Introduction to Ergodic Theory Lecture I – Crash course in measure theory

Oliver Butterley, Irene Pasquinelli, Stefano Luzzatto, Lucia Simonelli, Davide Ravotti

Summer School in Dynamics – ICTP – 2018

Why do we care about measure theory?

- Dynamical system $T: X \to X$
- What can we say about typical orbits?
- Push forward on measures $T_*\lambda(A) = \lambda(T^{-1}A)$ for $A \subset X$?

The goal?

Associate to every subset $A \subset \mathbb{R}^n$ a non-negative number $\lambda(A)$ with the following reasonable properties

•
$$\lambda((0,1)^n) = 1$$

•
$$\lambda(\bigcup_k A_k) = \sum_k \lambda(A_k)$$
 when A_k are pairwise disjoint

•
$$\lambda(A) \leq \lambda(B)$$
 when $A \subseteq B$

$$\quad \quad \lambda(x+A) = \lambda(A)$$

Why isn't this possible? What's the best that can be done? What happens when we drop some requirements?

Definition

A collection A of subsets of a space X is called an *algebra* σ -*algebra* of subsets if

- $\bullet \ \emptyset \in \mathcal{A}$
- \mathcal{A} is closed under complements, i.e., $\mathcal{A}^c = X \setminus \mathcal{A} \in \mathcal{A}$ whenever $\mathcal{A} \in \mathcal{A}$
- \mathcal{A} is closed under finite unions, i.e., $\bigcup_{k=1}^{N} A_k \in \mathcal{A}$ whenever $A_1, \ldots, A_N \in \mathcal{A}$ and \mathcal{A} is closed under countable unions, i.e., $\bigcup_{k=1}^{\infty} A_k \in \mathcal{A}$ whenever $A_1, A_2 \ldots \in \mathcal{A}$

Definition

If S a collection of subsets of X, we denote by $\sigma(S)$ the smallest σ -algebra which contains S.

Example

Let $X = \mathbb{R}$ and let \mathcal{A} denote the collection of all finite unions of subintervals

Example

Let $X = \mathbb{R}$ and let \mathcal{A} denote the collection of all subsets of \mathbb{R}

Definition

Let X be any topological space. The Borel σ -algebra is defined to be the smallest σ -algebra which contains all open subsets of X

Definition

A measurable space (X, \mathcal{A}) is a space X together with a σ -algebra \mathcal{A} of subsets

Definition

Let (X, \mathcal{A}) be a measurable space. A *measure* μ is a function $\mu : \mathcal{A} \to [0, \infty]$ such that

• If $A_1, A_2 \ldots \in \mathcal{A}$ is a countable collection of pairwise disjoint measurable sets then

$$u\left(\bigcup_{k=1}^{\infty}A_k\right)=\sum_{k=1}^{\infty}\mu(A_k)$$

Definition

If $\mu(X) < \infty$ the measure is said to be *finite*. If $\mu(X) = 1$ the measure is said to be a *probability measure*.

Example

Let $X = \mathbb{R}$. The *delta*-measure at a point $a \in \mathbb{R}$ is defined as

$$\delta_a(A) = egin{cases} 1 & ext{if } a \in A \ 0 & ext{otherwise} \end{cases}$$

Translation invariant?

Definition

A measure space is said to be *complete* if every subset of any zero measure set is measurable

Definition

If $A \subset \mathbb{R}$ we define *outer measure* to be the quantity

$$\lambda^*(A) := \inf \left\{ \sum_{k=1}^{\infty} (b_k - a_k) : \{I_k = (a_k, b_k)\}_k \text{ is a set of intervals which covers } A
ight\}$$

Definition

A set $A \subset \mathbb{R}$ is said to be *Lebesgue measurable* if, for every $E \subset \mathbb{R}$,

$$\lambda^*(E) = \lambda^*(E \cap A) + \lambda * (E \setminus A)$$

Definition

For any Lebesgue measurable set $A \subset \mathbb{R}$ we define the lebesgue measure $\lambda(A) = \lambda^*(A)$

Exercise A

1 Let $X = \mathbb{N}$ and let $\mathcal{A} = \{A \subset X : A \text{ or } A^c \text{ is finite}\}$. Define

$$\mu(A) = egin{cases} 1 & ext{if } A^c ext{ is finite} \ 0 & ext{if } A ext{ is finite} \end{cases}$$

Is this function additive? Is it countable additive?

2 Show that the collection of Lebesgue measurable sets is a σ -algebra

Theorem (Caratéodory extension)

Let \mathcal{A} be an algebra of subsets of X. If $\mu^* : \mathcal{A} \to [0,1]$ satisfies

- $\mu^*(\emptyset) = 0$, $\mu^*(X) < \infty$
- If $A_1, A_2 \ldots \in A$ is a countable collection of pairwise disjoint measurable sets and $\bigcup_{k=1}^{\infty} A_k \in A$ then

$$\iota^*\left(\bigcup_{k=1}^{\infty}A_k\right)=\sum_{k=1}^{\infty}\mu*(A_k).$$

Then there exists a unique measure $\mu : \mathcal{A} \to [0, \infty)$ on $\sigma(\mathcal{A})$ the σ -algebra generated by \mathcal{A} which extends μ^* .

Exercise B

- **I** Show that there are subsets of \mathbb{R} which are not Lebesgue measurable (hint: consider an irrational circle rotation, choose a single point on each distinct orbit)
- 2 Show that there are Lebesgue measurable sets which are not Borel measurable (hint: recall the Cantor function, modify it to make it invertible, consider some preimage)