RECAP OF MEASURE THEORY

Exercise 1

(1) Let $X=\mathbb{N}$ and let $\mathcal{A}=\left\{A \subset X: A\right.$ or A^{c} is finite $\}$. Define

$$
\mu(A)=\left\{\begin{array}{ll}
1 & \text { if } A^{c} \text { is finite } \\
0 & \text { if } A \text { is finite }
\end{array} .\right.
$$

Is \mathcal{A} an algebra? Is \mathcal{A} a σ-algebra? Is this function additive? Is it countable additive?

Exercise 2

(1) Show that there are subsets of \mathbb{R} which are not Lebesgue measurable (hint: consider an irrational circle rotation, choose a single point on each distinct orbit)
(2) Show that there are Lebesgue measurable sets which are not Borel measurable (hint: recall the Cantor function, modify it to make it invertible, consider some preimage)

