ICTP Summer School on Dynamical Systems Rotations of the circle and renormalization Week 2 - Homework 1

Exercise A1 Let Λ be a unit square grid in \mathbb{R}^{2} and let L be an irrational line of the form $\{y=a x+b\}$, where a, b are real and a is irrational. Show that the cutting sequence $w=\left(w_{i}\right)_{i \in \mathbb{Z}}$ of L (where $w_{i}=0$ when L hits a horizontal line, or $w_{i}=1$ when it hits a vertical line) coincide with the itinerary of an orbit $\mathscr{O}_{R_{\alpha}}(x)=\left\{R_{\alpha}^{i}(x), i \in \mathbb{Z}\right\}$ with respect to a suitable partition.

- If you use the horizontal section $\Sigma=[0,1]$ that we used in class to get a rotation R_{α} as a Poincar'e map, you need to split the cases into $\tan \theta<1$ and $\tan \theta>1$ and define the coding intervals carefully. For example for $\tan \theta>1$, one needs to take $I_{0}:=[0,1-\alpha]$ and $I_{10}:=[1-\alpha, 1]$ and record a 10 word for each visit to I_{10}.
- Try to find a different section Σ (i.e. another segment on the torus) which can be written as a union of two intervals I_{0} and I_{1} (to be determined), i.e. it is such that $R_{\alpha}^{w_{i}}(x) \in I_{w_{i}}$ for all $i \in \mathbb{Z}$.

Exercise A2 Let $w=\left(w_{i}\right)_{i \in \mathbb{Z}}$ be a bi-infinite sequence in $\{0,1\}$. Recall that the complexity function $P=P_{\omega}: \mathbb{N} \rightarrow \mathbb{N}$ is defined by $P(n):=$ number of words of lenght n which occur inside w.
(a) Show that if w is periodic, $n \mapsto P(n)$ is bounded.
(b) Let x be a Birkhoff generic point for the doubling map $f(x)=2 x \bmod 1$. Let w be the itinerary of x with respect to the intervals $I_{0}=[0,1 / 2)$ and $I_{1}=[1 / 2,1)$. Show that in this case the complexity P grows exponentially, i.e. $P(n)=2^{n}$.
(a) Show w is periodic if and only if $n \mapsto P(n)$ is bounded.
[Actually a stronger result is true: w is periodic if and only if P is sublinear, i.e. $n \leq P(n)$ for each $n \in \mathbb{N}$.]
(c) Show that a square cutting sequence has complexity $P(n)=n+1$ for each $n \in \mathbb{N}$.

