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Chapter 1

Examples of dynamical systems

1.1 Introduction

Dynamical systems is an exciting and very active field in pure and applied mathematics, that involves tools and
techniques from many areas such as analyses, geometry and number theory and has applications in many fields as
physics, astronomy, biology, meterology, economics.

The adjective dynamical refers to the fact that the systems we are interested in is evolving in time. In applied
dynamics the systems studied could be for example a box containing molecules of gas in physics, a species population
in biology, the financial market in economics, the wind currents in metereology. In pure mathematics, a dynamical
system can be obtained by iterating a function or letting evolve in time the solution of equation.

Discrete dynamical systems are systems for which the time evolves in discrete units. For example, we could
record the number of individuals of a population every year and analyze the growth year by year. The time is
parametrized by a discrete variable n which assumes integer values: we will denote natural numbers by N and
integer numbers by Z. In a continuous dynamical system the time variable changes continuously and it is given a
real number t. We will denote real numbers by R.

Our main examples of discrete dynamical systems are obtained by iterating a map. Let X be a space. For
example, X could be the unit interval [0, 1], the unit square [0, 1]× [0, 1], a circle (but also the surface of a doughnut
or a Cantor set). Let f : X → X be a map. We can think as f as the map which gives the time evolution of the
points of X. If x ∈ X, consider the iterates x, f(x), f(f(x)), . . . .

Notation 1.1.1. For n > 0 we denote by fn(x) the nth iterate of f at x, i.e. f ◦f ◦ · · · ◦f , n times.1 In particular,
f1 = f and by convention f0 : is the identity map, which will be denoted by Id (Id(x) = x for all x ∈ X).

We can think of fn(x) as the status of the point x at time n. We call forward orbit2 the evolution of a point x.

Definition 1.1.1. We denote by O
+
f (x) the forward orbit of a point x ∈ X under iterates of the map f , i.e.

O
+
f (x) := {x, f(x), f2(x), . . . , fn(x), . . . }

= {fn(x), n ∈ N}.

Here N is the set of natural numbers including 0. This gives an example of a discrete dynamical system
parametrized by n ∈ N.

Example 1.1.1. Let X = [0, 1] be the unit interval. Let f : X → X be the map f(x) = 4x(1− x). For example

O
+
f

(

1

3

)

=

{

1

3
,
4

3

(

1− 1

3

)

=
8

9
, 4 · 8

9

(

1− 8

9

)

=
32

81
, . . .

}

.

Example 1.1.2. Let X be a circle of radius 1. An example of map f : X → X is the (clockwise) rotation by an
angle 2πα, which maps each point on the circle to the point obtained by rotating clockwise by an angle 2πα.

1Do not confuse this notation with the nth derivative, which will be denoted by f (n), or by the nth power, which will not be used!
2The name orbit cames from astronomy. The first dynamical system studied were indeed the solar system, where trajectory of a

point (in this case a planet or a star) is an orbit.
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If f is invertible, we have a well defined inverse f−1 : X → X and we can also consider backwards iterates
f−1(x), f−2(x), . . . .

Notation 1.1.2. If f is invertible and n < 0, we denote by fn(x) the nth iterate of f−1 at x, i.e. f−1◦f−1◦· · ·◦f−1,
n times. Note that even if f is not invertible, we will often write f−1(A) where A ⊂ X to denote the set of premimges
of A, i.e. the set of x ∈ X such that f(x) ∈ A.

Definition 1.1.2. If f is invertible, we denote by Of (x) the (full) orbit of a point x ∈ X under forward and
backward iterates of f , i.e.

Of (x) := {. . . , f−k(x), . . . , f−2(x), f−1(x), x, f(x), f2(x), . . . , fk(x), . . . }
= {fk(x), k ∈ Z}.

In this case, we have an example of discrete dynamical system in which we are interested in both past and
future and the time is indexed by Z.

Even if the rule of evolution is deterministic, the long term behavior of the system is often “chaotic.” For
example, even if two points x, y are very close, there exists a large n such that fn(x) and fn(y) are far apart. This
property (which we will express formally later) is known as sensistive dependence of initial conditions. There are
various mathematical definitions of chaos, but they all include sensitive dependence of initial conditions. Different
branches of dynamical systems, in particular topological dynamics and ergodic theory, provide tools to quantify
how chaotic is a systems and to predict the asymptotic behaviour. We will see that often even if one cannot predict
the behaviour of each single orbit (since even if deterministic it is too complicated), one can predict the average
behaviour.

The main objective in dynamical systems is to understand the behaviour of all (or almost all) the orbits. Orbits
can be fairly complicated even if the map is quite simple. A first basic question is whether orbits are finite or
infinite. Even if the index run through a infinite set (as N or Z) it could happen that Of (x) is finite, for example
if the points in the orbit repeat each other. This is the simplest type of orbit.

Definition 1.1.3. A point x ∈ X is periodic if there exists n ∈ N\{0}, such that fn(x) = x. If n = 1, so that we
have f(x) = x, we say that x is a fixed point. More in general, if fn(x) = x we say that x is periodic of periodic
n or that n is a period for x. In particular, fn+j(x) = f j(x) for all j ≥ 0.

Example 1.1.3. In example 1.1.1, the point x = 3/4 is a fixed point, since f(3/4) = 4 · 3/4(1− 3/4) = 3/4.

Example 1.1.4. In example 1.1.2, set α = 1/4, i.e. we consider the rotation by π/2, all points are periodic with
period 4 and all orbits consist of four points: the initial points are the points obtained rotating it by π/2, π and
3π/2.

Definition 1.1.4. If x is a periodic point, the minimal period of x is the minimum integer n ≥ 1 such that
fn(x) = x.

In particular, if n is the minimal period of x, the points f(x), . . . , fn−1(x) are all different than x. Be aware
that in some textbook the period of a periodic point x means the minimal period.

Definition 1.1.5. A point x ∈ X is preperiodic if there exists k ∈ N, n ∈ N \ {0} such that fn+k(x) = fk(x). In
this case fn+j(fk(x)) = f j(fk(x)) for all j ∈ N.

Exercise 1.1.1. Show that if f is invertible every preperiodic point is periodic.

Examples of questions that are investigated in dynamical systems are:

Q1 Are there fixed points? Are there periodic points?

Q2 Are periodic points dense?

Q3 Is there an orbit which is dense, i.e. an orbit which gets arbitrarily close to any other point in X?

Q4 Are all orbits dense?
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We will answer these questions for the first examples in the next lectures. More in general, these properties are
studied in topological dynamics3, see Chapter 2.

If an orbit is dense, it visits every part of the space. A further natural question is how much time it spends in
each part of the space. For example, let A ⊂ X be a subset of the space. We can count the number of visits of a
segment {x, f(x), . . . , fn(x)} of the orbit O+

f (x) to the set A. If χA denotes the characteristic function of A, i.e.

χA(x) =

{

1 if x ∈ A
0 if x /∈ A

,

let us count the number of visits

Card{0 ≤ k < n, such that fk(x) ∈ X} =

n−1
∑

k=0

χA(f
k(x))

and divide by n to get the frequency of visits in time n:

1

n

n−1
∑

k=0

χA(f
k(x)). (1.1)

Intuitively, orbit O+
f (x) is equidistributed if the frequency in (1.1) is getting closer and closer, as n increases, to the

volume of A (or the length, or the area, . . . )4. This means that the orbit asymptotically spends in each part of the
space a time proportional to the volume.

Q1 Are orbits equidistributed?

This last question is a main quesition in ergodic theory5 A priory, not even the existence of a limit of the frequency
(1.1) is guaranteed. One of the main theorems that we will see in Chapter 4, the Birkhoff ergodic theorem, will
show that for almost all points the limit exists and guarantee that if the system is enough chaotic (more precisely,
ergodic), than the frequency converge to the expected limit. As we will see, questions related to equidistributions
have many connections and applications in number theory.

Course Outline

The course will provide an introduction to subject of dynamical systems, from a pure-mathematical point of view.
The first part of the course will be driven by examples. We will present many fundamental examples of dynamical
systems, such as

• rotations of the circle;

• the doubling map;

• the baker map;

• automorphisms of the torus;

• the Gauss map and continued fractions.

Driven by the examples, we will introduce some of the phenomena and main concepts which one is interested in
studying.

In the second part of the course, we will formalize these concepts. We will then develop the mathematical
background and cover the basic definitions and some fundamental theorems and results in three areas of dynamical
systems:

• Topological Dynamics (Chapter 2)

• Symbolic Dynamics (Chapter 3)

• Ergodic Theory (Chapter 4)

During the course we will also mention some applications both to other areas of mathematics, such as number
theory, and to problems as data storage and Internet search engines. We will see that the algorithm for the widely
used search engine google is based on an idea which uses the theory of dynamical systems.

