ICTP Summer School on Dynamical Systems Rotations of the circle and renormalization Week 2 - Homework 3

Exercise A1 Consider the translation surface glued from a octagon as in Figure.

(a) Consider the vertical linear flow φ^{t} and let Σ be the horizontal diagonal drawn in red in the above Figure. Draw the Poincaré first return map T of φ^{t} to Σ to see that it is a piecewise isometry of Σ.
(b) Consider now a shorter horizontal transversal interval Σ^{\prime} contained in Σ and draw the first return map T^{\prime}. How does the number of continuity intervals of T^{\prime} changes as Σ^{\prime} changes? What is the minimum and maximum number of continuity intervals for T^{\prime} ?

Exercise A2 Consider again the traslation surface S in the above figure and the vertical linear flow φ_{t} on it.
(a) Show that all vertices are identified to a unique point P for the surface and that the vertical flow has a saddle with 6 prongs (as in Figure). Check also that if you rotate around P on S you rotate of angle 6π before closing up.
(b) Take now a surface glued from a (not necessarily regular) decagon with pairs of opposite parallel equal lenght sides, by identifying the pairs of such sides by translations. Compute its genus and show that the linear flow φ_{t}^{θ} (for a.e. choice of direction θ) has two saddles with 4 prongs each.

Exercise A3 (Fun problem) Consider the transformation S_{α} of \mathbb{R} / \mathbb{Z} obtained by exchanging two intervals and flipping the first, i.e. given by

$$
S_{\alpha}(x)=\left\{\begin{array}{l}
x-\alpha, \quad \text { if } \alpha \leq x<1 \\
(\alpha-x)+1-\alpha, \quad \text { if } 0 \leq x<\alpha
\end{array}\right.
$$

Show that, for every $\alpha>0, S_{\alpha}$ is periodic (i.e. all points have periodic orbits).
[This problem is known as a cutting the pie problem: if you cut a slice of a pie of angle $2 \pi \alpha$, flip it and rotate the cake by $2 \pi \alpha$ before putting it back, will the pie look the same again? It's a baby case of the study of IETs with flips, which are very different that IETs which are orientation preserving.]

