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3.7 Birkhoff Ergodic Theorem and Applications

In this section we will state the Birkhoff Ergodic Theorem, which is one of the key theorems in Ergodic
Theory. The motivation came originally from the Boltzmann Ergodic Hypothesis formulated by Boltzmann
in the 1930s (see below). The concept of ergodicity was developed exactly in order to prove the Boltzmann
Ergodic Hypothesis, thus giving birth to the field of Ergodic Theory.

Botzmann Ergodic Hypothesis

Let X be the phase space of a physical system (for example, the points of X could represent configurations
of positions and velocities of particles of a gas in a box). A measurable function f : X → R represents an
observable of the physical system, that is a quantity that can be measured, for example velocity, position,
temperature and so on. The value f(x) is the measurement of the observable f that one gets when the system
is in the state x. Time evolution of the system, if measured in discrete time units, is given by a transformation
T : X → X, so that if x ∈ X is the initial state of the system, then T (x) is the state of the system after one time
unit. If the physical system is in equilibrium, the time evolution T is a measure-preserving transformation.

In order to measure a physical quantity, one usually repeats measurements in time and consider their
average. If x ∈ X is the initial state, the measurements of the observable f : X → R at successive time units
are given by f(x), f(T (x)), . . . , f(T k(x)), . . . . Thus, the average of the first n measurements is given by∑n−1

k=0 f(T kx)

n
(time average).

This quantity is called time average of the observable f after time n.
On the other hand, the space average of the observable f is simply∫

fdµ (space average).

In physics one would like to know the space average of the observable with respect to the invariant measure,
but since experimentally one computes easily time averages (just by repeating measurements of the system
at successive instant of times), it is natural to ask whether (and hope that) long time averages give a good
approximation of the space average. Boltzmann’s conjectured the following:

Boltzmann Ergodic Hypothesis: for almost every initial state x ∈ X the time averages of any observable f
converge as time tends to infinity to the space average of f .

Unfortunately, after many efforts to prove this general form of the Boltzmann Ergodic Hypothesis, it
turned out that the conclusion is not true in general, for any measure-preserving transformation T . On the
other hand, under the assumption that T is ergodic, the conclusion of the Boltzmann Ergodic Hypothesis holds
and this is exactly the content of Birkhoff Ergodic Theorem for ergodic transformations. Finding the right
condition under which the Hypothesis holds motivated the definition of ergodicity and gave birth to the study
of Ergodic theory.

Two versions of Birkhoff Ergodic Theorem

The first formulation of Birkhoff Ergodic Theorem gives a result which is weaker than the Ergodic Hypothesis,
but holds in general for any measure preserving transformation that preserves a finite measure.

Theorem 3.7.1 (Birkhoff Ergodic Theorem for measure preserving transformations). Let (X,B, µ)
be a finite measured space. Let T : X → X be measure-preserving transformation. For any f ∈ L1(X,B, µ),
the following limit

lim
n→∞

1

n

n−1∑
k=0

f(T k(x))

exists for µ-almost every x ∈ X. Moreover, if, for the x for which the limit exists we call

f(x) = lim
n→∞

1

n

n−1∑
k=0

f(T k(x))
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the function f (which is defined almost everywhere) is invariant, that is

f ◦ T = f for µ− almost every x ∈ X,

and furthermore ∫
fdµ =

∫
fdµ.

Let us stress again that this theorem, as Poincaré Recurrence, follows simply from preserving a finite
measure. We will not prove the theorem here. The proof can be found for example in the book by Pollicott
and Yuri.

The following version of Birkhoff Ergodic Theorem for ergodic transformations is simply a Corollary of
this general Birkhoff Ergodic Theorem:

Theorem 3.7.2 (Birkhoff Ergodic Theorem for ergodic transformations). Let (X,B, µ) be a proba-
bility space. Let T : X → X be an ergodic measure-preserving transformation. For any f ∈ L1(X,B, µ),

lim
n→∞

1

n

n−1∑
k=0

f(T k(x)) =

∫
fdµ for µ− almost every x ∈ X.