3Topological Dynamics is a branch of dynamics that investigate the properties of continous maps.
4More in general, we will have a measure on X (length, area and volume are all examples of measures) which is preserved by the

map f and we will ask if the frequency tends to the measure of A. See Chapter 4.
5Ergodic Theory is a branch of dynamics which investigate the chaotic properties of maps which preserves a measure.
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[2 ] B. Hasselblatt, A. Katok A First Course in Dynamics, Cambdrige University Press.

[3 ] M. Pollicott and M. Yuri Dynamical Systems and Ergodic Theory, London Mathematical Society.

1.2 Rotations of the circle:

periodic points and dense orbits

Consider a circle of unit radius. More precisely, we will denote by S1 the set

S1 = {(x, y)| x2 + y2 = 1} ⊂ R2.

Identifying R2 with the complex plane C, we can also write

S1 = {z ∈ C | |z| = 1} = {e2πiθ, 0 ≤ θ < 1} ⊂ C.

Consider a counterclockwise rotation Rα of angle 2πα > 0 on the circle (see Figure 1.1.2). It is given by

Rα(e
2πiθ) = e2πi(θ+α) = e2πiαe2πiθ.

We will refer to this formula for Rα as multiplicative notation, since rotating by 2πα in this complex notation is
equivalent to multiplying the complex number e2πiθ by e2πiα.

f(f(x))

f(x)

x

Figure 1.1: A rotation of S1.

[We can also consider rotations by negative angles 2πα < 0, with the convention that they represent clockwise
rotations by |2πα|.]

There is a natural distance d(z1, z2) between points on S1, which is induced by the arc length distance. The
arc length distance between two points is the length of the shortest arc connecting the two points. We will
renormalized the arc length distance by dividing by 2π. Thus, d will denote the arc length distance divided by 2π.
Since θ1, θ2 ∈ [0, 1), we have |θ1 − θ2| < 1. If |θ1 − θ2| ≤ 1

2 the arc length is

d(e2πiθ1 , e2πiθ2) =
arc length distance

2π
=

2π|θ1 − θ2|
2π

= |θ2 − θ1|.
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If 1
2 ≥ |θ1 − θ2|,

d(e2πiθ1 , e2πiθ2) =
arc length distance

2π
=

2π − 2π|θ1 − θ2|
2π

= 1− |θ2 − θ1|.

The rotation preserves this distance, meaning that

d(Rα(z1), Rα(z2)) = d(z1, z2), for all z1, z2 ∈ S1.

This is clear from the geometric picture, since both points are rotated by the same angle 2πα. Thus, the rotation
of the circle is an example of an isometry, i.e. a map which preserves a distance.

There is another alternative way to describe a circle, that will be often more convenient. Imagine to cut open
the circle to obtain an interval. Let I/∼ denote the unit interval with the endpoints identified: the symbol ∼ recalls
us that 0 ∼ 1 are glued together. Then I/∼ is equivalent to a circle.

More formally, consider R/Z, i.e. the space whose points are equivalence classes x+ Z of real numbers x up to
integers: two reals x1, x2 ∈ R are in the same equivalence class iff there exists k ∈ Z such that x1 = x2 + k. Then
R/Z = I/∼ since the unit interval I = [0, 1] contains exactly one representative for each equivalence class with the
only exception of 0 and 1, which belong to the same equivalence class, but are identifyed.

The map Ψ : R/Z → S1 given by
x 7→ Ψ(x) = e2πix. (1.2)

establishes a one-to-one correspondence between R/Z and S1. The distance d given by arc length divided by 2π,
gives the following distance on R/Z, that we will also denote with the same symbol d:

d(x, y) = min
m∈Z

|x− y +m|. (1.3)

Exercise 1.2.1. Consider the map Ψ : R/Z → S1 given in (1.2).

(a) Check that Ψ is well-defined on R/Z and establishes a one-to-one correspondence between R/Z and S1.

(b) Show that the distance d on R/Z induced by the distance d on S1, that is the distance defined by

d(x, y) = d(Ψ(x),Ψ(y)), ∀x, y ∈ R/Z.

satisfy (1.3).

We will write equivalenlty [0, 1]/∼ or R/Z to denote the interval with glued endopoints. The counterclockwise
rotation Rα, under the identification between S1 and R/Z given by (1.2), becomes the map Rα : R/Z → R/Z given
by

Rα = x+ α mod 1,

where mod 1 means that we subtract the integer part (for example 3.14 mod 1 = 0.14), hence taking the repre-
sentative of the equivalence class x+ α+ Z which lies in [0, 1). We call α the rotation number of Rα (remark that
the rotation angle is 2πα). More explicitely, if x, α ∈ [0, 1) we have

Rα(x) =

{

x+ α if x+ α < 1
x+ α− 1 if x+ α ≥ 1.

We call this additive notation (since here the rotation becomes addition mod 1).

Rotations of the circle display a very different behaviour according if the rotation number α is rational (α ∈ Q)
or irrational (α ∈ R\Q). Let us give the definition of density for an orbit of a rotation:

Definition 1.2.1. The orbit O
+
Rα

(z1) is dense if for all z2 ∈ S1 and for all ǫ > 0 there exists n > 0 such that
d(Rnα(z1), z2) < ǫ.

Theorem 1.2.1 ((Dichotomy for Rotations)). Let Rα : R/Z → R/Z be a rotation of the circle.

(1) If α = p/q is rational, with p, q ∈ Z, all orbits are periodic of period q;

(2) If α is irrational, for every point z1 ∈ S1 the orbit O+
Rα

(z1) is dense.

5 c© University of Bristol 2010 & 2016
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In both cases the dynamics of the rotation is quite simple to describe: either all orbits are periodic, or all orbits
are dense.

In the proof we will use the following elementary principle, which is called Pigeon Hole Principle (also known
as Shoebox Principle):

Pigeon Hole Principle. Given N boxes and N + 1 objects, there is one box which contains at least two objects.

Proof of Theorem 1.2.1. Let us first prove (1). Let us use the additive notation for Rα. Let α = p/q with p, q ∈ Z.
Then for each x ∈ R/Z

Rqα(x) = x+ q
p

q
mod 1 = x+ p mod 1 = x.

Thus every point is periodic of period q. This proves (1).

Let us now prove (2). In this case it will be convenient to work on S1 and use multiplicative notation. Assume
that α is irrational.

Step 1: Let us first show that the each orbit consist of infinitely many distinct points, or, in other words, that
for each z1 = e2πix1 ∈ S1, for all m 6= n, Rnα(e

2πix1) 6= Rmα (e2πix1).

Let us argue by contradiction. If Rnα(e
2πix1) and Rmα (e2πix1) were equal,

e2πi(x1+mα) = e2πi(x1+nα), thus

2π(x1 +mα) = 2π(x1 + nα) + 2πk for some integer k ∈ N, thus simplifying

mα = nα+ k.

But since m 6= n, this shows that α = k/(m− n), contradicting the assumption that α is irrational.

Step 2: Let us show that for any ǫ > 0 there exists two distinct points Rnα(z1), R
m
α (z1) in the orbit O

+
Rα

such

that d(Rnα(z1), R
m
α (z1)) ≤ 1

N
< ǫ.

Let N be big enough so that 1/N < ǫ. Consider the points z1, Rα(z1), . . . , R
N
α (z1). Since as we proved before

are all points in any orbit are distinct, these are N + 1 distinct points. Thus, if we divide the cirle into N arcs of
equal length, it follows by the Pigeon Hole principle that at least two of the first N +1 distinct points of the orbit
have to fall inside the same arc, that is there exists n,m with 0 ≤ n < m ≤ N so that

d(Rnα(z1), R
m
α (z1)) ≤

1

N
< ǫ.

Step 3: Finally, to show that the orbit of z1 ∈ S1 is dense, we have to show that for each z2 ∈ S1 and ǫ > 0
there is a point of O+

Rα
(z1) inside the ball B(z2, ǫ).

Consider now Rm−n
α . We claim that it is again a rotation by an angle smaller than 2πǫ. First of all, we see that

Rm−n
α (z1) = e2πi(m−n)αz1 = R(m−n)α(z1),

so that Rm−n
α is a rotation by an angle 2π(m−n)α (counterclockwise or clockwise according to the sign). By Step

2 and using that Rα and hence also Rmα are isometries, we have that

d(Rn−mα (z1), z1) = d
(

Rmα
(

Rn−mα (z1)
)

, Rm(z1)
)

= d(Rnα(z1), R
m
α (z1)) ≤

1

N
< ǫ.

