RECAP OF MEASURE THEORY

EXERCISE 1

(1) Let
$$X = \mathbb{N}$$
 and let $\mathcal{A} = \{A \subset X : A \text{ or } A^c \text{ is finite}\}$. Define

$$\mu(A) = \begin{cases} 1 & \text{if } A^c \text{ is finite} \\ 0 & \text{if } A \text{ is finite} \end{cases}.$$

Is \mathcal{A} an algebra? Is \mathcal{A} a σ -algebra? Is this function additive? Is it countable additive?

EXERCISE 2

- (1) Show that there are subsets of \mathbb{R} which are not Lebesgue measurable (hint: consider an irrational circle rotation, choose a single point on each distinct orbit)
- (2) Show that there are Lebesgue measurable sets which are not Borel measurable (hint: recall the Cantor function, modify it to make it invertible, consider some preimage)