Proof. By Birkhoff Ergodic Theorem for measure preserving transformations for µ−almost every x the limit

lim
n→∞

1

n

n−1∑
k=0

f(T k(x)) = f(x)

exists and defines a function f such that f ◦T = f almost everywhere. Since T is ergodic, every function which
is invariant almost everywhere is constant almost everywhere. In particular, f is constant almost everywhere.
If c is the value of this constant, since µ is a probability measure∫

fdµ = c · µ(X) = c · 1 = c,

but since the ergodic theorem for measure preserving transformations also gives that
∫
fdµ =

∫
fdµ, we

conclude that
∫
fdµ = c. Thus, for almost every x ∈ X

lim
n→∞

1

n

n−1∑
k=0

f(T k(x)) = c =

∫
fdµ,

which is the conclusion we were looking for.

Applications of Birkhoff Ergodic Theorem

The version of Birkhoff Ergodic Theorem for ergodic transformations shows that Boltzmann’s Ergodic Hy-
pothesis is true if the time evolution is ergodic. Birkhoff ergodic Theorem has many other applications in
different areas of mathematics. We will show a few consequences.

1. Frequencies of Visits. Let (X,B, µ) be a probability space and let T : X → X be an ergodic measure-
preserving transformation. Let A ∈ B be a measurable set of positive measure µ(A) > 0. Given x ∈ X, the
frequencies of visits of x to A up to time n are given by

Card { 0 ≤ k ≤ n− 1, T k(x) ∈ A }
n

=
1

n

n−1∑
k=0

χA(T k(x)),

as we have already seen at the beginning of Chapter 3. If we apply Birkhoff ergodic theorem to the function
f = χA, which is measurable since A ∈ B and integrable since

∫
χAdµ = µ(A) ≤ µ(X) < +∞, we get that

for almost every x

lim
n→∞

1

n

n−1∑
k=0

χA(T k(x)) =

∫
χAdµ = µ(A).
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Thus, for almost every x in A the limit of the frequencies of visits exists and is equal to µ(A):

lim
n→∞

Card { 0 ≤ k ≤ n− 1, T k(x) ∈ A }
n

= µ(A) for µ− a.e. x ∈ X.

Example 3.7.1. Let Rα be an irrational rotation. We showed in §3.6 that Rα is ergodic with respect to λ.
Thus, if we take as set an interval [a, b], for almost every x ∈ [0, 1] we have

lim
n→∞

1

n

n−1∑
k=0

χ[a,b](R
k
α(x)) = λ([a, b]) = b− a.

Remark 3.7.1. In the special case of the rotation, one can prove that actually the conclusion of Birkhoff
ergodic theorem holds for all initial points x ∈ X. In particular, for example, it holds for x = 0. Thus, since
Rkα(0) = {kα} where {·} denotes the fractional part, we have

lim
n→∞

Card{0 ≤ k < n, {kα} ∈ [a, b]}
n

= λ([a, b]) = b− a.

We say that the sequence ({kα})k∈N is equidistributed in [0, 1].

* Exercise 3.7.1. Let α be irrational. Show that if

lim
n→∞

n−1∑
k=0

χ[a,b]

(
(Rkα(x)

)
exists for almost every point x ∈ [0, 1], then it exists for all points y and

lim
n→∞

1

n

n−1∑
k=0

χ[a,b]

(
(Rkα(y)

)
= lim
n→∞

1

n

n−1∑
k=0

χ[a,b]

(
(Rkα(x)

)
.

2. Borel Normal Numbers. Let x ∈ [0, 1] and consider its binary expansion, that is

x =

∞∑
i=1

ai
2i
,

where the ai ∈ {0, 1} are the digits of the binary expansion of x. Remark that the binary expansion is unique
for almost every1 x ∈ X.

