ICTP Summer School on Dynamical Systems Renormalization in entropy zero dynamics Week 2 - Homework 4

Exercise C1 Let T be a d-IET. Let α_{t} and α_{b} as in class. Assume that $\lambda_{\alpha_{t}} \neq \lambda_{\alpha_{b}}$.
(a) Draw an example of an IET where $\lambda_{\alpha_{t}}>\lambda_{\alpha_{b}}$ and compute the IET obtained by one step of Rauzy induction (case top); do it also for the case $\lambda_{\alpha_{b}}>\lambda_{\alpha_{t}}$ (case bottom).
(b) Show that for any subinterval $J=[a, b) \subset[0,1)$ the induced map T_{J} is an IET of at most $d+2$ intervals. When it is an IET of d or $d+1$ intervals?
(c) Let $T^{(n)}: I^{(n)} \rightarrow I^{(n)}$ be the induced IETs produced by Rauzy-Veech induction and let $\pi^{(n)}$ be their permutations. Show that the lenghts vector $\lambda^{(n)}=\left(\lambda_{\alpha}\right)_{\alpha \in \mathscr{A}}$ of $T^{(n)}$ and the return times vector $h^{(n)}=\left(h_{\alpha}^{(n)}\right)_{\alpha \in \mathbb{A}}$, where

$$
h_{\alpha}^{(n)}:=\min \left\{k \geq 1: \quad T^{k}\left(I_{\alpha}^{(n)}\right) \subset I^{(n)}\right\} .
$$

satisfy:

$$
\lambda^{(0)}=A_{0} A_{1} \ldots A_{n} \lambda^{(n+1)}, \quad h^{(n+1)}=A_{n}^{t} \cdots A_{1}^{t} A_{0}^{t} h^{(0)}
$$

(for convention $h_{\alpha}^{(0)}=1$ for all $\alpha \in \mathscr{A}$), where A^{t} denote the transpose of the matrix A and the matrices A_{n} are given by

$$
A_{n}= \begin{cases}I+E_{\alpha_{t} \alpha_{b}} & \text { in case top; } \\ I+E_{\alpha_{b} \alpha_{t}} & \text { in case bottom; }\end{cases}
$$

where I the $d \times d$ identity matrix, $E_{\alpha \beta}$ the matrix with a 1 entry in row α, column β and all other entries equal to 0 and α_{t} and α_{b} are the letters of the last two intervals of $T^{(n)}$, i.e. $I_{\alpha_{t}}^{(n)}$ is the last interval before the exchange (t for top row in the pictures), while $T\left(I_{\alpha_{b}}^{(n)}\right)$ is last after applying $T^{(n)}$ (b for bottom row in the pictures).

Exercise C2 Let T be a d-IET.
(a) Draw an example (for $d>2$!) and draw T^{2} and T^{3}.
(b) Show that in general T is an IET of at most $n(d-1)+1$ intervals.
(c) Deduce that if $\left(\alpha_{i}\right)_{i \in \mathbb{N}}$ is the itinerary of an orbit $\mathscr{O}_{T}^{+}(x)$ of a point $x \in[0,1)$ w.r.t. the natural coding (i.e. $T^{i}(x) \in I_{\alpha_{i}}$ for any $i \in \mathbb{N}$, the complexity P of the sequence $\left(\alpha_{i}\right)_{i \in \mathbb{N}}$ satisfies $P(n) \leq n(d-1)+1$.
(d) Show that if $\left(\lambda_{\alpha}\right)_{\alpha \in \mathscr{A}}$ are rationally independent, the orbits of the discontinuities of T are all distinct, i.e. there is no $\alpha, \beta \in \mathscr{A}$ and $n \geq 1$ such that $T^{n}\left(u_{\alpha}\right)=u_{\beta}$.
(e) Find an example of an IET which is minimal but has connections (i.e. there are $\alpha, \beta \in \mathscr{A}$ and $n \geq 1$ such that $\left.T^{n}\left(u_{\alpha}\right)=u_{\beta}\right)$.
[A triple (α, β, n) as in (d) is known as connection. An IET with no connections is said to satisfy Keane's condition and it is minimal (i.e. Keane's theorem holds for IETs with no connections, which are more general than IETs with rationally independent lenghts, as shown by (d).]

