
Prof. Corinna Ulcigrai Ergodicity

1.1 Ergodic Transformations

In this lecture we will define the notion of ergodicity, or metric indecomposability. Ergodic
measure-preserving transformations are the building blocks of all measure-preserving trans-
formations (as prime numbers are building blocks of natural numbers). Moreover, ergodicity
will play an important role in Birkhoff ergodic theorem.

Let (X,A , µ) be a finite measure space. In this section (and more in general when we
want to talk of ergodic transformations) we will assume that (X,A , µ) is a probability space.
This is not a great restriction, since if µ(X) <∞, if we consider µ/µ(X) (that is, the measure
rescaled by µ(X)), then µ/µ(X) is a measure with total mass 1 and (X,A , µ/µ(X)) is a
probability space. Let T : X → X be a measure-preserving transformation.

Definition 1.1.1. A set A ⊂ X is called invariant invariant under T (or simply invariant if
the transformation is clear from the context) if

T−1(A) = A.

Remark that in the definition we consider preimages T−1. This is important if the trans-
formation is not invertible.

Exercise 1.1.1. If T is invertible, show that A is invariant if and only if T (A) = A.

Example 1.1.1. Assume that T is invertible and that x ∈ X is a periodic point of period n.
Then

A = {x, T (x), . . . , Tn−1(x)} (1.1)

is an invariant set.

Definition 1.1.2. A measure preserving transformation T on a probability space (X,A , µ)
is ergodic if and only if for any set measurable A ∈ A such that T−1(A) = A either µ(A) = 0
or µ(A) = 1, that is all invariant sets are trivial from the point of view of the measure.

Remark 1.1.1. A transformation which is not ergodic is reducible in the following sense. If
A ∈ A is an invariant measurable set of positive measure µ(A) > 0, then we can consider
the restriction µA of the measure µ to A, that is the measure defined by

µA(B) =
µ(A ∩B)

µ(A)
, for all B ∈ A .

It is easy to check that µA is again a probability measure and that it is invariant under
T (Exercise). Remark that we used that µ(A) > 0 to renormalize µA. Similarly, also the
restriction µX\A of the measure µ to the complement X\A, given by

µX\A(B) =
µ(X\A ∩B)

µ(X\A)
, for all B ∈ A ,

is an invariant probability measure (Exercise). Remark that here we used that µ(X\A) > 0
since µ(A) < 1. Thus, we have decomposed µ into two invariant measures µA and µX\A and
one can study separately the two dynamical systems obtained restricting T to A and to X\A.
In this sense, non ergodic transformations are decomposable while ergodic transformations are
indecomposable.

As prime numbers, that cannot be written as product of prime numbers, are the basic
building block used to decompose any other integer number, similarly ergodic transformations,
that are indecomposable in this metric sense, are the basic building block used to study any
other measure-preserving transformation.
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Exercise 1.1.2. Let (X,A ) be a measurable space and T : X → X be a transformation.

(a) Check that if µ1 and µ2 are probability measures on (X,A ), then any linear combination

µ = λµ1 + (1− λ)µ2, where 0 ≤ λ ≤ 1,

is again a measure. Check that it is a probability measure.

(b) Let µ be a measure on (X,A ) preserved by T . Let A ∈ A be a measurable set with
positive measure µ(A) > 0. Check that by setting

µ1(B) =
µ(A ∩B)

µ(A)
for all B ∈ A , µ2(B) =

µ(Ac ∩B)

µ(Ac)
for all B ∈ A ,

(where Ac = X\A denotes the complement of A in X) one defines two probability
measures µ1 and µ2. Show that if A is invariant under T , then both µ1 and µ2 are
invariant under T .

(c) Show using the two previous points that a probability measure µ invariant under T is
ergodic if it cannot be written as strict linear combination of two invariant probability
measures for T , that is as

µ = λµ1 + (1− λ)µ2, where 0 < λ < 1, µ1 6= µ2. (1.2)

[The converse is also true, but harder to prove: a measure µ is ergodic if and only if it
cannot be decomposed as in (??).]

Part (a) of Exercise ?? shows that the space of all probability T -invariant measures is
convex (recall that a set C is a convex if for any x, y ∈ C and any 0 ≤ λ ≤ 1 the points
λx+ (1− λ)λy all belong to C). If C is a convex set, the extremal points of C are the points
x ∈ C which cannot be expressed as linear combination of the other points, that is, there is
no 0 < λ < 1 and x1 6= x2 such that x = λx1 + (1−λ)x2. Thus, Part (b) of Exercise ?? shows
that ergodic probability measures are extremal points of the set of all probability T -invariant
measures.

