ICTP Summer School on Dynamical Systems Renormalization in entropy zero dynamics Week 2 - Homework 4

Exercise C1 Let T be a d-IET. Let α_t and α_b as in class. Assume that $\lambda_{\alpha_t} \neq \lambda_{\alpha_b}$.

- (a) Draw an example of an IET where $\lambda_{\alpha_t} > \lambda_{\alpha_b}$ and compute the IET obtained by one step of Rauzy induction (case *top*); do it also for the case $\lambda_{\alpha_b} > \lambda_{\alpha_t}$ (case *bottom*).
- (b) Show that for any subinterval $J = [a, b) \subset [0, 1)$ the induced map T_J is an IET of at most d + 2 intervals. When it is an IET of d or d + 1 intervals?
- (c) Let $T^{(n)}: I^{(n)} \to I^{(n)}$ be the induced IETs produced by Rauzy-Veech induction and let $\pi^{(n)}$ be their permutations. Show that the lenghts vector $\lambda^{(n)} = (\lambda_{\alpha})_{\alpha \in \mathscr{A}}$ of $T^{(n)}$ and the return times vector $h^{(n)} = (h^{(n)}_{\alpha})_{\alpha \in \mathbb{A}}$, where

$$h_{\alpha}^{(n)} := \min\{k \ge 1 : T^k(I_{\alpha}^{(n)}) \subset I^{(n)}\}.$$

satisfy:

$$\lambda^{(0)} = A_0 A_1 \dots A_n \lambda^{(n+1)}, \qquad h^{(n+1)} = A_n^t \dots A_1^t A_0^t h^{(0)}$$

(for convention $h_{\alpha}^{(0)} = 1$ for all $\alpha \in \mathscr{A}$), where A^t denote the transpose of the matrix A and the matrices A_n are given by

$$A_n = \begin{cases} I + E_{\alpha_t \alpha_b} & \text{in case top;} \\ I + E_{\alpha_b \alpha_t} & \text{in case bottom;} \end{cases}$$

where I the $d \times d$ identity matrix, $E_{\alpha\beta}$ the matrix with a 1 entry in row α , column β and all other entries equal to 0 and α_t and α_b are the letters of the last two intervals of $T^{(n)}$, i.e. $I_{\alpha_t}^{(n)}$ is the last interval *before* the exchange (t for *top* row in the pictures), while $T(I_{\alpha_b}^{(n)})$ is last *after* applying $T^{(n)}$ (b for *bottom* row in the pictures).

Exercise C2 Let T be a d-IET.

- (a) Draw an example (for d > 2!) and draw T^2 and T^3 .
- (b) Show that in general T is an IET of at most n(d-1) + 1 intervals.
- (c) Deduce that if $(\alpha_i)_{i \in \mathbb{N}}$ is the itinerary of an orbit $\mathscr{O}_T^+(x)$ of a point $x \in [0, 1)$ w.r.t. the natural coding (i.e. $T^i(x) \in I_{\alpha_i}$ for any $i \in \mathbb{N}$, the complexity P of the sequence $(\alpha_i)_{i \in \mathbb{N}}$ satisfies $P(n) \leq n(d-1) + 1$.
- (d) Show that if $(\lambda_{\alpha})_{\alpha \in \mathscr{A}}$ are rationally independent, the orbits of the discontinuities of T are all distinct, i.e. there is no $\alpha, \beta \in \mathscr{A}$ and $n \geq 1$ such that $T^n(u_{\alpha}) = u_{\beta}$.
- (e) Find an example of an IET which is minimal but has connections (i.e. there are $\alpha, \beta \in \mathscr{A}$ and $n \geq 1$ such that $T^n(u_\alpha) = u_\beta$).

[A triple (α, β, n) as in (d) is known as *connection*. An IET with no connections is said to satisfy *Keane's condition* and it is minimal (i.e. Keane's theorem holds for IETs with no connections, which are more general than IETs with rationally independent lenghts, as shown by (d).]