivity

proof

proof - points of injectivity

- let $h(\underline{x})=h(\underline{y})=x$ with $\underline{x} \neq \underline{y}$
- let N be the first integer such that $x_{N} \neq y_{N}$

proof

proof - points of injectivity

- let $h(\underline{x})=h(\underline{y})=x$ with $\underline{x} \neq \underline{y}$
- let N be the first integer such that $x_{N} \neq y_{N}$
- then

$$
h(\underline{x})=h(\underline{y})=x \in \bigcap_{n=0}^{N-1} f^{-n}\left(\Delta_{x_{n}}\right)
$$

proof

proof - points of injectivity

- let $h(\underline{x})=h(\underline{y})=x$ with $\underline{x} \neq \underline{y}$
- let N be the first integer such that $x_{N} \neq y_{N}$
- then

$$
h(\underline{x})=h(\underline{y})=x \in \bigcap_{n=0}^{N-1} f^{-n}\left(\Delta_{x_{n}}\right)
$$

- which is an interval $\Delta_{x_{0} \ldots x_{N-1}}$
points of non-injectivity

proof

proof - points of injectivity

points of non-injectivity

proof

proof - points of injectivity

- now N is the first integer such that $x_{N} \neq y_{N}$

proof

proof - points of injectivity

- now N is the first integer such that $x_{N} \neq y_{N}$
- then

$$
h(\underline{x})=h(\underline{y})=x \in f^{-N}\left(\Delta_{0}\right) \cap f^{-N}\left(\Delta_{1}\right)
$$

proof

proof - points of injectivity

- now N is the first integer such that $x_{N} \neq y_{N}$
- then

$$
h(\underline{x})=h(\underline{y})=x \in f^{-N}\left(\Delta_{0}\right) \cap f^{-N}\left(\Delta_{1}\right)
$$

- $\Rightarrow x \in f^{-N}\left(\Delta_{0} \cap \Delta_{1}\right)$

proof

proof - points of injectivity

- now N is the first integer such that $x_{N} \neq y_{N}$
- then

$$
h(\underline{x})=h(\underline{y})=x \in f^{-N}\left(\Delta_{0}\right) \cap f^{-N}\left(\Delta_{1}\right)
$$

- $\Rightarrow x \in f^{-N}\left(\Delta_{0} \cap \Delta_{1}\right)$
- but $\Delta_{0} \cap \Delta_{1}=\{p, q\}$

proof

proof - points of injectivity

- now N is the first integer such that $x_{N} \neq y_{N}$
- then

$$
h(\underline{x})=h(\underline{y})=x \in f^{-N}\left(\Delta_{0}\right) \cap f^{-N}\left(\Delta_{1}\right)
$$

- $\Rightarrow x \in f^{-N}\left(\Delta_{0} \cap \Delta_{1}\right)$
- but $\Delta_{0} \cap \Delta_{1}=\{p, q\}$
- $\Rightarrow f^{N+1}(x)=p$

proof

proof - points of injectivity

- now N is the first integer such that $x_{N} \neq y_{N}$
- then

$$
h(\underline{x})=h(\underline{y})=x \in f^{-N}\left(\Delta_{0}\right) \cap f^{-N}\left(\Delta_{1}\right)
$$

- $\Rightarrow x \in f^{-N}\left(\Delta_{0} \cap \Delta_{1}\right)$
- but $\Delta_{0} \cap \Delta_{1}=\{p, q\}$
- $\Rightarrow f^{N+1}(x)=p_{\square}$

Index

(1) coding

- semiconjugacy
- points of non-injectivity
(2) classification
- theorem
- classification
- proof

classification

theorem

classification

theorem

- let $f, g: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ be expanding maps

classification

theorem

- let $f, g: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ be expanding maps
- such that $\operatorname{deg}(f)=\operatorname{deg}(g)=2$

classification

theorem

- let $f, g: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ be expanding maps
- such that $\operatorname{deg}(f)=\operatorname{deg}(g)=2$
- $\Rightarrow f$ and g are topologically conjugate

Index

(1) coding

- semiconjugacy
- points of non-injectivity
(2) classification
- theorem
- classification
- proof

corollary

classification

corollary

classification

- $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ expanding map

corollary

classification

- $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ expanding map
- $\operatorname{deg}(f)=2$

corollary

classification

- $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ expanding map
- $\operatorname{deg}(f)=2$
- $\Rightarrow f$ topologically conjugate to E_{2}