Let us now give an example of a non-ergodic transformation and one of an ergodic one.

Example 1.1.2. [Rational rotations are not ergodic] Let X = S1, B its Borel subsets
and λ the Lebesgue measure. Consider a rational rotation Rα : S1 → S1 where α = p/q with
p, q coprime. Consider for example the following set in R/Z

A =

q−1⋃
i=0

[
i

q
,
i

q
+

1

2q

]
.

The set A in S1 is shown in Figure ??.
The set A is clearly invariant under Rp/q, since the clockwise rotation Rp/q by 2πp/q

sends each interval into another one. Since A is union of q intervals of equal length 1/2q,
λ(A) = 1/2, so 0 < λ(A) < 1. Thus, since we constructed an invariant set whose measure is
neither 0 nor 1, Rp/q is not ergodic.

[Remark that any point is periodic of period q and since Rα is invertible, any periodic orbit is
an invariant set, but it has measure zero. Thus, to show that Rp/q is not ergodic, we need to
construct an invariant set with positive measure and here we constructed one by considering
the orbit of an interval.]

In the next lecture we will prove that on the other hand irrational rotations are ergodic.
Thus, a rotation Rα is ergodic if and only if α is irrational.

Let us show that the doubling map is ergodic directly using the definition of ergodicity.
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Figure 1.1: An invariant set A with 0 < λ < 1 for a rational rotation Rp/q with q = 8.

Example 1.1.3. [The doubling map is ergodic] Let X = R/Z, B be Borel sets of R and
λ the Lebesgue measure. Let T : X → X be the doubling map, that is T (x) = 2x mod 1.
Let us show that the doubling map is ergodic.

Let A ∈ B be an invariant set, so that T−1(A) = A. We have to show that λ(A) is either
0 or 1. If λ(A) = 1, we are done. Let us assume that λ(A) < 1 and show that then λ(A) has
to be 0. Since we assume that λ(A) < 1, λ(X\A) > 0. One can show (see Theorem ?? in
the Extra) that a measurable set of positive measure is well approximated by small intervals
in the following sense: given ε > 0, we can find n ∈ N and a dyadic interval I of length 1/2n

such that
λ(I\A) > (1− ε)λ(I), (1.3)

that is, the proportion of points in I which are not is A is at least 1− ε.Recall that we showed
that if I is a dyadic interval of length 1/2n, its images T k(I) under the doubling map for
0 ≤ k ≤ n are again dyadic intervals of size 1/2n−k. In particular, the length λ(T k(I)) is
2kλ(I) and for k = n, Tn(I) = R/Z = X. Furthermore we can calculate that

λ(Tn(I\A)) = 2nλ(I\A) = (1− ε).

We now need to show that Tn(I\A) ⊆ X\A. To do this suppose x ∈ Tn(I\A) and x ∈ A.
We then have that there exists y ∈ I\A such that Tn(y) = x and therefore y ∈ T−n(A) = A.
This is a contradiction since y ∈ I\A. Therefore there is no such x and Tn(I\A) ⊆ X\A.
Putting this together means that

λ(X\A) ≥ λ(Tn(I\A)) ≥ 1− ε.

Since λ(X\A) ≥ 1− ε holds for all ε > 0, we conclude that λ(X\A) = 1 and hence λ(A) = 0.
This concludes the proof that the doubling map is ergodic.

To prove directly from the definition that the doubling map is ergodic, we had to use a
fact from measure theory that we stated without a proof (the existence of the interval in (??),
see also Theorem ?? in the Extra). In the following lecture, §3.6, we will see how to prove
ergodicity using Fourier series and we will see that is possible to reprove that the doubling
map is ergodic by using Fourier series, which gives a simpler and self-contained proof.

Exercise 1.1.3. Let X = [0, 1], B the Borel σ−algebra, λ the 1−dimensional Lebesgue
measure. Let m > 1 is an integer and consider the linear expanding map Tm(x) = mx
mod 1. Show that Tm is ergodic.
[Hint: mimic the previous proof that the doubling map is ergodic.]

Ergodicity via invariant functions

The following equivalent definition of ergodicity is also very useful to prove that a transfor-
mation is ergodic:
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Lemma 1.1.1 (Ergodicity via measurable invariant functions). A measure preserving
transformation T : X → X is ergodic if and only if, any measurable function f : X → R that
is invariant, that is such that

f ◦ T = f almost everywhere (that is, f(T (x)) = f(x) for µ− almost every x ∈ X)
(1.4)

is µ-almost everywhere constant (that is, there exists c ∈ R such that f(x) = c for µ-a.e.
x ∈ X).

