1.1 Measure preserving transformations

In this section we present the definition and many examples of measure-preserving transformations. Let (X, \mathscr{B}, μ) be a measure space. For the ergodic theory part of our course, we will use the notation $T: X \rightarrow X$ for the map giving a discrete dynamical system, instead than $f: X \rightarrow X$ (T stands for transformation). This is because we will use the letter f for functions $f: X \rightarrow \mathbb{R}$ (which will play the role of observables).

Definition 1.1.1. A transformation $T: X \rightarrow X$ is measurable, if for any measurable set $A \in \mathscr{B}$ the preimage is again measurable, that is $T^{-1}(A) \in \mathscr{B}$.

One can show that if (X, d) is a metric space, $\mathscr{B}=\mathscr{B}(X)$ is the Borel σ-algebra and $T: X \rightarrow X$ is continuous, than in particular T is measurable. All the transformations we will consider will be measurable.
[Even if not explicitly stated, when in the context of ergodic theory we consider a transformation $T: X \rightarrow X$ on a measurable space (X, \mathscr{B}) we implicitly assume that it is measurable.]

Definition 1.1.2. A transformation $T: X \rightarrow X$ is measure-preserving if it is measurable and if for all measurable sets

$$
\begin{equation*}
\mu\left(T^{-1}(A)\right)=\mu(A), \quad \text { for all } A \in \mathscr{B} \tag{1.1}
\end{equation*}
$$

We also say that the transformation T preserves μ.
If μ satisfies (1.1), we say that the measure μ is invariant under the transformation T.
Notice that in (1.1) one uses T^{-1} and not T. This is essential if T is not invertible, as it can be seen in Example 1.1.1 below (on the other hand, one could alternatively use forward images if T is invertible, see Remark 1.1.2 below). Notice also that we need to assume that T is measurable to guarantee that $T^{-1}(A)$ is measurable, so that we can consider $\mu\left(T^{-1}(A)\right)$ (recall that a measure is defined only on measurable sets).

We will see many examples of measure-preserving transformations both in this lecture and in the next ones.

Remark 1.1.1. Let T be measurable. Let us define $T_{*} \mu: \mathscr{B} \rightarrow \mathbb{R}^{+} \cup\{+\infty\}$ by

$$
T_{*} \mu(A)=\mu\left(T^{-1}(A)\right), \quad A \in \mathscr{B} .
$$

One can check that $T_{*} \mu$ is a measure. The measure $T_{*} \mu$ is called push-forward of μ with respect to T. Equivalently, T is measure-preserving if and only if $T_{*} \mu=\mu$.

Exercise 1.1.1. Verify that if μ is a measure on the measurable space (X, \mathscr{B}) and T is a measurable transformation, the push-forward $T_{*} \mu$ is a measure on (X, \mathscr{B}).

Thanks to the extension theorem, to prove that a measure is invariant, it is not necessary to check the measure-preserving relation (1.1) for all measurable sets $A \in \mathscr{B}$, but it is enough to check it for a smaller class of subsets:

Lemma 1.1.1. If the σ-algebra \mathscr{B} is generated by an algebra \mathscr{A} (that is, $\mathscr{B}=\mathscr{B}(\mathscr{A})$), then μ is preserved by T if and only if

$$
\begin{equation*}
\mu\left(T^{-1}(A)\right)=\mu(A), \quad \text { for all } A \in \mathscr{A} \tag{1.2}
\end{equation*}
$$

that is, it is enough to check the measure preserving relation for the elements on the generating algebra \mathscr{A} and then it automatically holds for all elements of $\mathscr{B}(\mathscr{A})$.

Proof. Consider the two measures μ and $T_{*} \mu$. If (1.2) holds, then μ and $T_{*} \mu$ are equal on the algebra \mathscr{A}. Moreover, both of them satisfy the assumptions of the Extension theorem, since they are measures. The uniqueness part of the Extension theorem states that there is a unique measure that extends their common values on the algebra. Thus, since μ and $T_{*} \mu$ are both measures that extend the same values on the algebra, by uniqueness they must coincide. Thus, $\mu=T_{*} \mu$, which means that T is measure-preserving. The converse is trivial: if μ and $T_{*} \mu$ are equal on elements of $\mathscr{B}(\mathscr{A})$, in particular they coincide on \mathscr{A}.