Index

(1) coding

- semiconjugacy
- points of non-injectivity
(2) classification
- theorem
- classification
- proof
proof - theorem
proof - theorem
- $f, g: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ expanding maps
proof - theorem
- $f, g: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ expanding maps
- with $\operatorname{deg}(f)=\operatorname{deg}(g)=2$

proof

proof - theorem

- $f, g: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ expanding maps
- with $\operatorname{deg}(f)=\operatorname{deg}(g)=2$
- $\Rightarrow \exists h_{f}, h_{g}: \Sigma_{2}^{+} \rightarrow \mathbb{S}^{1}$ semiconjugacies

proof

proof - theorem

- $f, g: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ expanding maps
- with $\operatorname{deg}(f)=\operatorname{deg}(g)=2$
- $\Rightarrow \exists h_{f}, h_{g}: \Sigma_{2}^{+} \rightarrow \mathbb{S}^{1}$ semiconjugacies
- such that

proof

proof - theorem

- $f, g: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ expanding maps
- with $\operatorname{deg}(f)=\operatorname{deg}(g)=2$
- $\Rightarrow \exists h_{f}, h_{g}: \Sigma_{2}^{+} \rightarrow \mathbb{S}^{1}$ semiconjugacies
- such that
(1) $f \circ h_{f}=h_{f} \circ \sigma$

proof

proof - theorem

- $f, g: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ expanding maps
- with $\operatorname{deg}(f)=\operatorname{deg}(g)=2$
- $\Rightarrow \exists h_{f}, h_{g}: \Sigma_{2}^{+} \rightarrow \mathbb{S}^{1}$ semiconjugacies
- such that
(1) $f \circ h_{f}=h_{f} \circ \sigma$
(2) $g \circ h_{g}=h_{g} \circ \sigma$

definition of h

- let us define h : $\mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ such that
- let us define $h: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ such that
-

$$
h(x)=h_{g}\left(h_{f}^{-1}(x)\right)
$$

h is well-defined, case 1

- Case 1: $h_{f}^{-1}(x)$ consists of a single point
h is well-defined, case 1
- Case 1: $h_{f}^{-1}(x)$ consists of a single point
- $\Rightarrow h$ is well-defined
h is well-defined, case 1
- Case 1: $h_{f}^{-1}(x)$ consists of a single point
- $\Rightarrow h$ is well-defined $\sqrt{ }$

h is well－defined，case 2

h is well-defined, case 2

- $\exists \underline{x} \neq \underline{y}$ such that $h_{f}(\underline{x})=h_{f}(\underline{y})=x$
h is well-defined, case 2
- $\exists \underline{x} \neq \underline{y}$ such that $h_{f}(\underline{x})=h_{f}(\underline{y})=x$
- $\Rightarrow \exists N$ such that $f^{N}(x)=p_{f}$, with $f\left(p_{f}\right)=p_{f}$

h is well-defined, case 2

h is well-defined, case 2

- $f^{N}(x)=p_{f}$
h is well-defined, case 2
- $f^{N}(x)=p_{f}$
- $h_{f}(\underline{x})=x$
h is well-defined, case 2
- $f^{N}(x)=p_{f}$
- $h_{f}(\underline{x})=x$
- $\Longleftrightarrow \sigma^{N}(\underline{x})=0000000 \ldots$ or $\sigma^{N}(\underline{x})=1111111 \ldots$
h is well-defined, case 2
- $f^{N}(x)=p_{f}$
- $h_{f}(\underline{x})=x$
- $\Longleftrightarrow \sigma^{N}(\underline{x})=0000000 \ldots$ or $\sigma^{N}(\underline{x})=1111111 \ldots$
- otherwise

$$
f^{n}(x)=p \in \Delta_{01} \cup \Delta_{10}
$$

for some $n \geq N$
h is well-defined, case 2

- $f^{N}(x)=p_{f}$
- $h_{f}(\underline{x})=x$
- $\Longleftrightarrow \sigma^{N}(\underline{x})=0000000 \ldots$ or $\sigma^{N}(\underline{x})=1111111 \ldots$
- otherwise

$$
f^{n}(x)=p \in \Delta_{01} \cup \Delta_{10}
$$

for some $n \geq N \rightarrow$ contradiction

h is well defined, case 2

proof
proof
h is well defined, case 2

- $h_{f}(\underline{x})=h_{f}(\underline{y})=x$ with $\underline{x} \neq \underline{y}$
h is well defined, case 2
- $h_{f}(\underline{x})=h_{f}(\underline{y})=x$ with $\underline{x} \neq \underline{y}$
- $N \geq 0$ the first such that $f^{N}(x)=p$