Proof. Assume first that (??) hold. Let A ∈ B be an invariant set. Consider its characteristic
function χA, which is measurable (see Example 3.4.1 in §3.4). Let us check that χA is an
invariant function, that is χA◦T = χA. Recall that we showed last time that χA◦T = χT−1(A)

(see equation (3.14) in §3.4). Thus

χA ◦ T = χT−1(A) = χA, (since T−1(A) = A).

Thus, we can apply (??) to χA and conclude that χA is almost everywhere constant. But
since an indicatrix function takes only the values 0 and 1, either

χA = 0 a.e. ⇒ µ(A) =

∫
A

χAdµ = 0, or (1.5)

χA = 1 a.e. ⇒ µ(A) =

∫
A

χAdµ = 1. (1.6)

This concludes the proof that T is ergodic.

Let us assume now that T is ergodic and prove (??). Let f : X → R be a measurable
function. Assume that f ◦ T = f almost everywhere. One can redefine f on a set of measure
zero so that the redefined function, which we will still call f , is invariant everywhere, that is
f(T (x) = f(x) for all x ∈ X (see Exercise ??).

Consider the sets

At = {x ∈ X, such that f(x) > t}, t ∈ R.

The set At are called level sets of the function f and they are measurable since At =
f−1((t,+∞)) and f is measurable, which by definition means that the preimage of each
interval is in B. Let us show that each At is invariant :

T−1(At) = {x ∈ X, such that T (x) ∈ At} (by definition of preimage)

= {x ∈ X, such that f(T (x)) > t} (by definition of T (x) ∈ At)
= {x ∈ X, such that f(x) > t} (since f(T (x)) = f(x))

= At.

Thus, since T is ergodic, for each t ∈ R either µ(At) = 0 or µ(At) = 1. If the function f
is constant equal to c almost everywhere, then µ(At) = 1 for all t < c (since f(x) = c > t
for a.e. x ∈ X), while µ(At) = 0 for all t ≥ c (since f(x) = c ≤ t for a.e. x ∈ X). On
the other hand, if f is not constant almost everywhere, one can find a level set t0 such that
0 < µ(t0) < 1, which is a contradiction with what we just proved. Thus, f has to be constant
almost everywhere. This shows that (??) holds when T is ergodic.

Exercise 1.1.4. Let T : X → X be a measure preserving transformation of the measured
space (X,B, µ). Let f be a measurable function f : X → R that is invariant almost every-
where under T , that is f ◦ T (x) = f(x) for µ-almost every x ∈ X.
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(a) Consider the set

E =
⋃
n∈N

T−n(N), where N = { x such that f(T (x)) 6= f(x) }.

Show that µ(E) = 0 and that T−1(E) ⊂ E.

(b) Define a new function f̃ by setting:

f̃(x) =

{
f(x) if x /∈ E
0 if x ∈ E,

Show that f = f̃ µ-almost everywhere and that f̃ ◦ T = f̃ holds everywhere, that is
f̃(T (x)) = f̃(x) for all x ∈ X.

Exercise 1.1.5. Let Rα : R/Z → R/Z be a rational rotation, where α = p/q and p, q are
coprime. Show that Rα is not ergodic by exhibiting a non-constant invariant function.

One can show that in Lemma ?? instead then considering all functions which are mea-
surable, it is enough to check that (??) holds for all integrable functions f ∈ L1(µ) or for
all square-integrable functions f ∈ L2(µ) (the definition of these spaces was given in §3.4 We
have the following two variants of Lemma ??:

Lemma 1.1.2 (Ergodicity via invariant integrable functions). Let (X,B, µ) be a proba-
bility space and T : X → X a measure preserving transformation. Then T : X → X is ergodic
if and only if

for all f ∈ L1(X,B, µ), f ◦ T = f µ− a.e. ⇒ f µ− a.e. constant.

Lemma 1.1.3 (Ergodicity via invariant square integrable functions). Let (X,B, µ)
be a probability space and T : X → X a measure preserving transformation. Then T : X → X
is ergodic if and only if

for all f ∈ L2(X,B, µ), f ◦ T = f µ− a.e. ⇒ f µ− a.e. constant.

Exercise 1.1.6. Let (X,B, µ) be a measured space and T : X → X be a measure-preserving
transformation. Consider the space L2(X,B, µ) of square integrable functions.

Let UT : L2(X,B, µ)→ L2(X,B, µ) be given by

UT (f) = f ◦ T.

(a) Check that L2(X,B, µ) is a vector space and UT is linear, that is for all f, g ∈ L2(µ)
and a, b ∈ R,

af + bg ∈ L2(X,B, µ) and UT (af + bg) = aUT (f) + bUT (g).