This shows that the rotation Rm−n
α moves points by an arc of length less than 2π/N , i.e. by distance less than

1/N < ǫ.
Thus, if we consider the points in the orbit ORm−nα, that is

z1, R
(m−n)
α (z1), R

2(m−n)
α (z1), R

3(m−n)
α (z1), . . . ,

their spacing on S1 is less than πǫ, or in other words the distance between two consecutive points is less than ǫ

(recall that the distance is the arc length divided by 2π). Thus, there will be a j > 0 such that R
j(m−n)
α (z1) enters

the ball B(z2, ǫ). Since R
j(m−n)
α (z1) belongs to ORα

(z), this concludes the proof that every orbit is dense.

Exercise 1.2.2. Prove that if α = p/q and (p, q) = 1 i.e. p and q are coprime, then q is the minimal period, i.e.
for each x ∈ R/Z we have Rkα(x) 6= x for each 1 ≤ k < q.
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Remark 1.2.1. If α = p/q and (p, q) = 1 then |p| gives the winding number, i.e. the number of “ turns” that the
orbit of any point does around the circle S1 before closing up.

Exercise 1.2.3. Let X = R/Z× R/Z and let

f(x1, x2) = (Rα1
(x1), Rα2

(x2)).

where α1, α2 are real numbers. Assume that at least one of α1, α2 is irrational.

(a) Write down the the nth-term of the orbit O+
f (x) of x = (x1, x2) under f and show that all points in the orbit

O
+
f (x) of x under f are distinct.

(b) Show that for any x = (x1, x2) ∈ R2 and any N positive integer there exists 1 ≤ n ≤ N2 such that

d(fn(x), x) ≤
√
2

N
,

where d denotes the distance on X induced by the Euclidean distance on R× R.

1.3 The Doubling Map: coding and conjugacy

Consider the following map on [0, 1), known as doubling map:

f(x) = 2x mod 1 =

{

2x if 0 ≤ x < 1/2,
2x− 1 if 1/2 ≤ x < 1.

(1.4)

The graph is shown in Figure 1.2. The map is well defined also on R/Z = [0, 1]/∼. To check that, we have to check

1/2 10

1

2x−12x

Figure 1.2: The graph of the doubling map.

that the points 0 and 1 which are identified have equivalent images. But this is true since f(1) = 1 and f(0) = 0
and hence f(0) = f(1) mod 1. So we can think of f as a map on R/Z = I/∼. Since we saw that R/Z is identified
with S1 (via the correspondence given by x→ e2πix, see § 1.2), we can see f in multiplicative coordinates as a map
from S1 → S1 given by

f(e2πiθ) = e2πi2θ = (e2πiθ)2. (1.5)

Thus the angles are doubled and this explains the name doubling map. Moreover, one can see that the map f on
S1 is continuous.

Note that f is not invertible: each point has two preimages:

f−1(y) =

{

y

2
,
y

2
+

1

2

}

.
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Note also that f expands distances. If d(x, y) < 1/4, then

d(f(x), f(y)) = 2d(x, y).

Let us try to answer the following questions for f :

Q. 1 Are there periodic points?

Q. 2 Are there points with a dense orbit?

In order to answer these questions, we will show two powerful techniques in dynamical systems, conjugacy and
coding.

1.3.1 Conjugacy and semi-conjugacy

Let X,Y be two spaces and f : X → X and g : Y → Y be two maps.

Definition 1.3.1. A conjugacy between f and g is an invertible map ψ : Y → X such that ψ ◦ g = f ◦ ψ, i.e. for
all y ∈ Y

ψ(g(y)) = f(ψ(y)).

Since ψ is invertible, we can also write g = ψ−1 ◦ f ◦ ψ.

The relation ψ ◦ g = f ◦ψ is often expressed by saying that the diagram here below commutes, i.e. one can start
from a point in y ∈ Y in the left top corner and indifferently apply first the arrow g and then the arrow ψ on the
right side of the diagram or first the arrow ψ on the left side and then the arrow f and the result is the same point
in the bottom right corner.

Y
g−−−−→ Y





y
ψ





y
ψ

X
f−−−−→ X

In the following we will often drop “◦” from the notation for composition, and write gf instead of g ◦ f (as
there is usually no danger of confusion with the notation of a product of two functions).

Lemma 1.3.1. If f and g are conjugated by ψ, then y is a periodic point of period n for g if and only if x = ψ(y)
is a periodic point of period n for f .

Exercise 1.3.1. Check by induction that if ψg = fψ, then ψgn = fnψ. If ψ is invertible, we also have gn =
ψ−1gnψ.

Proof. Assume that gn(y) = y. Then, by the exercise above

fn(ψ(y)) = ψ(gn(y)) = ψ(y),

so ψ(y) is a periodic point of period n for f .
Conversely, assume that fn(ψ(y)) = ψ(y). Then since ψ is invertible, by the previous exercise we also have

gn = ψ−1gnψ. Thus
gn(y) = ψ−1(fn(ψ(y))) = ψ−1(ψ(y)) = y,

so y is periodic of period n for g.

Thus, if the periodic points of the map g are easier to understand than the periodic points of the map f , through
the conjugacy one can gain information about periodic points for f . We will see that this is exactly the case for
the doubling map.

Definition 1.3.2. A semi-conjugacy from g : Y → Y to f : X → X is a surjective map ψ : Y → X such that
ψg = fψ, i.e. for all y ∈ Y

ψ(g(y)) = f(ψ(y)),

8 c© University of Bristol 2010 & 2016
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or, equivalently, such that the diagram below commutes:

Y
g−−−−→ Y





y
ψ





y
ψ

X
f−−−−→ X

In this case we say that g : Y → Y is an extension of f : X → X and that f : X → X is a factor of g : Y → Y
(or simply that g is an extension of f and f a factor of g). We will also say that f and g are semi-conjugated by
ψ. Note that if ψ : Y → X this will implicity mean that g : Y → Y is an extension and f : X → X is a factor.

Exercise 1.3.2. If there is semi-conjugacy ψ from g to f and y is a periodic point of period n for g, then ψ(y) is
a periodic point of period n for f .

Remark 1.3.1. There are examples of f and g which are semi-conjugated by ψ and such that ψ(y) is a periodic
point of period n for f , but y is not a periodic point for g. We will see such an example using the baker map in a
few classes.

1.3.2 Doubling map: semi-conjugacy and binary expansions

We will define a (semi)conjucagy between the doubling map and an abstract space that will help us understand
points with periodic and dense orbits.

Given x ∈ [0, 1], we can express x in binary expansion, i.e. we can write

x =

∞
∑

i=1

xi
2i

where xi are digits which are either 0 or 1. Binary expansions are useful to study the doubling map because if we
apply the doubling map:

f(x) = 2x mod 1 =
∞
∑

i=1

2
xi
2i

mod 1 = x0 +
∞
∑

i=2

xi
2i−1

mod 1 =
∞
∑

i=2

xi
2i−1

and if we now change the name of the index, setting j = i− 1, we proved that

if x =
∞
∑

i=1

xi
2i
, then f(x) =

∞
∑

i=2

xi
2i−1

=
∞
∑

j=1

xj+1

2j
(1.6)

i.e. the binary expression of f(x) is such that the digits are shifted by 1.
Let us construct a map on the space of digits of binary expansion which mimic this behavior.

Let Σ+ = {0, 1}N be the set of all sequences of 0 and 1:

Σ+ = {(ai)∞i=1, ai ∈ {0, 1}}.

The points (ai)
∞
i=1 ∈ Σ+ are one-sided sequences of digits 0,1, for example a point is

0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0 . . .

The shift map σ+ is a map σ+ : Σ+ → Σ+ which maps a sequence to the shifted sequence:

σ((ai)
∞
i=1) = (bi)

∞
i=1, where bi = ai+1.

The sequence (bi)
∞
i=1 is obtained from the sequence (ai)

∞
i=1 by dropping the first digit a1 and by shifting all the

other digits one place to the left. For example, if

(ai)
∞
i=1 = 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0 . . .

(bi)
∞
i=1 = 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0 . . .
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Note that σ+ is not invertible, because if we know σ((ai)
∞
i=1) we cannot recover (ai)

∞
i=1 since we lost the information

about the first digit.

Define the following map ψ : Σ+ → [0, 1]. For each (ai)
∞
i=1 ∈ Σ+ set

ψ((ai)
∞
i=1) =

∞
∑

i=1

ai
2i

∈ [0, 1].

The map is well defined since the series
∑∞
i=1

ai
2i ≤ ∑∞

i=1
1
2i which is convergent. The map ψ associates to a

sequence of 0 and 1 a number in [0, 1] which has ai as digits of the binary expansion. Remark that ψ also defines
a map on R/Z = [0, 1]/∼ just by composing with the projection modulo one. We will denote by ψ also the map
ψ : Σ+ → R/Z.