proof

h is well defined, case 2

- $h_{f}(\underline{x})=h_{f}(\underline{y})=x$ with $\underline{x} \neq \underline{y}$
- $N \geq 0$ the first such that $f^{N}(x)=p$
- $\Rightarrow x_{n}=0$ and $y_{n}=1$ for all $n \geq N$

proof

h is well defined, case 2

- $h_{f}(\underline{x})=h_{f}(\underline{y})=x$ with $\underline{x} \neq \underline{y}$
- $N \geq 0$ the first such that $f^{N}(x)=p$
- $\Rightarrow x_{n}=0$ and $y_{n}=1$ for all $n \geq N$
- $x_{N-1}=1$ and $y_{N-1}=0$

proof

h is well defined, case 2

- $h_{f}(\underline{x})=h_{f}(\underline{y})=x$ with $\underline{x} \neq \underline{y}$
- $N \geq 0$ the first such that $f^{N}(x)=p$
- $\Rightarrow x_{n}=0$ and $y_{n}=1$ for all $n \geq N$
- $x_{N-1}=1$ and $y_{N-1}=0$
- $x_{n}=y_{n}$ for all $n \leq N-2$

h is well defined, case 2

h is well defined, case 2

- let us show $h_{g}(\underline{x})=h_{g}(\underline{y})$

h is well defined, case 2

- let us show $h_{g}(\underline{x})=h_{g}(\underline{y})$
- $h_{g}(\underline{x}) \in \Delta_{X_{0} \ldots x_{N-2} 10000 \ldots}^{g}$

proof

h is well defined, case 2

- let us show $h_{g}(\underline{x})=h_{g}(\underline{y})$
- $h_{g}(\underline{x}) \in \Delta_{x_{0} \ldots x_{N-2} 10000 \ldots}^{g}$
- $h_{g}(\underline{y}) \in \Delta_{x_{0} \ldots x_{N-2} 011111 \ldots}^{g}$

proof

h is well defined, case 2

- let us show $h_{g}(\underline{x})=h_{g}(\underline{y})$
- $h_{g}(\underline{x}) \in \Delta_{x_{0} \ldots x_{N-2} 10000 \ldots}^{g}$
- $h_{g}(\underline{y}) \in \Delta_{x_{0} \ldots x_{N-2} 011111 \ldots}^{g}$
- $\Rightarrow h_{g}(\underline{x}), h_{g}(\underline{y}) \in \Delta_{x_{1} \ldots x_{N-2}}=\left[a_{N-2}, b_{N-2}\right]$

proof

h is well defined, case 2

- let us show $h_{g}(\underline{x})=h_{g}(\underline{y})$
- $h_{g}(\underline{x}) \in \Delta_{X_{0} \ldots x_{N-2} 10000 \ldots}^{g}$
- $h_{g}(\underline{y}) \in \Delta_{x_{0}, \ldots x_{N-2} 011111 \ldots}^{g}$
- $\Rightarrow h_{g}(\underline{x}), h_{g}(\underline{y}) \in \Delta_{x_{1} \ldots x_{N-2}}=\left[a_{N-2}, b_{N-2}\right]$
- g^{N-1} is injective in $\left(a_{N-2}, b_{N-2}\right)$

proof

h is well defined, case 2

- let us show $h_{g}(\underline{x})=h_{g}(\underline{y})$
- $h_{g}(\underline{x}) \in \Delta_{X_{0} \ldots x_{N-2} 10000 \ldots}^{g}$
- $h_{g}(\underline{y}) \in \Delta_{x_{0} \ldots x_{N-2} 011111 \ldots}^{g}$
- $\Rightarrow h_{g}(\underline{x}), h_{g}(\underline{y}) \in \Delta_{x_{1} \ldots x_{N-2}}=\left[a_{N-2}, b_{N-2}\right]$
- g^{N-1} is injective in $\left(a_{N-2}, b_{N-2}\right)$
- \exists ! $r \in\left(a_{N-2}, b_{N-2}\right)$ such that $g^{N-1}(r)=q_{g}$