As a consequence of this Lemma, to check that a transformation T is measure preserving, it is enough to check it for:
(\mathbb{R}) intervals $[a, b]$ if $X=\mathbb{R}$ or $X=I \subset \mathbb{R}$ is an interval and \mathscr{B} is the the Borel σ-algebra;
$\left(\mathbb{R}^{2}\right)$ rectangles $[a, b] \times[a, b]$ if $X=\mathbb{R}^{2}$ or $X=[0,1]^{2}$ and \mathscr{B} is the the Borel σ-algebra;
(S^{1}) arcs if $X=S^{1}$ with the Borel σ-algebra;
(Σ) cylinders $C_{-m, n}\left(a_{-m}, \ldots, a_{n}\right)$ if X is a shift space $X=\Sigma_{N}$ or $X=\Sigma_{A}$ and \mathscr{B} is the σ-algebra;
[This is because finite unions of the subsets above mentioned (intervals, rectangles, arcs, cylinders) form algebras of subsets. If one checks that $\mu=T_{*} \mu$ on these subsets, by additivity of a measure they coincide on the whole algebra of their finite unions. Thus, by the Lemma, μ and $T_{*} \mu$ coincide on the whole σ-algebra generated by them, which is in all cases the corresponding Borel σ-algebra.]

Examples of measure-preserving transformations

Example 1.1.1. [Doubling map] Consider $(X, \mathscr{B}, \lambda)$ where $X=[0,1]$ and λ is the Lebesgue measure on the Borel σ-algebra \mathscr{B} of X. Let $f(x)=2 x \bmod 1$ be the doubling map. Let us check that f preserves λ. Since

$$
f^{-1}[a, b]=\left[\frac{a}{2}, \frac{b}{2}\right] \cup\left[\frac{a+1}{2}, \frac{b+1}{2}\right],
$$

we have

$$
\lambda\left(f^{-1}[a, b]\right)=\frac{b-a}{2}+\frac{(b+1)-(a+1)}{2}=b-a=\lambda([a, b])
$$

so the relation (1.1) holds for all intervals. Since if $I=\cup_{i} I_{i}$ is a (finite or countable) union of disjoint intervals $I_{i}=\left[a_{i}, b_{i}\right]$, we have

$$
\lambda(I)=\sum_{i}\left|b_{i}-a_{i}\right|,
$$

one can check that $\lambda\left(f^{-1}(I)\right)=\lambda(I)$ holds also for all I which belong to the algebra of finite unions of intervals. Thus, by the extension theorem (see Lemma 1.1.1 and $\left(S^{1}\right)$), we have $\lambda\left(f^{-1}(B)\right)=\lambda(B)$ for all Borel measurable sets.

On the other hand check that $\lambda(f([a, b]))=2 \lambda([a, b])$, so $\lambda(f([a, b])) \neq \lambda([a, b])$. This shows the importance of using T^{-1} and not T in the definition of measure preserving.

Example 1.1.2. [Rotations] Let $R_{\alpha}: S^{1} \rightarrow S^{1}$ be a rotation. Let λ be the Lebesgue measure on the circle, which is the same than the 1 -dimensional Lebesgue measure on $[0,1]$ under the identification of S^{1} with $[0,1] / \sim$. The measure $\lambda(A)$ of an arc is then given by the arc length divided by 2π, so that $\lambda\left(S^{1}\right)=1$.

Remark that if R_{α} is the counterclockwise rotation by $2 \pi \alpha$, than $R_{\alpha}^{-1}=R_{-\alpha}$ is the clockwise rotation by $2 \pi \alpha$. If A is an arc, it is clear that the image of the arc under the rotation has the same arc length, so

$$
\lambda\left(R_{\alpha}^{-1}(A)\right)=\lambda(A), \quad \text { for all } \operatorname{arcs} \quad A \subset S^{1}
$$

Thus, by the Extension theorem (see $\left(S^{1}\right)$ above), we have $\left(R_{\alpha}\right)_{*} \lambda=\lambda$, that is R_{α} is measure preserving.

In this Example, one can see that we also have $\lambda\left(R_{\alpha}(A)\right)=\lambda\left(R_{\alpha}^{-1}(A)\right)=\lambda(A)$. This is the case more in general for invertible transformations:

Remark 1.1.2. Suppose T is invertible with T^{-1} measurable. Then T preserves μ if and only if

$$
\begin{equation*}
\mu(T A)=\mu(A), \quad \text { for all measurable sets } A \in \mathscr{B} \tag{1.3}
\end{equation*}
$$

Exercise 1.1.2. Prove the remark, by first showing that if T is invertible (injective and surjective) one has

$$
T\left(T^{-1}(A)\right)=A, \quad T^{-1}(T(A))=A
$$

[Notice that this is false in general if T is not invertible. For any map T one has the inclusions

$$
T\left(T^{-1}(A)\right) \subset A, \quad A \subset T^{-1}(T(A))
$$

but you can give examples where the first inclusion can be strict if T is not surjective and the second inclusion $A \subset T^{-1}(T(A))$ is strict if T is not injective.]