One can see that ψ is surjective since each real x ∈ [0, 1] has a binary expansion (in the next section, §1.3.3, we
will show how to produce a binary expansion). On the other hand, it is not injective, since there are numbers which
have two binary expansions. In the same way that in decimal expansion we can write 1.00000 · · · = 0.999999 . . . ,
binary expansions which have an infinite tails of 1 yield the same number that an expansion with a tail of 0, for
example

1

2
=

1

2
+

∞
∑

i=2

0

2i
but also

1

2
=

∞
∑

i=2

1

2i
.

One can check that these ambiguity happens only for rational numbers of the form k/2n, whose denominator is a
power of 2, that we will call dyadic rationals. For all other numbers ψ is a bijection.

Exercise 1.3.3. Let D be the set of all dyadic rationals, that is all rational numbers of the form

D =

{

k

2n
, 0 ≤ k < 2n, n ∈ N\{0}

}

.

Show that any dyadic rational has two binary expansions, one ending with a tail of 0s and the other ending with a
tail of 1s (that is ending in 0, 0, 0, . . . or 1, 1, 1, . . . ).

Proposition 1. The map ψ : Σ+ → R/Z is a semi-conjugacy between the shift map σ+ : Σ+ → Σ+ and the
doubling map f : R/Z → R/Z.

Proof. Let us check that ψ is surjective. Since every point x ∈ [0, 1] has at least one binary expansion, we can write
x =

∑∞
i=1 ai/2

i where ai ∈ {0, 1}. Thus, the sequence a = (ai)
∞
i=1 ∈ Σ+ of its binary digits is such that ψ(a) = x

by definition of the ψ.
Thus, we are left to prove that the following diagram commutes:

Σ+ σ+

−−−−→ Σ+





y
ψ





y
ψ

R/Z
f−−−−→ R/Z

Take any (ai)
∞
i=1 ∈ Σ+. Let us first compute ψ(σ+((ai)

∞
i=1)):

ψ(σ+((ai)
∞
i=1)) = ψ((bi)

∞
i=1) =

∞
∑

i=1

bi
2i

=

∞
∑

i=1

ai+1

2i
,

since bi = ai+1. Let us now compare with f(ψ((ai)
∞
i=1)):

f(ψ((ai)
∞
i=1)) = f

( ∞
∑

i=1

ai
2i

)

=

∞
∑

i=1

2ai
2i

mod 1 =

∞
∑

j=1

aj+1

2j

in virtue of the computation done in (1.6). Thus the results are the same. This concludes the proof.

Remark: The semi-conjugacy ψ between the doubling map f and the shift σ+ is very close to be an actual
conjugacy, since ψ fails to be a conjugacy only on a countable set. If one removes a countable set of points, one
gets a conjugacy. Another way to obtain a conjugacy on the full space is explained in Extra A.3.1.
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Exercise 1.3.4. Let Σ′ ⊂ Σ be obtained removing all sequences with a tail of 0s or with a tail of 1s Verity that
ψ : Σ′ → R/Z is injective. On which subset X ′ ⊂ R/Z we have that ψ : Σ′ → X ′ is also surjective and thus is a
one to one correspondence?
[Hint: recall the previous exercise on dyadic rationals.]

The map ψ : Σ+ → R/Z defined above sends a sequence in 0 and 1 to the corresponding binary expansion.
Conversely, given a point x ∈ [0, 1], we are going to see how one can construct a binary expansion for x using
symbolic coding.

Periodic points

Given a dynamical system f : X → X, we will denote by Pern(f) the set of all periodic points of period n for f
and by Per(f) the set of all periodic points, that is

Pern = {x ∈ X, fn(x) = x}, P er(f) =

∞
⋃

n=1

Pern(f).

The set of periodic points of the doubling map can be studied directly by solving the periodic point equation.

Exercise 1.3.5. Find all points in Pern(f) for the doubling map f by directly solving the equation fn(x) = x.

Let d be a distance on X, for example the arc length distance on S1 or d(x, y) = |x − y| on the unit interval
(see more about distances in the next chapter).

Definition 1.3.3. We say that the set of periodic points of f : X → X is dense if for any y ∈ X and any ǫ > 0
there exists x ∈ Per(f) such that d(x, y) < ǫ.

Thus, if periodic points are dense, there exists periodic points arbitrarily close to any point of the space. Let us
remark that density of the set of periodic points is not related to density of single orbits: if x is a periodic point,
its orbit O

+
f (x) contains only finitely many points and thus cannot be dense if the space is infinite.

By using the explicit list of periodic points (see Exercise above), one can show that periodic points for the
doubling map are dense.

Exercise 1.3.6. Prove that the periodic points for the doubling map are dense.
[Hint: use the previous exercise.]

There is another method to find periodic points for the doubling map, which uses the correspondence given by
ψ and the knowledge of periodic points for the shift map, which are easy to describe. We illustrate now this method
becouse it is very general and it allows to construct periodic points for maps for which the periodic point equation
cannot be solved explicitely, but it is nevertheless possible to construct conjugacies with the shift by using coding.

Periodic points for σ+ are simply points (ai)
∞
i=1 whose digits are repeated periodically. For example, if we

repeat the digits 0, 1, 1 periodically, we get a periodic point of period 3:

(ai)
∞
i=1 = 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, . . .

σ+ ((ai)
∞
i=1) = 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, . . .

(σ+)2 ((ai)
∞
i=1) = 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, . . .

(σ+)3 ((ai)
∞
i=1) = 0, 1, 1, 0, 1, 1, 0, 1, 1, . . . = (ai)

∞
i=1

More in general, if an+i = ai for all i ∈ N, then

(σ+)n ((ai)
∞
i=1) = (an+i)

∞
i=1 = (ai)

∞
i=1,

so (ai)
∞
i=1 is periodic of period n.

Theorem 1.3.1. The doubling map f : R/Z → R/Z has 2n − 1 periodic points of period n. Moreover, periodic
points are dense.
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The second part of the theorem states that there are periodic points arbitrarily close to any other point. More
precisely, for any x ∈ R/Z and any ǫ > 0 there exists a periodic point y such that d(x, y) < ǫ, where d is the
distance on R/Z.

Proof. Since the shift map σ+ and the doubling map f are semi-conjugated, periodic points of period n for
σ+ : Σ+ → Σ+ are mapped to periodic points of period n for f (not necessarily distint). Periodic points of period
n for σ+ are all sequences whose digits repeat periodically with period n. Thus, there are 2n such sequences, since
we can choose freely the first n digits in {0, 1} and then repeat them periodically. Note that the sequence 0, 0, 0, . . .
is mapped to 0 and the sequence 1, 1, 1, . . . is mapped to 1, which are the same point in R/Z = I/∼. Moreover, one
can check that these are the only two periodic sequences which, applying Ψ, give identical periodic points6. Thus,
there are 2n − 1 periodic points of period n.

The second part was proved in Exercise 1.3.6.

Example 1.3.1. The periodic points of period 3 for σ+ are the periodic sequences obtained repeating the blocks of
digits:

000 001 010 011 100 . . . , 101 . . . , 110 . . . , 111

Let us take the corresponding binary expansions. Since ai+3 = ai for all i ∈ N we have

∞
∑

i=1

ai
2i

=
(a1
2

+
a2
22

+
a3
23

)

+
(a1
24

+
a2
25

+
a3
26

)

+ · · · =
∞
∑

j=0

(a1
2

+
a2
22

+
a3
23

) 1

(23)j

So, for example, starting from the sequence obtained repeating the block 101 we obtain

∞
∑

j=0

(

1

2
+

0

4
+

1

8

)

1

8j
=

5

8

∞
∑

j=0

1

8j
=

5

8

1
(

1− 1
8

) =
5

7
.

Thus, we find the 7 = 23 − 1 periodic points of period 3 for the doubling map are

0,
1

7
,
2

7
,
3

7
,
4

7
,
5

7
,
6

7
.

1.3.3 Symbolic coding for the doubling map

Consider the two intervals

P0 =

[

0,
1

2

)

, P1 =

[

1

2
, 1

)

.

They give a partition7 {P0, P1} of [0, 1]/∼, since P0 ∩ P1 = ∅ and P0 ∪ P1 = [0, 1]/∼. Let φ : I/∼→ Σ+ be the map

x→ φ(x) = (ak)
∞
k=0, where

{

ak = 0 if fk(x) ∈ P0,
ak = 1 iffk(x) ∈ P1.

The sequence a0, a1, a2, . . . , ak, . . . is called the itinerary of O+
f (x) (or, for short, the itinerary of x) with respect

to the partition {P0, P1}: it is obtained by iterating fk(x) and recording which interval, whether P0 or P1, is visited
at each k. In particular, if a0, a1, a2, . . . , ak, . . . is called the itineary of O+

f (x) we have

x ∈ Pa0 , f(x) ∈ Pa1 , f
2(x) ∈ Pa2 , . . . f

k(x) ∈ Pak , . . .

