ICTP Summer School on Dynamical Systems Rotations of the circle and renormalization Week 2 - Homework 1

Exercise A1 Let $\mathscr{A}=\{0,1\}$. Consider the two Sturmian substitutions

$$
\sigma_{0}:=\left\{\begin{array}{l}
\sigma_{0}(0)=0 \\
\sigma_{0}(1)=01
\end{array} \quad \sigma_{1}:=\left\{\begin{array}{l}
\sigma_{1}(0)=10 \\
\sigma_{1}(1)=1
\end{array}\right.\right.
$$

(a) Compute the word $u=\sigma_{0}^{2} \sigma_{1}^{4} \sigma_{0}^{3}(11)$ (applying the substitutions to the finite word 11). Consider a biinfinite word w which contains u, i.e. $w=\cdots u \cdots$ and compute its first three derivatives to recover the values $2,4,3$ (disregard the endings where you don't have information to derive).
(a') Compute (a part of) $\sigma_{0}^{2}(\overline{1})$ (here $\overline{1}$ is the periodic sequence 1), $\sigma_{0}^{2} \sigma_{1}^{4}(\overline{0})$ and $\sigma_{0}^{2} \sigma_{1}^{4} \sigma_{0}^{3}(\overline{1})$ and verify that they have common central blocks.
(b) From Theorem 1 and Theorem 2 proved in class show that for every square cutting sequence w there exists $\left(a_{n}\right)_{n \in \mathbb{N}}, a_{n} \in \mathbb{N}$ such that

$$
w \in \bigcap_{n \in \mathbb{N}} \sigma_{0}^{a_{0}} \sigma_{1}^{a_{1}} \sigma_{0}^{a_{2}} \cdots \sigma_{\epsilon_{n}}^{a_{n}}\{0,1\}^{\mathbb{Z}}
$$

where $\epsilon_{n}=0$ if n is even, 1 otherwise.
(b') Show also that

$$
w=\lim _{n \rightarrow \infty} \sigma_{0}^{a_{0}} \sigma_{1}^{a_{1}} \sigma_{0}^{a_{2}} \cdots \sigma_{0}^{a_{2 n}}(\overline{1})
$$

where $\overline{1}$ is the periodic sequence 1 and the limit is in the topology on shift spaces, i.e. it means that the sequences share longer and longer central blocks.
[This type of limit is know as an \mathscr{S}-adic expansion. More in general an \mathscr{S}-adic system, where \mathscr{S} is a finite collection of substitutions (here $\mathscr{S}=\left\{\sigma_{0}, \sigma_{1}\right\}$, consists of all sequences which admit an \mathscr{S}-adic expansion (with the shift dynamics).]

Exercise A2

(a) Show that every finite sequence u which is admissible with all its derivatives (when defined) can be realized as a square cutting sequence of a finite segment of a line. Deduce that every sequence which is infinitely derivable is in the closure of square cutting sequences.
(b) Find an example(s) of a sequence in $\{0,1\}^{\mathbb{Z}}$ which is infinitely derivable, but it is not a cutting sequence.