proof

h is well defined, case 2

- let us show $h_{g}(\underline{x})=h_{g}(\underline{y})$
- $h_{g}(\underline{x}) \in \Delta_{X_{0} \ldots x_{N-2} 10000 \ldots}^{g}$
- $h_{g}(\underline{y}) \in \Delta_{x_{0}, \ldots x_{N-2} 011111 \ldots}^{g}$
- $\Rightarrow h_{g}(\underline{x}), h_{g}(\underline{y}) \in \Delta_{x_{1} \ldots x_{N-2}}=\left[a_{N-2}, b_{N-2}\right]$
- g^{N-1} is injective in $\left(a_{N-2}, b_{N-2}\right)$
- \exists ! $r \in\left(a_{N-2}, b_{N-2}\right)$ such that $g^{N-1}(r)=q_{g}$
- $h_{g}(\underline{x}) \in\left[r, b_{N-2}\right]$ and $h_{g}(\underline{y}) \in\left[a_{N-2}, r\right]$

h is well defined, case 2

h is well defined, case 2

- $h_{g}(\underline{x}) \in\left[r, b_{N-2}\right] \cap \bigcap_{n \geq N} g^{-N}\left(\Delta_{0}\right)$
h is well defined, case 2
- $h_{g}(\underline{x}) \in\left[r, b_{N-2}\right] \cap \bigcap_{n \geq N} g^{-N}\left(\Delta_{0}\right)=r$

proof

h is well defined, case 2

- $h_{g}(\underline{x}) \in\left[r, b_{N-2}\right] \cap \bigcap_{n \geq N} g^{-N}\left(\Delta_{0}\right)=r$
- $h_{g}(\underline{y}) \in\left[a_{N / 2}, r\right] \cap \bigcap_{n \geq N} g^{-N}\left(\Delta_{1}\right)$

proof

h is well defined, case 2

- $h_{g}(\underline{x}) \in\left[r, b_{N-2}\right] \cap \bigcap_{n \geq N} g^{-N}\left(\Delta_{0}\right)=r$
- $h_{g}(\underline{y}) \in\left[a_{N / 2}, r\right] \cap \cap_{n \geq N} g^{-N}\left(\Delta_{1}\right)=r$

proof

h is well defined, case 2

- $h_{g}(\underline{x}) \in\left[r, b_{N-2}\right] \cap \bigcap_{n \geq N} g^{-N}\left(\Delta_{0}\right)=r$
- $h_{g}(\underline{y}) \in\left[a_{N / 2}, r\right] \cap \cap_{n \geq N} g^{-N}\left(\Delta_{1}\right)=r$
- $\Rightarrow h$ is well-defined.

h is continuous

h is continuous

- let x be such that $f^{n}(x) \neq p_{f}$ for all $n \geq 0$

proof

h is continuous

- let x be such that $f^{n}(x) \neq p_{f}$ for all $n \geq 0$
- take $N>0$ such that $d(\underline{x}, \underline{y})<\frac{1}{3^{N}} \Rightarrow d\left(h_{g}(\underline{x}), h_{g}(\underline{y})\right)<\varepsilon$

proof

h is continuous

- let x be such that $f^{n}(x) \neq p_{f}$ for all $n \geq 0$
- take $N>0$ such that $d(\underline{x}, \underline{y})<\frac{1}{3^{N}} \Rightarrow d\left(h_{g}(\underline{x}), h_{g}(\underline{y})\right)<\varepsilon$
- $x=\bigcap_{n=0}^{\infty} f^{-n}\left(\Delta_{X_{n}}\right)$ is in the interior of $\bigcap_{n=0}^{N} f^{-n}\left(\Delta_{x_{n}}\right)$

proof

h is continuous

- let x be such that $f^{n}(x) \neq p_{f}$ for all $n \geq 0$
- take $N>0$ such that $d(\underline{x}, \underline{y})<\frac{1}{3^{N}} \Rightarrow d\left(h_{g}(\underline{x}), h_{g}(\underline{y})\right)<\varepsilon$
- $x=\bigcap_{n=0}^{\infty} f^{-n}\left(\Delta_{x_{n}}\right)$ is in the interior of $\bigcap_{n=0}^{N} f^{-n}\left(\Delta_{x_{n}}\right)$
- \Rightarrow there is $\delta>0$ such that $d(x, y)<\delta \Rightarrow d(h(x), h(y))<\varepsilon$

h is continuous

h is continuous

- let x be such that $f^{K}(x)=p_{f}$ for some $K>0$

h is continuous

- let x be such that $f^{K}(x)=p_{f}$ for some $K>0$
- $\Rightarrow h_{f}^{-1}(x)=\{\underline{x}, \underline{y}\}$ such that