Remark 1.3.2. The idea of coding an orbit by recording its itineary with respect to a partition is a very powerful
technique in dynamical systems. It often allow to conjugate a dynamical system to a shift map on a space of symbols.
These symbolic spaces will be studied in Chapter 2 and, even if at first they may seem more abstract, they are well
studied and often easier to understand then the original system.

Itineraries of the doubling map produce the digits binary expansions, in the following sense:

6To see that, one can use that two binary expansions that produce the same number have one an infinite tail of digits 0 and the
other an infinite tail of digits 1 and the only periodic sequences which are eventually equal to 0 or eventually equal to 1 are the sequence
where all digits are 0 and the sequence where all digits are 1.

7A finite (countable) partition of a set X is a subdivision of X into finitely many (respectively countably many) subsets Xi ⊂ X

that are pairwise disjoint, that is Xi ∩Xj = ∅ for all i 6= j, and cover X, that is such that ∪iXi = X.
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Proposition 2. If a0, a1, . . . , an, . . . is the itinerary of the point x ∈ [0, 1], one has

x =
a0
2

+
a1
22

+
a2
23

+ · · · =
∞
∑

i=1

ai−1

2i
, (1.7)

that is a0, a1, . . . , an, . . . are the digits of a8 binary expansion of x.

Before proving the proposition let us remark that another equivalent way to express that the doubling map
gives the digits of a binary expansion of a point is the following:

Corollary 1.3.1. The map φ : R/Z → Σ+ is a right inverse for the map ψ : Σ+ → I/∼ constructed before,
i.e. ψ ◦ φ : R/Z → R/Z is the identity map.

Indeed, given a point x ∈ [0, 1), first φ(x) = (ai)
∞
i=0 gives its itinerary a0, a1, a2, . . . and then ψ((ai)

∞
i=0) produces

a point whose binary expansion has digits ai, which, by (1.7) yield back the same point x.
[The map φ is not a left inverse, i.e. the map φ◦ψ : Σ+ → Σ+ is not necessarily the identity map. For most points,
it is indeed identity, but the problem is related to points in X which have two binary expansions: the coding map
φ yields only one of the two expansions.]

Exercise 1.3.7. Give an example a point (ai)
∞
i=0 such that φ(ψ((ai)

∞
i=0) 6= (ai)

∞
i=0.

[This shows that φ is not a right inverse for ψ. ]

Proof of Proposition 2. Let a0, a1, . . . , an, . . . be the itinerary of O+
f (x) with respect to x. We have to check that

it gives a binary expansion for x, that is that we can write

x =
a0
2

+
a1
22

+
a2
23

+ · · · =
∞
∑

i=1

ai−1

2i
.

Step 1 (i = 0) If the first digit of the itinerary is a0 = 0, x ∈ P0, that is 0 ≤ x < 1/2. Thus the first digit of the
binary expansion of x is 0 (since, if it were 1, we would have x = 1

2 + . . . which is larger than 1/2). Similarly, if
a0 = 1, x ∈ P1, that is 1/2 ≤ x < 1 and we can take 1 as first digit of the binary expansion of x.

Step 2 (i = k) To show that the kth entry ak gives the kth digit of the binary expansion of x, we can apply the
doubling map k times and recall that if x1, x2, . . . , xk, . . . are digits of a binary expansion of x, since the doubling
map acts as a shift on binary expansions, the digits of fk(x) are xk+1, xk+1, . . . . Moreover, by definition of itinerary,
the itinerary of fk(x) is ak, ak+1, ak+1, . . . . Now, we can reason as before: if ak = 0 (respectively ak = 1), then
fk(x) ∈ P0 (respectively P1) and 0 ≤ fk(x) < 1/2 (respectively 1/2 ≤ fk(x) < 1). Thus, we see that the first digit
of the binary expansion of fk(x), that is xk+1, is 0 (respectively, can be taken to be 1).

Let a0, a2, . . . , an be an (n+ 1)−tuple of digit 0 or 1. Let

I(a0, a1, . . . , an) = {x ∈ [0, 1) such that φ(x) = (a0, a1, . . . , an, . . . )}
= {x ∈ [0, 1) such that fk(x) ∈ Pak for all 0 ≤ k ≤ n}

These are all points whose itinerary (and also whose binary expansion) starts with a1, a2, . . . , an. In order to
construct them, one can use that

I(a0, a1, . . . , an) = Pa0 ∩ f−1(Pa1) ∩ · · · ∩ f−n(Pan).

If x belongs to the intersection in the right hand side, clearly x ∈ Pa0 , f(x) ∈ Pa1 , . . . , f
n(x) ∈ Pan , so by definition

the itinerary starts with the block a0, a1, . . . an.
For example we have I(0) = P0, I(1) = P1 and (see Figure 1.3)

f−1(P1) =

[

1

4
,
1

2

)

∪
[

3

4
, 1

)

, so that I(0, 1) = P0 ∩ f−1(P1) =

[

1

4
,
1

2

)

.

Repeating for the other pairs of digits we find:

I(0, 0) =

[

0,
1

4

)

, I(0, 1) =

[

1

4
,
1

2

)

, I(1, 0) =

[

1

2
,
3

4

)

, I(1, 1) =

[

3

4
, 1

)

.

More in general, one can prove by induction that

8Note that if x has two binary expansions, the itinerary will produce only one of them.
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1/2 10

1

1/2

1/4 3/4

I(1)

I(0,1) I(1,1)

Figure 1.3: The intervals I(0, 1) and I(1, 1) for the doubling map.

(P1) each I(a0, a1, . . . , an) is an interval of length 1/2n+1;

(P2) as a0, a1, . . . , an ranges through all possible (n+1)−tuples of digit 0 or 1 (which are 2n+1, as many as choices
of n + 1 digits in {0, 1}), one obtains a partition of [0, 1) into 2n+1 intervals of length 1/2n+1 (as in the
example for n = 2 above):

⋃

(a0,...,an)∈{0,1}n+1

I(a0, a1, . . . , an) = [0, 1).

Each interval is a dyadic interval of the form

[

k

2n+1
,
k + 1

2n+1

)

, where 0 ≤ k < 2n+1.

Let us use conjugacy and coding to construct a dense orbit for the doubling map.

Theorem 1.3.2. Let f be the doubling map. There exists a point x whose forward orbit O+
f (x) under the doubling

map is dense.

Proof. Step 1 We claim that to prove that an orbit O
+
f (x) is dense, it is enough to show that for each n ≥ 1

it visits all intervals of the form I(a0, a1, . . . , an). Indeed, if this is the case, given y ∈ I and ǫ > 0, take N
large enough so that 1/2N+1 ≤ ǫ and take the interval I(a0, a1, . . . , aN ) which contains y (one of them does since
they partition [0, 1) by (P2) above). If we showed that there is a point fk(x) in the orbit O

+
f (x), which visits

I(a0, a1, . . . , aN ), since both y and fk(x) belong to I(a1, . . . , aN ) (which has size 1/2N+1 by (P1) above), we have
d(fk(x), y) ≤ 1/2N+1 < ǫ. This shows that O+

f (x) is dense.

Step 2. To construct an orbit which visits all dyadic intervals, we are going to construct its itinerary as a
sequence in Σ+ first. Let us now list for each n all the possible sequences a0, a1, . . . , an of length n (there are 2n+1

of them) and create a sequence (ai)
∞
i=0 by just apposing all such sequences for n = 0, then n = 1, then n = 2 and

so on:
0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, . . .

Step 3. Let us consider now the point x := ψ((ai)
∞
i=0) which has the sequence (ai)

∞
i=0 as digist of its binary

expansion. Let us show that its orbit visits all intervals of the form I(a0, a1, . . . , an) and thus that it is dense by
Step 1. To see that, it is enough to find where the block a0, a1, . . . , an appears inside (ai)

∞
i=0, for example at ak =

a0, ak+1 = a1, . . . , ak+n = an. Then, since the itinerary of fk(x) by definition of itinerary is ak, ak+1, . . . , ak+n, . . . ,
this shows that

fk(x) ∈ I(ak, ak+1, . . . , ak+n) = I(a0, a1, . . . , an),

so fk(x) is the point in O
+
f (x) which visits I(a0, a1, . . . , an). This concludes the proof that O+

f (x) visits all dyadic
intervals and hence that it is dense.

Exercise 1.3.8. Draw all intervals of the form I(a1, a2, a3) where a1, a2, a3 ∈ {0, 1}.
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Linear expanding maps.

We remarked earlier that the doubling map doubles distances: if x, y ∈ R/Z are any two points such that d(x, y) <
1/4, then d(f(x), f(y)) = 2d(x, y), that is, the distance of their images is doubled. The doubling map is an example
of an expanding map:

Definition 1.3.4. A one-dimensional map g : I → I of an interval I ⊂ R is called an expanding if it is piecewise
differentiable, that is we can decompose I into a finite union of intervals on each of which g is differentiable, and
the derivative g′ satisfies |g′(x)| > 1 for all x ∈ I.