Definition 3.7.1. A number x ∈ [0, 1] is called normal in base 2 if the frequency of occurrence of the digit 0
is the binary expansion and the frequency of occurrence of the digit 1 both exist and equal 1/2.

Theorem 3.7.3 ( Borel theorem on normal numbers). Almost every x ∈ [0, 1] is normal in base 2.

Proof. Let us prove the Theorem using Birkhoff ergodic theorem. Consider the doubling map T (x) = 2x
mod 1. We proved that T preserves the probability measure λ on X = [0, 1] and is ergodic with respect to λ.
Recall that we showed in §1.4.2 that

x =

∞∑
i=1

ai
2i

⇒ T k(x) =

∞∑
i=1

ak+i
2i

,

that is, the doubling map act as a shift on the digits of the binary expansion of x. Since the first digit a1 of
the expansion is clearly a1 = 0 if and only if x ∈ [0, 1/2) and a1 = 0 if and only if x ∈ [1/2, 1], this shows that,
since ak+1 is the first digit of the expansion of T k(x),

ak+1 =

{
0 iff T kx ∈ [0, 1/2)
1 iff T kx ∈ [1/2, 1]

1The numbers for which it is not unique are exactly the ones of the form k/2n, for which one has two expansions, one with a
tail of 0 and one with a tail of 1 in the digits. Numbers of this form are clearly countable and thus have Lebesgue measure zero.
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Thus,

Card{ 1 ≤ k ≤ n ak = 0 }
n

=
Card{ 0 ≤ k < n ak+1 = 0 }

n

=
Card{ 0 ≤ k < n T k(x) ∈ [0, 1/2) }

n
.

Since T is ergodic, by Birhoff ergodic theorem applied to f = χ[0,1/2), for almost every x ∈ [0, 1]

lim
n→∞

Card{ 1 ≤ k ≤ n ak = 0 }
n

= lim
n→∞

1

n

n−1∑
k=0

χ[0,1/2)(T
k(x)) = λ([0, 1/2)) = 1/2,

thus the frequency of occurrence of 0 is 1/2. Similarly, for almost every x ∈ [0, 1]

lim
n→∞

Card{1 ≤ k ≤ n ak = 1}
n

= lim
n→∞

1

n

n−1∑
k=0

χ[1/2,1](T
k(x)) = λ([1/2, 1]) = 1/2.

Remark that the intersection of two full measure sets has full measure (since the complement is the union of
two measure zero sets, which has measure zero). We conclude that for almost every x ∈ [0, 1] the frequency
of both 0 and 1 exists and equals 1/2, thus almost every x is normal in base 2.

Exercise 3.7.2. Consider the unit interval [0, 1] with the Lebesgue measure. Let r ≥ 2 be an integer.

(a) Give a similar definition of a number which is normal in base r;

(b) Show that almost every x ∈ [0, 1] is normal base r;

(c) Deduce that almost every x ∈ [0, 1] is simultaneously normal with respect to any base r = 2, 3, . . . , n, . . . .

3. Leading digits of powers of two. Consider the sequence (2n)n∈N of powers of two:

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, . . .

The leading digit of a number is simply the first digit in the decimal expansion. For example, the leading digit
of 512 is 5. The leading digits of the previous sequence are written in bold font:

1,2,4,8,16,32,64,128,256,512,1024,2048, . . .

Consider the sequence of the leading digits:

1, 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, . . .

Exercise 3.7.3. What is the frequency of the digit 1 in the sequence of leading digits of (2n)n∈N?

We will use Birhoff Ergodic Theorem to answer this question. More in general, we will show that the
frequency of the digit k as leading digit in the sequence (2n)n∈N is given by

log10

(
1 +

1

k

)
where log10 denotes the logarithm in base 10 (that is, log10(a) = b if and only if 10a = b). In particular, the
frequency of occurrency of the digit 1 in the leading digits of (2n)n∈N is log10 2.