proof

h is continuous

- let x be such that $f^{K}(x)=p_{f}$ for some $K>0$
- $\Rightarrow h_{f}^{-1}(x)=\{\underline{x}, \underline{y}\}$ such that
- $\underline{x}=x_{0} \ldots x_{K-2} 011111 \ldots$ and $\underline{y}=x_{0} \ldots x_{K-2} 100000 \ldots$

proof

h is continuous

- let x be such that $f^{K}(x)=p_{f}$ for some $K>0$
- $\Rightarrow h_{f}^{-1}(x)=\{\underline{x}, \underline{y}\}$ such that
- $\underline{x}=x_{0} \ldots x_{K-2} 011111 \ldots$ and $\underline{y}=x_{0} \ldots x_{K-2} 100000 \ldots$
- take $\varepsilon>0$ and $N>0$ and take $y>x$

proof

h is continuous

- let x be such that $f^{K}(x)=p_{f}$ for some $K>0$
- $\Rightarrow h_{f}^{-1}(x)=\{\underline{x}, \underline{y}\}$ such that
- $\underline{x}=x_{0} \ldots x_{K-2} 011111 \ldots$ and $\underline{y}=x_{0} \ldots x_{K-2} 100000 \ldots$
- take $\varepsilon>0$ and $N>0$ and take $y>x$
- if $y \in \Delta_{x_{0} \ldots x_{K-2} 1000}$ (with N subsymbols)

proof

h is continuous

- let x be such that $f^{K}(x)=p_{f}$ for some $K>0$
- $\Rightarrow h_{f}^{-1}(x)=\{\underline{x}, \underline{y}\}$ such that
- $\underline{x}=x_{0} \ldots x_{K-2} 011111 \ldots$ and $\underline{y}=x_{0} \ldots x_{K-2} 100000 \ldots$
- take $\varepsilon>0$ and $N>0$ and take $y>x$
- if $y \in \Delta_{x_{0} \ldots x_{K-2} 1000}$ (with N subsymbols)
- then $d(h(x), h(y))<\varepsilon$

h is continuous

h is continuous

- analogously, we take $y<x$
h is continuous
- analogously, we take $y<x$
- if $y \in \Delta_{X_{0} \ldots x_{K-2} 011111}$ (with N subsymbols)

proof

h is continuous

- analogously, we take $y<x$
- if $y \in \Delta_{x_{0} \ldots x_{K-2} 011111}$ (with N subsymbols)
- then $d\left(h_{f}^{-1}(y), \underline{y}\right)<\frac{1}{3^{N}}$ and then

proof

h is continuous

- analogously, we take $y<x$
- if $y \in \Delta_{x_{0} \ldots x_{K-2} 011111}$ (with N subsymbols)
- then $d\left(h_{f}^{-1}(y), \underline{y}\right)<\frac{1}{3^{N}}$ and then
- $d(h(y), h(x))=d\left(h_{g}\left(h_{f}^{-1}(y)\right), h_{g}(\underline{y})\right)<\varepsilon$

conclusion

- it is easy to see that h^{-1} is well defined and continuous.
- it is easy to see that h^{-1} is well defined and continuous.
- and

$$
h \circ f=
$$

- it is easy to see that h^{-1} is well defined and continuous.
- and

$$
h \circ f=h_{g} \circ h_{f}^{-1} \circ f=
$$

proof

conclusion

- it is easy to see that h^{-1} is well defined and continuous.
- and

$$
h \circ f=h_{g} \circ h_{f}^{-1} \circ f=h_{g} \circ \sigma \circ h_{f}^{-1}=
$$

proof

conclusion

- it is easy to see that h^{-1} is well defined and continuous.
- and

$$
h \circ f=h_{g} \circ h_{f}^{-1} \circ f=h_{g} \circ \sigma \circ h_{f}^{-1}=g \circ h_{g} \circ h_{f}^{-1}=
$$

proof

conclusion

- it is easy to see that h^{-1} is well defined and continuous.
- and

$$
h \circ f=h_{g} \circ h_{f}^{-1} \circ f=h_{g} \circ \sigma \circ h_{f}^{-1}=g \circ h_{g} \circ h_{f}^{-1}=g \circ h
$$

proof

conclusion

- it is easy to see that h^{-1} is well defined and continuous.
- and

$$
h \circ f=h_{g} \circ h_{f}^{-1} \circ f=h_{g} \circ \sigma \circ h_{f}^{-1}=g \circ h_{g} \circ h_{f}^{-1}=g \circ h
$$