More precisely, the doubling belongs to the family of linear expanding maps of the circle: for each m ∈ Z with
|m| > 1 the map Em : R/Z → R/Z is given by

Em(x) = mx mod 1 (or equivalently Em(z) = zk on S1).

The doubling map is the same than E2. These maps can be studied analogously, by considering expansion in base
m instead than binary expansions. One can prove that they are semi-conjugated with the shift σ+ on the space

Σ+
m = {0, 1, . . . ,m− 1}N

of one-sided sequences in the digits 0, . . . ,m− 1.

1.4 Baker’s map

Let [0, 1)2 = [0, 1)× [0, 1) be the unit square. Consider the following two dimensional map F : [0, 1)2 → [0, 1)2

F (x, y) =

{ (

2x, y2
)

if 0 ≤ x < 1
2 ,

(

2x− 1, y+1
2

)

if 1
2 ≤ x < 1.

Geometrically, F is obtained by cutting [0, 1)2 into two vertical rectangles R0 = [0, 1/2)× [0, 1) and R1 = [1/2, 1)×
[0, 1), stretching and compressing each to obtain an interval of horizontal width 1 and vertical height 1/2 and then
putting them on top of each other. The name baker’s map comes becouse this mimic the movement made by a

10

1

10

1

1/2

1/2
F

−1F

Figure 1.4: The action of the baker’s map.

baker to prepare the bread dough9. Similar maps are often use in industrial processes since, as we will see formally
later, they are very effective in quickly mixing.

Remark 1.4.1. Notice while the horizontal direction is stretched by by a factor 2, the vertical direction is contracted
by a factor 1/2.

The baker map is invertible. The inverse of the map F can be explicitely given by

F−1(x, y) =

{ (

x
2 , 2y

)

if 0 ≤ y < 1
2 ,

(

x+1
2 , 2y − 1

)

if 1
2 ≤ y < 1.

9There are other versions of the baker’s map where the dough is not cut, but folded over.
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Geometrically, F−1 cuts X into two horizontal squares and stretches each of them to double the height and divide
by two the width and then places them one next to each other (in Figure 1.4, the right square now gives the
departing rectangle decomposition and the left square shows the images of each rectangle under F−1).

Unlike in the case of the doubling map, we now have to be more careful in identifying F as a map onX = (R/Z)2.
The map F : X → X

F (x, y) =







(

{2x}, {y}2
)

if 0 ≤ {x} < 1
2 ,

(

{2x}, {y}+1
2

)

if 1
2 ≤ {x} < 1.

is well defined; here {y} = y mod 1 denotes the fractional part of y.
If you compare the definition of the baker map F with the doubling map f in the previous section, you will notice

that the horizontal coordinate is trasformed exactly as f . More precisely one can show that F is an extenstion of
f (i.e. there is a semiconjugacy ψ such that ψ ◦ F = f ◦ ψ, see Exercise below). Extensions of non-invertible maps
which are invertible are called intervible extensions or natural extensions.

Exercise 1.4.1. Show that the doubling map f : R/Z → R/Z and the baker map F : (R/Z)2 → (R/Z)2 are
semi-conjugated and the semi-conjugacy is given by the projection π : (R/Z)2 → R/Z given by π(x, y) = x.

To study the doubling map, we introduced the one-sided shift on two symbols (σ+ : Σ+ → Σ+). To study the
baker map is natural to introduce the bi-sided shift on two symbols, that we now define.

Let Σ = {0, 1}Z be the set of all bi-infinite sequences of 0 and 1:

Σ = {(ai)∞i=−∞, ai ∈ {0, 1}}.

A point a ∈ Σ+ is a bi-sided sequence of digits 0,1, for example

. . . 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0 . . .

The (bi-sided) shift map σ is a map σ : Σ → Σ which maps a sequence to the shifted sequence:

σ((ai)
∞
i=∞) = (bi)

∞
i=−∞, where bi = ai+1. (1.8)

The sequence (bi)
∞
i=−∞ is obtained from the sequence (ai)

∞
i=−∞ by shifting all the digits one place to the left. For

example, if

(ai)
∞
i=−∞ = . . . 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, . . .

(bi)
∞
i=−∞ = 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, . . .

Note that while the one-sided shift σ+ was not invertible, because we were throwing away the first digit a1 of the
one-sided sequence (ai)

∞
i=1 before shifting to the left, the map σ is now invertible. The inverse σ−1 is simply the

shift to the right.
One can show that the baker map F and the bi-sided shift σ are semi-conjugate if σ is restricted to a certain

shift-invariant subspace (see Theorem 1.4.1 below).
In the case of the doubling map, the key was to use binary expansion. What to use now? We can get a hint

of what is the semi-conjugacy using itineraries and trying to understand sets which share a common part of their
itinerary.

Let R0 and R1 be the two basic rectangles

R0 =

[

0,
1

2

)

× [0, 1) , R1 =

[

1

2
, 1

)

× [0, 1) .

(See Figure 1.4, left square: R0 is the left rectangle, R1 the right one.)
The (bi-infinite) itinerary of (x, y) with respect to the partition {R0, R1} is the sequence (ai)

+∞
i=∞ ∈ Σ given by

{

ak = 0 if F k(x, y) ∈ R0,
ak = 1 if F k(x, y) ∈ R1

In particular, if . . . , a−2, a−1, a0, a1, a2, . . . is the itineary of OF ((x, y)) we have

F k(x, y) ∈ Rak , for all k ∈ Z.
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Note that here, since F is invertible, we can record not only the future but also the past.

Let us now define sets of points which share the same finite piece of itinerary. Given n,m ∈ N and ak ∈ {0, 1}
for −m ≤ k ≤ n, let

R−m,n(a−m, . . . , an) = {(x, y) ∈ X| F k(x, y) ∈ Rak for −m ≤ k ≤ n}.

These are all points such that the block of the itineary from −m to n is given by the digits

a−m, a−m+1, . . . , a−1, a0, a1, . . . , an−1, an.

To construct such sets, let us rewrite them as

R−m,n(a−m, . . . , an) =
n
⋂

k=−m
F−k(Rak).

Example 1.4.1. Let us compute F−1(R0). Either from the definition or from the geometric action of F−1, one
can see that (see Figure 1.5(a))

F−1(R0) =

[

0,
1

4

)

× [0, 1) ∪
[

1

2
,
3

4

)

× [0, 1) .

Thus, (see Figure 1.5(b))

R0,1(1, 0) = R1 ∩ F−1(R0) =

[

1

2
,
3

4

)

× [0, 1) .

1/2 10

1

1/4 3/4
(a) F−1(R0)

1/2 10

1

1/4 3/4
(b) R0,1(1, 0)

1

1

0 1/8 1/4 3/8 1/2 5/8 3/4 7/8

(c) R0,2(a1, a1, a2)

Figure 1.5: Examples of rectangles determined by future itineraries.

One can prove that all rectangles deterimed by forward itineraries, i.e. of the form R0,n(a0, a1, . . . , an), are thin
vertical rectangles of width 1/2n+1 and full height, as in Figure 1.5(c), and as a0, . . . , an changes, they cover X.
More precisely, recalling the intervals I(a0, . . . , an) defined for the doubling map10, we have

R0,n(a0, a1, . . . , an) = I(a0, . . . , an)× [0, 1) =

[

k

2n+1
,
k + 1

2n+1

)

× [0, 1) for some 0 ≤ k < 2n+1.

Let us now describe a set which share the same past itinerary.

Example 1.4.2. The image F (R0) is the bottom horizontal rectangle in the left square in Figure 1.4. The image
F 2(R0) is shown in Figure 1.6(a) and is given by

F 2(R1) = [0, 1)×
[

0,
1

4

)

∪ [0, 1)×
[

1

2
,
3

4

)

.

[Try to convince yourself by imagining the geometric action of F on these sets (or by writing an explicit formula)].
Hence, for example (see Figure 1.6(b))

R−2,−1(0, 1) = F 2(R0) ∩ F (R1) = [0, 1)×
[

1

2
,
3

4

)

.
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1

1

0
0

3/4

1/2

1/4

(a) F 2(R0)

1

1

0
0

3/4

1/2

1/4

(b) R−2,−1(0, 1)

1

1

0
0

7/8

3/4

5/8

1/2

3/8
1/4

1/8

(c) R−3,−1(a−3, a−2, a−1)

Figure 1.6: Examples of rectangles determined by past itineraries.

In general, one can verify that each set of the form

R−n,−1(a−n, . . . , a−1)

(dependend only on the past itinerary) is a thin horizontal rectangle, of height 1/2n and full width, as in Figure
1.6(c).

