A little bit more about ergodicity

Jana Rodriguez Hertz

ICTP

2018

mark and recapture

mark and recapture

mark and recapture

- ecology
- epidemiology

mark and recapture

- ecology
- epidemiology

mark and recapture

- ecology
- epidemiology

estimate populations

- tag them

counting fish

procedure

- capture 1000 fishes
- tag them
- release them

assumptions

implicit hypotheses

• fish amount or measure is not altered

assumptions

implicit hypotheses

- fish amount or measure is not altered
- tagged fish move around the lake and come back

assumptions

implicit hypotheses

- fish amount or measure is not altered
- tagged fish move around the lake and come back
- tagged and non-tagged fish get well mixed

possible failure 1

possibility 1

preservation of the measure

measure preserving process

• $f: L \rightarrow L$ process where

preservation of the measure

measure preserving process

- $f: L \rightarrow L$ process where
- for any sample $A \subset L$

preservation of the measure

measure preserving process

- $f: L \rightarrow L$ process where
- for any sample $A \subset L$
- we have

$$m(f(A)) = m(A)$$

possible failure 2

possible failure 2 - trace

possibility 2 - trace

possibility 3

possibility 3

possibility 3 - trace

mixing lake population

possibility 4

mixing lake population

mixing lake population

mixing lake population

mixing property

 \bullet $f: L \rightarrow L$ is mixing

mixing property

- $f: L \rightarrow L$ is mixing
- ullet if every pair of samples $A,B\subset L$ satisfy

mixing property

- $f: L \rightarrow L$ is mixing
- if every pair of samples $A, B \subset L$ satisfy

0

$$m(A \cap f^n(B)) \to m(A)m(B)$$

in our context

• if the lake population is mixing

in our context

- if the lake population is mixing
- $A \subset L$ initial sample

mixing property

in our context

- if the lake population is mixing
- $A \subset L$ initial sample

•

$$\frac{m(A\cap f^n(A))}{m(A)}$$

mixing property

in our context

- if the lake population is mixing
- $A \subset L$ initial sample

0

$$\frac{m(A\cap f^n(A))}{m(A)}\to m(A)$$

mixing lake population

mixing property

mixing property

mixing property

mixing property

1

mark and recapture method works

mixing property

NO mixing property

7

mark and recapture method works

possibility 3

possibility 3

possibility 3

possibility 3 - trace

possibility 3

possibility 3

in this example

$$\exists \lim \frac{m(A \cap f^n(A))}{m(A)}$$

what about this:

$$\frac{1}{N}\sum_{n=0}^{N-1}\frac{m(A\cap f^n(A))}{m(A)}\to ?$$

ergodicity (exercise)

• $f: L \rightarrow L$ is ergoodic

ergodicity (exercise)

- $f: L \rightarrow L$ is ergoodic
- ullet if every pair of samples $A,B\subset L$ satisfy

ergodicity (exercise)

- $f: L \rightarrow L$ is ergoodic
- ullet if every pair of samples $A,B\subset L$ satisfy

•

$$\frac{1}{N}\sum_{n=0}^{N-1}m(A\cap f^n(B))\to m(A)m(B)$$

in our context

• if the lake population is ergodic

in our context

- if the lake population is ergodic
- $A \subset L$ initial sample

in our context

- if the lake population is ergodic
- $A \subset L$ initial sample

•

$$\frac{1}{N}\sum_{n=0}^{N-1}\frac{m(A\cap f^n(A))}{m(A)}$$

in our context

- if the lake population is ergodic
- $A \subset L$ initial sample

•

$$\frac{1}{N}\sum_{n=0}^{N-1}\frac{m(A\cap f^n(A))}{m(A)}\to m(A)$$

$$\frac{1}{N}\sum_{n=0}^{N-1}\frac{m(A\cap f^n(A))}{m(A)}\to m(A)$$

$$\frac{1}{N}\sum_{n=0}^{N-1}\frac{m(A\cap f^n(A))}{m(A)}\to m(A)$$

$$\frac{1}{N}\sum_{n=0}^{N-1}\frac{m(A\cap f^n(A))}{m(A)}\to m(A)$$

$$\frac{1}{N}\sum_{n=0}^{N-1}\frac{m(A\cap f^n(A))}{m(A)}\to m(A)$$

$$\frac{1}{N}\sum_{n=0}^{N-1}\frac{m(A\cap f^n(A))}{m(A)}\to m(A)$$

$$\frac{1}{N}\sum_{n=0}^{N-1}\frac{m(A\cap f^n(A))}{m(A)}\to m(A)$$

$$\frac{1}{N}\sum_{n=0}^{N-1}\frac{m(A\cap f^n(A))}{m(A)}\to m(A)$$

$$\frac{1}{N}\sum_{n=0}^{N-1}\frac{m(A\cap f^n(A))}{m(A)}\to m(A)$$

$$\frac{1}{N}\sum_{n=0}^{N-1}\frac{m(A\cap f^n(A))}{m(A)}\to m(A)$$

$$\frac{1}{N}\sum_{n=0}^{N-1}\frac{m(A\cap f^n(A))}{m(A)}\to m(A)$$

exercise

exercise

exercise

exercise

■ show that f ergodic ⇔

exercise

exercise

■ show that f ergodic ⇔

0

$$m\left(\bigcup_{n\geq 0}f^n(A)\right)=1 \quad \forall A \text{ s.t. } m(A)>0$$

fragility of ergodicity

irrational traslation on \mathbb{T}^2

fragility of ergodicity

rational traslation on \mathbb{T}^2

stable ergodicity

stable ergodicity

stable ergodicity

stable ergodicity

• f is stably ergodic

```
      stable ergodicity

      • f is stably ergodic

      • if
      g \sim f \Rightarrow g ergodic
```

open problem

open problem

stably ergodic \Rightarrow mixing?

thank you

thank you

thank you!