Notice that the leading digit of 2n is k if and only if there exists an integer r ≥ 0 such that

k10r ≤ 2n < (k + 1)10r.

For example, 2 · 100 ≤ 256 < 3 · 100 shows that the leading digit of 256 is 2.
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Taking logarithms in base 10 and using the properties of logarithms (as log10(ab) = log10(a) + log10(b) and
log10 10r = r), this shows that

log10(k10r) ≤ log10 2n < log10((k + 1)10r),

log10 k + r ≤ n log10 2 < log10(k + 1) + r.

Thus, equivalently,
(n log10 2 mod 1) ∈ Ik = [log10 k, log10(k + 1)] .

Notice that if we call α = log10 2, the sequence

(n log10 2 mod 1)n∈N = 0, log10 2 mod 1, 2 log10 2 mod 1, 3 log10 mod 1, . . .

= 0, log10 2 mod 1, log10 2 + log10 2 mod 1, 2 log10 2 + log10 2 mod 1, . . .

is the orbit O+
Rα

(0) of 0 under the rotation by α. Thus,

Card { 0 ≤ n < N such that the leading digit of 2n is k }
N

=

Card { 0 ≤ n < N such that (n log10 2 mod 1) ∈ Ik }
N

=

Card { 0 ≤ n < N such that Rnα(0) ∈ Ik }
N

=
1

N

N−1∑
n=0

χIk(Rnα(0)).

One can show that log10 2 is irrational, thus Rα is an irrational rotation and hence it is ergodic with respect
to the Lebesgue measure. By Remark 3.7.1, the Birkhoff sums of an ergodic rotation converge for all points
to the integral, so

lim
N→∞

Card{0 ≤ n < N s.t. the leading digit of 2n is k}
N

= lim
N→∞

1

N

N−1∑
n=0

χIk(Rnα(0))

= λ(Ik) = log10(k + 1)− log10 k = log10

(
1 +

1

k

)
.

Exercise 3.7.4. Consider the sequence {3n}n∈N of powers of 3:

1, 3, 9, 81, 243, 729, 2187, 6561, . . .

The second leading digits in the expansion in base 10, starting from n ≥ 3 (so that there is a second digit),
are the digits in bold font:

81, 243, 729, 2187, 6561, . . .

Consider the sequence of second leading digits in the expansion in base 10, starting from n ≥ 3:

1, 4, 2, 1, 5, . . .

What is the frequency of occurrence of the digit k as second leading digit of {3n}n≥3?

4. Continued Fractions. Let x ∈ [0, 1] and let us express it as a continued fraction [a0, a1, . . . , an, . . . ]
where ai are the entries of the CF expansion. Let us show that for almost every x ∈ [0, 1] the frequency of
occurrence of the digit k as entry of the continued fraction of x is given by

1

log 2
log

(
(k + 1)2

k(k + 2)

)
. (3.1)

We showed in §1.7 that the entries of the continued fraction expansion of x are given by the itinerary of
O+
G(x) with respect to the partition Pk = (1/(k + 1), 1/k], that is the entry ai = k if and only if Gi(x) ∈ Pk

(see Theorem 1.7.1). Thus,

Card{0 ≤ j < n such that aj = k}
n

=
1

n

n−1∑
j=0

χPk(Gj(x)).

5
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Since G is ergodic with respect to the Gauss measure µ, for µ−almost every x ∈ [0, 1] the limit of the previous
quantity as n→∞ exists and is given by

lim
n→∞

Card{0 ≤ j < n such that aj = k}
n

= lim
n→∞

1

n

n−1∑
j=0

χPk(Gj(x))

= µ(Pk) =

∫ 1
k

1
k+1

1

log 2

dx

1 + x
=

log(1 + x)

log 2

∣∣∣∣ 1k
1
k+1

=
1

log 2
log

(
1 + 1

k

1 + 1
k+1

)
=

1

log 2
ln

(
1+k
k
k+2
k+1

)
,

which, simplifying, gives (3.1).
One can show that the same conclusion holds for Lebesgue a.e.x ∈ X, since if it failed for a set of λ-positive

measure A, it would fail for a set of µ-positive measure, since

µ(A) =

∫
A

1

(1 + x) log 2
≥ 1

2 ln 2
λ(A) > 0.