Exercise 1.4.2. Draw the following sets:

(a) R−1,0(0, 1)

(b) R−1,1(0, 1, 1)

(c) R−2,0(1, 0, 1)

In general R−m,n(a−m, . . . , an) is a rectangle of horizontal width 1/2n+1 and height 1/2m.

The more we precise the backwards itinerary a−1, a−2, . . . , a−n, the thinner the precision with which we deter-
mine the vertical component y. Moreover, from the geometric picture, you can guess that as a0, a1, . . . , an, . . . give
the digits of the binary expansion of x, a−1, a−2, . . . , a−n, . . . give the digits of the binary expansion of y. This is
exactly the insight that we need to construct the semi-conjugacy with the full shift.

Now we are ready to construct a semi-conjugacty beteween the baker map and the full shift which is a conjugacy
outside a measure zero set of points.

Denote by
T1 = {a ∈ Σ : ∃i0 ∈ Z such that ai = 1∀i > i0}

the set of sequences with forward tails consisting only of 1s. We have σ(T1) = T1, i.e., T1 is a shift-invariant
subspace. Hence its complement Σ̃ = Σ \ T1 is also shift-invariant.

Theorem 1.4.1. The baker map is semi-conjugated to the full shift σ : Σ̃ → Σ̃ via the map Ψ : Σ → X given by

Ψ((ai)
+∞
i=−∞) = (x, y) where x =

∞
∑

i=1

ai−1

2i
mod 1, y =

∞
∑

i=1

a−i
2i

mod 1.

As for the doubling map, binary expansions turns out to be crucial to build the map Ψ. While the future
(ai)

∞
i=0 of the sequence (ai)

∞
i=−∞ will be used to give the binary expansion of x, the past (ai)

−1
i=−∞ of the sequence

(ai)
∞
i=−∞ turns out to be related to the binary expansion of the vertical coordinate y.

Proof of Theorem 1.4.1. For every point (x, y), both x and y can be expressed in binary expansion. If x has a
binary expansion of the form a0, . . . , ai0 , 0, 1, 1, 1, 1, 1, . . . (i.e., with a forbidden tail), then x also has the binary
expansion a0, . . . , ai0 , 1, 0, 0, 0, 0, 0, . . . (exercise!). This shows that Ψ is surjective.

Thus it remains to check that Ψσ = FΨ. Let us first compute

Ψ
(

σ((ai)
+∞
i=−∞)

)

= Ψ
(

(ai+1)
+∞
i=−∞

)

=

( ∞
∑

i=1

ai
2i

mod 1,

∞
∑

i=1

a−i+1

2i
mod 1

)

.

10This is because the future history of F , i.e. whether Fk(x, y) with k ≥ 0 belongs to R0 or R1, is completely deterimed by the
doubling map.
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Let a0 be the first digit of the binary expansion of x. We have that a0 = 0 if 0 ≤ x < 1
2 and a0 = 1 if 1

2 ≤ x < 1.
For x = 1

2 we have either a0 = 1 (then ai = 0 for i ≥ 1) or a0 = 0 (then ai = 1 for i ≥ 1). The latter has a
forbidden tail and thus does not occur. Therefore a0 = 0 if 0 ≤ x < 1

2 and a0 = 1 if 1
2 ≤ x < 1, which allows us to

write

F (x, y) =

(

2x mod 1,
y + a0

2

)

.

We compute

F (Ψ((ai)
+∞
i=−∞)) = F

( ∞
∑

i=1

ai−1

2i
,

∞
∑

i=1

a−i
2i

)

=

(

2
∞
∑

i=1

ai−1

2i
mod 1,

a0
2

+
1

2

∞
∑

i=1

a−i
2i

)

=

( ∞
∑

i=1

ai
2i
,

∞
∑

i=1

a−i+1

2i

)

,

which is the same answer as for Ψσ.

Extra: Coding in dynamics

The idea of coding is very powerful in dynamical systems. Let f : X → X be a dynamical system and X a partition
of X in finite (or sometimes countably) many pieces, that is a collection of sets

{P0, . . . , PN}, Pi ∩ Pj = ∅ ∀ i 6= j, and ∪Ni=0 Pi = X.

Then we can defined the itinerary of x ∈ X with respect to the partition {P0, . . . , PN} as a sequence of digits ak
such that

fk(x) ∈ Pak , for all k.

Here the digits ak ∈ {0, . . . , N} (they take as many values as the number of elements in the partition). If f is
not invertible, it makes sense to consider forward itineraries, so we get a sequence (ak)

∞
k=1 ∈ {0, . . . , N}N. If f is

invertible, we can also consider backwards itineraries, so we get a sequence (ak)
+∞
k=−∞ ∈ {0, . . . , N}Z.

If x has itinerary (ak)
∞
k=1 ∈ {0, . . . , N}N (or respectively (ak)

+∞
k=−∞) then the itinerary of f(x) will be shifted,

so it will be given by σ+ ((ak)
∞
k=1) (or respectively σ

(

(ak)
+∞
k=−∞

)

). Thus, the coding maps an orbit of f into an
orbit of the shift on a symbolic space. Two important questions to ask are:

• Does the itinerary completely determine the point x?

• Are all itineraries possible, i.e. does any sequence in Σ correspond to an actual itinerary?

In the case of the doubling map and of the baker map, both questions had positive answer. This allowed us to get
a semi-conjugacy with the shift (one-sided or bi-sided). The itinerary is often enough to completely determine the
point x: this is the case when the maps we are looking at are expanding. On the other hand, many times not all
sequences arise as itineraries: we will describe in Chapter 3 more general symbolic spaces (subshifts of finite type)
which will capture the behavior of many more maps.

1.5 Hyperbolic toral automorphisms

Consider the unit square [0, 1] × [0, 1]. If you glue the two parallel vertical sides and the two parallel horizontal
sides by using the identifications

(x, 0) ∼ (x, 1), x ∈ [0, 1], (0, y) ∼ (1, y), y ∈ [0, 1], (1.9)

we get the surface of a doughnut, which is called a two-dimensional torus and denoted by T2 (when you glue the
vertical sides first, you get a cylinder, then when you glue the horizontal sides you are gluing the two circles which
bound the cylinder and you get the torus). More formally,

T2 = R2/Z2 = R/Z× R/Z
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is the set of equivalence classes of points (x, y) ∈ R2 modulo Z2: two points (x, y) and (x′, y′) in R2 are equivalent
and we write

(x, y) ∼ (x′, y′) if and only if (x− x′, y − y′) = (k, l), where (k, l) ∈ Z2.

The unit square contains at least one representative for each equivalence class. Note though that since the points
(x, 0) and (x, 1) for x ∈ [0, 1] differ by the vector (0, 1) they represent the same equivalence class. Similarly, the
points (0, y) and (1, y) for y ∈ [0, 1], which differs by the vector (1, 0), also represent the same equivalence class,
while all interior points represent distinct equivalence classes. Thus, the square with opposite sides glued by the
identifications (1.9) contains exactly one representative for each equivalence class. In this sense, the space R2/Z2

of equivalence classes is represented by a square with opposite sides identified as in (1.9)

We will now study a class of maps of the torus. Let A be a 2 × 2 matrix with integer entries. Then A acts
linearly on R2 (and in particular on the unit square):

if A =

(

a b
c d

)

, where a, b, c, d ∈ Z, then A

(

x
y

)

=

(

ax+ by
cx+ dy

)

.

We claim that we can use this linear action to define a map fA : T2 → T2 on the torus T2 = R2/Z2, given by

fA(x, y) = (ax+ by mod 1, cx+ dy mod 1) . (1.10)

We have to check that if (x, y) ∼ (x′, y′), then fA(x, y) ∼ fA(x
′, y′). But (x, y) ∼ (x′, y′) means that (x−x′, y−y′) =

(k, l) where (k, l) ∈ Z2 and since A has integer entries, it maps integer vectors to integer vectors so

A

(

x
y

)

−A

(

x′

y′

)

= A

(

k
l

)

∈ Z2.

Thus, since fA is defined taking entries mod 1, we have fA(x, y) = fA(x
′, y′) as desired.

The map fA : T2 → T2 is not invertible in general. However, if det(A) = ad− bc = ±1, then

A−1 =
1

det(A)

(

d −b
−c a

)

= ±
(

d −b
−c a

)

is again a matrix with integer entries, so it induces a well-defined map fA−1 : T2 → T2. Thus, if det(A) = ±1, then
fA is invertible and the inverse is given by

(fA)
−1 = fA−1 .

Definition 1.5.1. If A is an integer matrix, we say that fA : T2 → T2 defined in (1.10) is a toral endomorphism.
If furthermore det(A) = ±1, we say that fA : T2 → T2 is a toral automorphism.

Example 1.5.1 (Arnold CAT map). Let A be the matrix
(

2 1
1 1

)

.