In the next example, we will use the following:
Remark 1.1.3. Let (X, \mathscr{B}, μ) be a measure-space. If $T: X \rightarrow X$ and $S: X \rightarrow X$ both preserve the measure μ, than also their composition $T \circ S$ preserves the measure μ. Indeed, for each $A \in \mathscr{B}$, since $T^{-1}(A) \in \mathscr{B}$ since T is measurable. Then, using first that S is measure preserving and then that T is also measure preserving, we get

$$
\mu\left(S^{-1}\left(T^{-1}(A)\right)\right)=\mu\left(T^{-1}(A)\right)=\mu(A)
$$

Thus, $T \circ S$ is measure-preserving.
Example 1.1.3. [Toral automorphisms] Let $f_{A}: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ be a toral automorphism; A denotes the corresponding invertible integer matrix. Let us show that f_{A} preserves the 2 -dimensional Lebesgue measure λ on the torus. As usual be identify \mathbb{T}^{2} with the unit square $[0,1)^{2}$ with oposite sides identified. Since the set of all finite unions of rectangles in $[0,1)^{2}$ forms an algebra which generates the Borel σ-algebra of the metric space (\mathbb{T}^{2}, d), and since $f_{A}^{-1}=f_{A^{-1}}$ is measurable, it is sufficient to prove $\lambda\left(f_{A}(R)\right)=\lambda(R)$ for all rectangles $R \subset[0,1)^{2}$. The image of R under the linear transformation A is the parallelogram $A R$. Since $|\operatorname{det}(A)|=1, A R$ has the same area as A. The parallelogram $A R$ can be partitioned into finitely many disjoint polygons P_{j}, such that for each j we find an integer vector $\mathbf{m}_{\mathbf{j}} \in \mathbb{Z}^{2}$ with $P_{j}+\mathbf{m}_{\mathbf{j}} \in[0,1)^{2}$. Thus

$$
f_{A}(R)=\bigcup_{j}\left(P_{j}+\mathbf{m}_{\mathbf{j}}\right)
$$

Since f_{A} is invertible, the sets $P_{j}+\mathbf{m}_{\mathbf{j}}$ are pairwise disjoint, and hence

$$
\lambda\left(f_{A}(R)\right)=\sum_{j} \lambda\left(P_{j}+\mathbf{m}_{\mathbf{j}}\right)=\sum_{j} \lambda\left(P_{j}\right)=\lambda(R)
$$

which completes the proof. (In the second equality above we have used that translations preserve the Lebesgue measure λ.)

Example 1.1.4. [Gauss map]

Let $X=[0,1]$ with the Borel σ-algebra and let $G: X \rightarrow X$ be the Gauss map (see Figure 1.1). Recall that $G(0)=0$ and if $0<x \leq 1$ we have

$$
G(x)=\left\{\frac{1}{x}\right\}=\frac{1}{x}-n \quad \text { if } \quad x \in P_{n}=\left(\frac{1}{n+1}, \frac{1}{n}\right]
$$

Figure 1.1: The first branches of the graph of the Gauss map.
The Gauss measure μ is the measure defined by the density $\frac{1}{(1+x) \log 2}$, that is the measure that assigns to any interval $[a, b] \subset[0,1]$ the value

$$
\mu([a, b])=\frac{1}{\log 2} \int_{a}^{b} \frac{1}{1+x} \mathrm{~d} x
$$

By the Extension theorem, this defines a measure on all Borel sets. Since

$$
\int_{0}^{1} \frac{1}{1+x}=\left.\log (1+x)\right|_{0} ^{1}=\log 2-\log 1=\log 2
$$

the factor $\log 2$ in the density is such that $\mu([0,1])=1$, so the Gauss measure is a probability measure.
[The Gauss measure was discovered by Gauss who found that the correct density to consider to get invariance was indeed $1 /(1+x)$.]

Proposition 1. The Gauss map G preserves the Gauss measure μ, that is $G_{*} \mu=\mu$.
Proof. Consider first an interval $[a, b] \subset[0,1]$. Let us call G_{n} the branch of G which is given by restricting G to the interval P_{n}. Since each G_{n} is surjective and monotone, the preimage $G^{-1}([a, b])$ consists of countably many intervals, each of the form $G_{n}^{-1}([a, b])$ (see Figure 1.1). Let us compute $G_{n}^{-1}([a, b])$:

$$
\begin{aligned}
G_{n}^{-1}([a, b])=\left\{x \text { s.t. } G_{n}(x) \in[a, b]\right\} & =\left\{x \text { s.t. } a \leq \frac{1}{x}-n \leq b\right\} \\
& =\left\{x \text { s.t. } \frac{1}{b+n} \leq x \leq \frac{1}{a+n}\right\}=\left[\frac{1}{b+n}, \frac{1}{a+n}\right]
\end{aligned}
$$