[More in general, one can show that the measure µ and the measure λ have the same sets of measure zero.
Measures with these property are called absolutely continuous with respect to each other and if a property
holds for almost every point according to one such measure, it holds also for almost every point for the other.]

Exercise 3.7.5. This was covered in class

(a) Show that the function f : [0, 1]→ R defined by

f(x) = ln(n), if x ∈ Pn =

(
1

n+ 1
,

1

n

]
is in L1(µ) and that ∫

fdµ =

∞∑
n=1

log n

log 2
ln

(
(n+ 1)2

n(n+ 2)

)
< +∞;

(b) Show that for almost every point x ∈ [0, 1]

1

n

n−1∑
i=0

log ai =

∫
f(x)dµ;

(c) Deduce that for almost every point x ∈ [0, 1] the geometric mean (which is the expression
in (3.2)) of the entries of the CF has a limit and

lim
N→∞

(a0a2 . . . aN−1)
1
N =

∞∏
n=1

(
(n+ 1)2

n(n+ 2)

) logn
log 2

. (3.2)

Ergodicity and Birkhoff Ergodic Theorem

The second form of Birkhoff Ergodic theorem shows that ergodicity is sufficient for Boltzmann ergodic Hy-
pothesis to hold. It turns out that it is also necessary: if the conclusion of Birkhoff ergodic theorem holds,
that is the time averages converge to the space averages for almost every point and all observables, then the
transformation T has to be ergodic. We show this in the Theorem 3.7.4 below. In the same Theorem 3.7.4
we also show how Birkohff ergodic Theorem can be rephrased in terms of measures of sets (see Part (3) in
Theorem 3.7.4) to give another useful characterization of ergodicity.

Theorem 3.7.4. Let (X,B, µ) be a probability space and T : X → X a measure-preserving transformation.
The following are equivalent:

(1) T is ergodic;

6
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(2) for any f ∈ L1(X,B, µ) and µ-almost every x ∈ X,

lim
n→∞

1

n

n−1∑
k=0

f(T k(x)) =

∫
fdµ; (3.3)

(3) for any A,B ∈ B,

lim
n→∞

1

n

n−1∑
k=0

µ(T−kA ∩B) = µ(A)µ(B). (3.4)

Saying that (1), (2) and (3) are equivalent means one holds if and only if any of the others hold. In
particular, (1) equivalent to (2) shows that the conclusion of the second form of Birkhoff Ergodic theorem
(Boltzmann ergodic Hypothesis) holds if and only if T is ergodic.

The equivalence between (1) and (3) gives another characterization of ergodicity. We defined ergodicity in
terms of triviality of invariant sets (T−1(A) = A implies µ(A) = 0 or 1) and we already saw that equivalently
invariant functions are constant (f ◦T = f a.e. implies f constant a.e.). Equivalently, one can define ergodicity
by requiring that any two measurable sets A,B

lim
n→∞

1

n

n−1∑
k=0

µ(T−kA ∩B) = µ(A)µ(B).

(Compare this characterization with the definition of mixing in the next section §3.8 and see the comments
after (3.43) in §3.8.)

Proof of Theorem 3.7.4. We will show that (1) ⇒ (2), (2) ⇒ (3) and (3) ⇒ (1). This will prove the equiva-
lence.

The implication (1)⇒ (2) is simply the statement of Birkhoff Ergodic Theorem for ergodic transformations:
if T is ergodic, the convergence of time averages to space averages stated in (3.3) holds for all f ∈ L1(µ) and
almost every point.

