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⇒ ∃ hf ,hg : Σ+

2 → S1 semiconjugacies
such that

1 f ◦ hf = hf ◦ σ
2 g ◦ hg = hg ◦ σ
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f n(x) = p ∈ ∆01 ∪∆10

for some n ≥ N
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hg(x) ∈ [r ,bN−2] and hg(y) ∈ [aN−2, r ]
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let x be such that f n(x) 6= pf for all n ≥ 0
take N > 0 such that d(x , y) < 1

3N ⇒ d(hg(x),hg(y)) < ε

x =
⋂∞

n=0 f−n(∆xn ) is in the interior of
⋂N

n=0 f−n(∆xn )

⇒ there is δ > 0 such that d(x , y) < δ ⇒ d(h(x),h(y)) < ε
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h is continuous

let x be such that f K (x) = pf for some K > 0
⇒ h−1

f (x) = {x , y} such that
x = x0 . . . xK−2011111 . . . and y = x0 . . . xK−2100000 . . .
take ε > 0 and N > 0 and take y > x
if y ∈ ∆x0...xK−21000 (with N subsymbols)
then d(h(x),h(y)) < ε
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f (y), y) < 1

3N and then

d(h(y),h(x)) = d(hg(h−1
f (y)),hg(y)) < ε
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conclusion

it is easy to see that h−1 is well defined and continuous.
and

h ◦ f =

hg ◦ h−1
f ◦ f = hg ◦ σ ◦ h−1

f = g ◦ hg ◦ h−1
f = g ◦ h



coding classification

proof

proof

conclusion
it is easy to see that h−1 is well defined and continuous.

and

h ◦ f =

hg ◦ h−1
f ◦ f = hg ◦ σ ◦ h−1

f = g ◦ hg ◦ h−1
f = g ◦ h



coding classification

proof

proof

conclusion
it is easy to see that h−1 is well defined and continuous.
and

h ◦ f =

hg ◦ h−1
f ◦ f = hg ◦ σ ◦ h−1

f = g ◦ hg ◦ h−1
f = g ◦ h



coding classification

proof

proof

conclusion
it is easy to see that h−1 is well defined and continuous.
and

h ◦ f = hg ◦ h−1
f ◦ f =

hg ◦ σ ◦ h−1
f = g ◦ hg ◦ h−1

f = g ◦ h



coding classification

proof

proof

conclusion
it is easy to see that h−1 is well defined and continuous.
and

h ◦ f = hg ◦ h−1
f ◦ f = hg ◦ σ ◦ h−1

f =

g ◦ hg ◦ h−1
f = g ◦ h



coding classification

proof

proof

conclusion
it is easy to see that h−1 is well defined and continuous.
and

h ◦ f = hg ◦ h−1
f ◦ f = hg ◦ σ ◦ h−1

f = g ◦ hg ◦ h−1
f =

g ◦ h



coding classification

proof

proof

conclusion
it is easy to see that h−1 is well defined and continuous.
and

h ◦ f = hg ◦ h−1
f ◦ f = hg ◦ σ ◦ h−1

f = g ◦ hg ◦ h−1
f = g ◦ h



coding classification

proof

proof

conclusion
it is easy to see that h−1 is well defined and continuous.
and

h ◦ f = hg ◦ h−1
f ◦ f = hg ◦ σ ◦ h−1

f = g ◦ hg ◦ h−1
f = g ◦ h


	coding
	semiconjugacy
	points of non-injectivity

	classification
	theorem
	classification
	proof