Remark also that $G_{n}^{-1}([a, b])$ are clearly all disjoint. Thus, by countably additivity of a measure, we have

$$
\begin{aligned}
\mu\left(G^{-1}([a, b])\right) & =\mu\left(\bigcup_{n=1}^{\infty} G_{n}^{-1}([a, b])\right)=\mu\left(\bigcup_{n=1}^{\infty}\left[\frac{1}{b+n}, \frac{1}{a+n}\right]\right)=\sum_{n=1}^{\infty} \mu\left(\left[\frac{1}{b+n}, \frac{1}{a+n}\right]\right) \\
& =\sum_{n=1}^{\infty} \int_{\frac{1}{b+n}}^{\frac{1}{a+n}} \frac{1}{\log 2} \frac{\mathrm{~d} x}{(1+x)}=\frac{1}{\log 2} \sum_{n=1}^{\infty}\left(\log \left(1+\frac{1}{a+n}\right)-\log \left(1+\frac{1}{b+n}\right)\right) \\
& =\frac{1}{\log 2} \sum_{n=1}^{\infty}\left(\log \left(\frac{1+a+n}{a+n}\right)-\log \left(\frac{1+b+n}{b+n}\right)\right) .
\end{aligned}
$$

By definition, the sum of the series is the limit of its partial sums and we have that

$$
\sum_{n=1}^{N} \log \left(\frac{1+a+n}{a+n}\right)=\sum_{n=1}^{N} \log (1+a+n)-\log (a+n)
$$

Remark that the sum is a telescopic sum in which consecutive terms cancel each other (write a few to be convinced), so that

$$
\sum_{n=1}^{N}(\log (1+a+n)-\log (a+n))=-\log (a+1)+\log (1+a+N)
$$

Similarly,

$$
\sum_{n=1}^{N}(\log (1+b+n)-\log (b+n))=-\log (b+1)+\log (1+b+N)
$$

Thus, going back to the main computation:

$$
\begin{aligned}
G^{-1}([a, b]) & =\frac{1}{\log 2} \lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left(\log \left(\frac{1+a+n}{a+n}\right)-\log \left(\frac{1+b+n}{b+n}\right)\right) \\
& =\frac{1}{\log 2} \lim _{N \rightarrow \infty}(\log (1+a+N)-\log (a+1)-(\log (1+b+N)-\log (b+1))) \\
& =\frac{1}{\log 2}\left[\log (b+1)-\log (a+1)+\lim _{N \rightarrow \infty}\left(\log \frac{1+a+N}{1+b+N}\right)\right] \\
& =\frac{1}{\log 2}(\log (b+1)-\log (a+1)+0)=\frac{1}{\log 2} \int_{a}^{b} \frac{\mathrm{~d} x}{\log 2(1+x)} .
\end{aligned}
$$

This shows that $\mu(A)=G_{*} \mu(A)$ for all A intervals. By additivity, $\mu(A)=G_{*} \mu(A)$ on the algebra of finite unions of intervals. Thus, by the Extension theorem (see Lemma 1.1.1), $\mu=G_{*} \mu$.

Spaces and transformations in different branches of dynamics

Measure spaces and measure-preserving transformations are the central object of study in ergodic theory. Different branches of dynamical systems study dynamical systems with different properties. In topological dynamics, the discrete dynamical systems $f: X \rightarrow X$ studied are the ones in which X is a metric space (or more in general, a topological space) and the transformation f is continuous. In ergodic theory, the discrete dynamical systems $f: X \rightarrow X$ studied are the ones in which X is a measured space and the transformation f is measurepreserving.

Similarly, other branches of dynamical systems study spaces with different structures and maps which preserves that structure (for example, in holomorphic dynamics the space X is a subset of the complex plan $\mathbb{C}\left(\right.$ or $\left.\mathbb{C}^{n}\right)$ and the map $f: X \rightarrow X$ is a holomorphic map; in differentiable dynamics the space X is a subset of \mathbb{R}^{n} (or more in general a manifold, for example a surface) and the map $f: X \rightarrow X$ is smooth (that is differentiable and with continuous derivatives) (as summarized in the Table below) and so on...

branch of dynamics	space X	transformation $f: X \rightarrow X$
Topological dynamics	metric space	continuous map
(or topological space)		
Ergodic Theory	measure space	measure-preserving map
Holomorphic Dynamics	subset of $\mathbb{C}\left(\right.$ or $\left.\mathbb{C}^{n}\right)$	holomorphic map
Smooth Dynamics	subset of \mathbb{R}^{n} (or manifold, as surface)	(continuous derivatives)