Let us show that (2) ⇒ (3). Assume that (3.3) holds for all f ∈ L1(µ) and almost every point. To
show that (3) holds, take any two measurable sets A,B ∈ B. Consider the characteristic function χA. Since∫
χAdµ = µ(A) ≤ µ(X) <∞, χA ∈ L1(µ) and we can apply (3.3) to f = χA. Thus,

lim
n→∞

1

n

n−1∑
k=0

χA(T k(x)) =

∫
χAdµ = µ(A), for a.e. x ∈ X.

Multiplying both sides by χB(x) we have

lim
n→∞

1

n

n−1∑
k=0

χA(T k(x))χB(x) = µ(A)χB(x), for a.e. x ∈ X. (3.5)

Recall that we showed that χA ◦ T = χT−1(A) (see equation (3.14) in §3.4), thus χA ◦ T k = χT−k(A). Let us
show now that

χAχB = χA∩B .

This holds since characteristic functions take only 0 or 1 as values, so the product χAχB(x) is equal to 1 if
and only if both χA(x) = 1 and χB(x) = 1 (otherwise, if one of the two is 0, the product is 0 also). Thus,
χAχB(x) = 1 if and only if x ∈ A and x ∈ B, which equivalently means that x ∈ A∩B. But a function which
is 1 on A ∩B and 0 otherwise is exactly the characteristic function χA∩B . Thus

χA ◦ T kχB = χT−k(A)χB = χT−k(A)∩B ,

and (3.5) can be rewritten as

lim
n→∞

1

n

n−1∑
k=0

χT−k(A)∩B(x) = µ(A)χB(x), for a.e. x ∈ X. (3.6)

7
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Let us integrate both sides of this equation:∫
1

n

n−1∑
k=0

χT−k(A)∩B(x)dµ =
1

n

n−1∑
k=0

∫
χT−k(A)∩B(x)dµ =

1

n

n−1∑
k=0

µ(T−kA ∩B), (3.7)∫
µ(A)χB(x)dµ = µ(A)

∫
χB(x)dµ = µ(A)µ(B). (3.8)

Thus, the conclusion follows if we can exchange the sign of limit with the sign of integration and show that
the limit of the integrals is the integral of the limits:

lim
n→∞

1

n

n−1∑
k=0

µ(T−kA ∩B) = lim
n→∞

∫
1

n

n−1∑
k=0

χT−k(A)∩B(x)dµ (by (3.7))

=

∫ (
lim
n→∞

1

n

n−1∑
k=0

χT−k(A)∩B(x)

)
dµ (if one can exchange)

=

∫
µ(A)χB(x)dµ (by (3.6))

= µ(A)µ(B) (by (3.8)).

The step of exchanging the sign of limit with the sign of integration can be justified by using the Dominated
Convergence Theorem (see the Extra 3 in §3.4). Thus, we proved (3).

Let us show that (3)⇒ (1). Assume that (3.4) holds for any A,B ∈ B. Let us show that T is ergodic by
using the definition. Let A ∈ B be an invariant set. Apply (3.4) to A taking also B = A, so that

lim
n→∞

1

n

n−1∑
k=0

µ(T−kA ∩A) = µ(A)2. (3.9)

Remark that since A is invariant under T , T−k(A) = A, so that T−kA ∩ A = A ∩ A = A. Since if we sum n
terms equal to µ(A) and divide by n we get µ(A)

lim
n→∞

1

n

n−1∑
k=0

µ(T−kA ∩A) = lim
n→∞

1

n

n−1∑
k=0

µ(A) = lim
n→∞

µ(A) = µ(A),

equation (3.9) implies that µ(A) = µ(A)2. But the only positive real numbers such that x = x2 are x = 0, 1.
Thus either µ(A) = 0 or µ(A) = 1. This shows that T is ergodic.
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