(b) Show that UT preserves the L2(µ)−norm, that is for any f ∈ L2(µ) we have ||UT (f)||2 =
||f ||2. Deduce that if d : L2(µ)× L2(µ)→ R+ is the distance given by

d(f, g) = ||f − g||2, for all f, g ∈ L2(µ),

UT is an isometry, that is

d(UT (f), UT (g)) = d(f, g) for all f, g ∈ L2(µ);
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(c) Verify that if a function is constant almost everywhere, then it is an eigenvector of UT
with eigenvalue 1. Assume in addition that (X,B, µ) is a probability space. Show that
T is ergodic if and only if the only eigenfunctions f ∈ L2(µ) of UT corresponding to
the eigenvalue 1 are constant functions.

[Hint: Both Part (b) and (c) of the exercise consist only of recalling and re-interpreting
definitions.]

The operator UT is known as the Koopman operator associated to T . Many ergodic prop-
erties can be equivalently rephrased in terms of properties of the operator UT , as ergodicity
in Part (c). The study of the properties of UT and its spectrum (for example, its eigenvalues)
is known as spectral theory of dynamical systems.

Extra: Lebesgue density points

In the proof that the doubling map is ergodic, we used the following Theorem from measure
theory, known as Lebesgue density Theorem.

Let X = Rn and λ be n−dimensional Lebesgue measure. Let A ⊂ Rn be a Borel mea-
surable set. Let B(x, ε) denote the ball of radius ε at x. The density of A at x, denoted by
dx(A), is by definition

dx(A) = lim
ε→0

λ(A ∩B(x, ε))

λ(B(x, ε))
.

A point x ∈ A is called a Lebesgue density point for A if the density dx(A) = 1. Thus, if x is a
density point, small intervals containing x intersect A on a large proportion of their measure,
tending to 1 as the size of the interval tends to zero.

Theorem 1.1.1 (Lebesgue density). Let X = Rn and λ be n−dimensional Lebesgue measure.
If A ⊂ Rn is a Borel measurable set with positive measure λ(A) > 0, almost every point x ∈ A
is a Lebesgue density point for A.

This theorem implies that measurable sets can be well approximated by small intervals: on
a small scale, measurable sets fill densely the space, so if I is sufficiently small and intersects
the set A, most of the points in I are contained in A (only a set of points whose measure is a
proportion ε of the total measure is left out). Similarly, other small intervals will be missed
almost completely by the set A, so that the set can be approximated well by a union of small
intervals.

Exercise 1.1.7. Deduce from the Lebesgue density Theorem the fact that we used in the
proof that the doubling map is ergodic, that is: if µ(X\A) > 0, given any ε > 0, we can find
n ∈ N and a dyadic interval I of length 1/2n such that

λ(I\A) > (1− ε)λ(I).

1.2 Ergodicity using Fourier Series

In the previous lecture §3.5 we defined ergodicity and showed from the definition that the
doubling map is ergodic. In this lecture we will show how to use Fourier Series to show that
certain measure preserving transformations defined on R/Z or on the torus Tn = Rn/Zn are
ergodic. Proving ergodicity using Fourier Series turns out to be very simple and elegant. We
first give a brief overview of the basics of Fourier Series.
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Let (X,B, µ) be a measure space. In §3.4 we defined integrals with respect to a measure.
Recall that we also introduced the following notation for the spaces of integrable and square-
integrable functions

L1(X,B, µ) = L1(µ) = {f : X → R, f measurable,

∫
|f |dµ < +∞}/ ∼,

L2(X,B, µ) = L2(µ) = {f : X → R, f measurable,

∫
|f |2dµ < +∞}/ ∼,

where f ∼ g if f = g µ-almost everywhere and the norms are respectively given by ||f ||1 :=∫
|f |dµ and ||f ||2 := (

∫
|f |2dµ)1/2.

Fourier Series

Let X = R/Z with the Lebesgue measure λ. Consider a function f : R/Z → R (more in
general, one can consider a function f : R→ R which is 1−periodic, that is f(x+ 1) = f(x)
for all x ∈ R). We would like to represent f as superposition of harmonics, decomposing it
via the basic oscillating functions

sin(2πnx), cos(2πnx), n = 0, 1, 2, . . . ,

More precisely, we would like to represent f as a linear combination

a0
2

+

∞∑
n=1

an cos(2πnx) +

∞∑
n=1

bn sin(2πnx).

Instead than using this notation, we prefer to use the complex notation, which is more com-
pact. Recall the identity

e2πix = cos(2πnx) + i sin(2πnx).

Using this identity, one can can show that we can equivalently write

a0
2

+

∞∑
n=1

an cos(2πnx) +

∞∑
n=1

bn sin(2πnx) =

+∞∑
n=−∞

cne
2πinx, (1.7)

where cn =


1
2 (an − ibn) if n > 0,
a0/2 if n = 0,
1
2 (a−n + ib−n) if n < 0.

(1.8)

Thus, we look for a representation of f of the form

+∞∑
n=−∞

cne
2πinx.

[Using this complex form, more in general, one can try to represent more in general functions
f : R/Z→ C. See also Exercise ??, Part (b)].

Exercise 1.2.1. (a) Verify that if an, bn and cn are related by (??), then (??) holds.
Assume that

f =

+∞∑
n=−∞

cne
2πinx.

(b) Show that f is real if and only if c−n = cn for all n ∈ Z (where z denotes the complex
conjugate of z);
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(c) Show that f is even (that is f(−x) = f(x) for all x) if and only if cn = c−n for all
n ∈ Z;

show that f is odd (that is f(−x) = −f(x) for all x) if and only if cn = −c−n for all
n ∈ Z.

Definition 1.2.1. If f ∈ L1(R/Z,B, µ) we say that the Fourier series of f is the expression

+∞∑
n=−∞

cne
2πinx, where cn =

∫
f(x)e−2πinxdµ, n ∈ Z.

The cn, n ∈ Z, are called Fourier coefficients of f . Remark that c0 =
∫
fdµ.

We denote by SNf the N th partial sum of the Fourier series of f , given by

SNf(x) =

+N∑
n=−N

cne
2πinx.

One needs the assumption f ∈ L1(µ) to guarantee that the Fourier coefficients, and hence
the Fourier series, is well-defined. The following property of the Fourier coefficients can be
easily proved and is very helpful to use to prove ergodicity in certain examples (see Exercise
??):

Lemma 1.2.1 (Riemann-Lebesgue Lemma). If f ∈ L1(µ), the Fourier coefficients cn in
Definition ?? tend to zero in modulus, that is |cn| → 0 as |n| → ∞.

Unfortunately, as you should know well from the study of series, the fact that the coeffi-
cients tend to zero is not enough to guarantee that the Fourier series converges. It is natural
to ask when the Fourier series converges for all points and when does it actually represents
the function f from which we started and in which sense. We list below some answers to
these questions.

Once we have a representation of f as a Fourier series (in one of the senses here below), one
can use Fourier series as a tool which turns out to be very useful in applications. We will use
them to show ergodicity, but more in general Fourier series can be used to solve differential
equations and have a huge number of applications in applied mathematics.

The following can be proved:

(F1) If f : R/Z→ R is differentiable and the derivative is continuous, than its Fourier series
converges at every point:

f(x) =

+∞∑
n=−∞

cne
2πinx, for all x ∈ R/Z.

We say in this case that SNf converges pointwise to f .

[Remark that if f is only continuous (but not necessarily differentiable), it is not neces-
sarily true that the Fourier series of f converges to f pointwise. The proof of pointwise
convergence can be found in many books in Real Analysis or Harmonic Analysis.]

(F2) If f ∈ L2(µ),
||SNf − f ||2 → 0 as N → +∞, (1.9)

so that SNf approximate f better and better in the L2−norm. We say in this case that
the Fourier series converges to f in L2.

[The proof of this statement is not hard and relies entirely on linear algebra. One can
prove that L2(µ) is a vector space and that the exponentials e2πin form an orthogonal
linear bases.]

8



Prof. Corinna Ulcigrai Ergodicity

(F3) If f ∈ L2(λ), one can actually show a much stronger statement (Carlson’s Theorem):

f(x) =

+∞∑
n=−∞

cne
2πinx for a.e.x ∈ R/Z.

[This result if very hard to prove, it was a hard open question and object of research
for decades. The proof given by Carleson is very hard and many people have tried to
understand it and simplify it.]

We will only use Fourier series for L2−functions. A crucial property of Fourier series that we
will use is uniqueness:

(F4) If f ∈ L1(µ) and cn = 0 for all n ∈ Z, then f = 0. Recall that if µ is finite, L2(µ) ⊂
L1(µ). As a consequence, if µ is a probability measure and f ∈ L2(µ)∑

cne
2πinx =

∑
c′ne

2πinx

where the equality holds in the L2 sense explained in (F2), then cn = c′n for all n ∈ Z.
Thus, the coefficients of the Fourier series of a function f ∈ L2(µ) are unique.

9