Then the induced map fA : T2 → T2 is

fA(x, y) = (2x+ y mod 1, x+ y mod 1) .

This map is known as Arnold’s CAT map.11 To draw the action of the map, consider first the image of the unit
square by the linear action of A: since the two bases vectors e1, e2 are mapped to

A e1 =

(

2 1
1 1

)(

1
0

)

=

(

2
1

)

, A e2 =

(

2 1
1 1

)(

0
1

)

=

(

1
1

)

,

the image of the unit square is the parallelogram generated by Ae1, Ae2 (see Figure 1.7). To visualize fA we need
to consider the result modulo 1 in each coordinate (or, equivalently, modulo Z2), which means subtract to each
point an integer vector (the vector whose components are the integer-parts of the x and y coordinate respectively)
to get an equivalent point in unit square. Geometrically, this means cutting and pasting different triangles (each
one consisting of all points of the parallelogram contained in a square of the unit square grid) back to the standard
unit square, as shown in Figure 1.7.

11In many books CAT is used as a shortening for Continuous Automorphism of the Torus. The first time the map was described in
the book by Arnold, though, the action of the map is illustrated by drawing the face of a cat, as in Figure 1.7.
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Figure 1.7: The Arnold CAT map.

Definition 1.5.2. The toral automorphism fA : T2 → T2 given by a matrix A with integer entries and determinant
±1 is called hyperbolic if A has no eigenvalues of modulus 1.

Remark 1.5.1. Note that if det(A) = 1, if λ1 > 1 is one of the eigenvalues of A, the other eigenvalues is λ2 = 1/λ1
(since the product of the eigenvalues is the determinant). Thus, if one eigenvalue is greater than 1 in modulus, the
other is automatically less than 1 in modulus.

Example 1.5.2. The matrix A has eigenvalues

λ1 =
3 +

√
5

2
> 1 and λ2 =

2

3 +
√
5
=

3−
√
5

2
< 1.

Thus, fA is a hyperbolic toral automorphism.
The corresponding eigenvectors v1 and v2 are

v1 =

(

1+
√
5

2
1

)

, v2 =

(

1−
√
5

2
1

)

.

Thus, A expands all lines in the direction of v1 by λ1 > 1 and contracts all lines in the direction of v2 by multiplying
them by λ2 < 1. Since fA is obtained by cutting and pasting the image of the unit square by A, the same is true
for fA (see Figure 1.7).

Let us study periodic points of hyperbolic toral automorphisms.

Theorem 1.5.1. Let fA : T2 → T2 be a hyperbolic toral automorphism. The periodic points of fA are exactly all
points in [0, 1)× [0, 1) which have rational coordinates, that is all points

(

p1
q
,
p2
q

)

, p1, p2 ∈ N, q ∈ N\{0}, 0 ≤ p1, p2 < q.
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Proof. If (x, y) =
(

p1
q
, p2
q

)

has rational coordinates, then

fnA(x, y) =

(

p
(n)
1

q
,
p
(n)
2

q

)

,

where p
(n)
1 , p

(n)
2 are integers 0 ≤ p

(n)
1 , p

(n)
2 < q which are given by





p
(n)
1

q

p
(n)
2

q



 = An
( p1

q
p2
q

)

mod Z2 =

(

anp1+bnp2
q

mod 1
cnp1+dnp2

q
mod 1

)

, if An =

(

an bn
cn dn

)

,

that is, which are given by
(

p
(n)
1

p
(n)
2

)

=

(

anp1 + bnp2 mod q
cnp1 + dnp2 mod q

)

, where An =

(

an bn
cn dn

)

.

Since there are at most q2 choices for the pair (p
(n)
1 , p

(n)
2 ), there exists 0 ≤ m 6= n ≤ q2 + 1 such that fmA (x, y) =

fnA(x, y). This means that (x, y) is eventually periodic and, since fA is invertible, this implies that (x, y) is periodic
(see Exercise 1.2(b)).

Conversely, if (x, y) is periodic, there is n such that fnA(x, y) = (x, y) and by definition of fA this means that
there exists k, l ∈ Z such that

An
(

x
y

)

=

(

x
y

)

+

(

k
l

)

⇔ (An − I)

(

x
y

)

=

(

k
l

)

, where I =

(

1 0
0 1

)

.

Let us check that (An − I) is invertible. Since fA is hyperbolic, A has no eigenvalues of modulus 1, so An has
no eigenvalues 1. Thus, there is no non-zero vector v that solves (An − I)v = 0 and this shows that (An − I) is
invertible. Hence, we can solve:

(

x
y

)

= (An − I)−1

(

k
l

)

.

Since A has entries in Z, (An − I) has entries in Z and (An − I)−1 has entries in Q, so both x, y are rational
numbers.

See the Extra for an application of the previous thereom to explain why discretization of the CAT map (or in
general, of a toral automorphism), for example by digital pixels on a screen, will eventually appear to be periodic.

One can precisely compute the number of periodic points of period n in a hyperbolic toral automorphism.

Theorem 1.5.2. Let fA : T2 → T2 be a hyperbolic toral automorphism associated to a matrix A with det(A) = 1
and eigenvalues λ1 and λ2. The number of periodic points of period n is |λn1 + λn2 − 2|.
Proof. Fixed points of period n are solutions of fnA(x, y) = (x, y). Equivalently, as we just proved,

(An − I)

(

x
y

)

=

(

k
l

)

, for some k, l ∈ Z. (1.11)

The map (An− I) maps the unit square [0, 1)× [0, 1) to a parallelogram P generated by the vectors (An− I)e1 and
(An− I)e2. Thus, solutions to (1.11) correspond to integer points (k, l) ∈ Z2 which belong to the parallelogram P .

The number of such integer points is exactly the area of P in virtue of the following result known as Pick’s
theorem:

Theorem 1.5.3 (Pick’s Theorem). Consider a parallelogram P ⊂ R2 whose vertices are integer points in Z2 and
let P/∼ be obtained by identifying opposite parallel sides of P . Then the number of points in P/∼ which integer
coordinates is exactly equal to the area of P .

A more general form of Pick’s theorem and its proof are included as an Extra.
Thus, the number of integer points in P is exactly the area of P which is given by |det(An − I)|. Since the

determinant is the product of the eigenvalues, it is enough to compute the eigenvalues of (An − I). If v is an
eigenvector of (An − I) with eigenvalue µ, then

(An − I)v = µv ⇔ Anv = (µ+ 1)v,
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so v is an eigenvector for An with eigenvector µ + 1. Since A has eigenvectors λ1, λ2, A
n has eigenvectors λn1 , λ

n
2

and then (An − I) has eigenvectors λn1 − 1, λn2 − 1. So, putting everything together we proved that

Card{(x, y) s.t. fnA(x, y) = (x, y)} = Area(P ) = |det(An − I)| = |(λn1 − 1)(λn2 − 1)|
= |λn1 + λn2 − 2|,

where in the last inequality we used that λn1λ
n
2 = 1, since λn1 and λn2 are the eigenvalues of An, which has determinant

1 since det(An) = det(A)n and det(A) = 1 by assumption.

Remark 1.5.2. All definitions in this section generalize to higher dimensions. The k-dimensional torus Tk is
Rk/Zk. Given a k × k matrix A with integer entries, it determines a map fA : Tk → Tk. If |det(A)| = 1, fA
is called a toral automorphism. If A has no eigenvalues of modulus 1, fA is an hyperbolic toral automorphism.
Periodic points for fA are exactly points with rational coordinates.

1.6 Gauss map and continued fractions

In this lecture we will introduce the Gauss map, which is very important for its connection with continued fractions
in number theory.

The Gauss map G : [0, 1] → [0, 1] is the following map:

G(x) =

{

0 if x = 0
{

1
x

}

= 1
x

mod 1 if 0 < x ≤ 1

Here {x} denotes the fractional part of x. We can write {x} = x− [x] where [x] is the integer part. Equivalently,
{x} = x mod 1.

Note that
[

1

x

]

= n ⇔ n ≤ 1

x
< n+ 1 ⇔ 1

n+ 1
< x ≤ 1

n
.

Thus, explicitely, one has the following expression (see the graph in Figure 1.8):

G(x) =

{

0 if x = 0
1
x
− n if 1

n+1 < x ≤ 1
n

forn ∈ N.

The rescrition of G to an interval of the form (1/n+1, 1/n] is called branch. Each branch G : (1/n+1, 1/n] → [0, 1)
is monotone, surjective (onto [0, 1)) and invertible (see Figure 1.8).

The Gauss map is important for its connections with continued fractions.
A finite continued fraction (CF will be used as shortening for Continued Fraction) is an expression of the form

1

a0 +
1

a1+
1

a2+ 1
a3+... 1

an

(1.12)

where a0, a1, a2, . . . , an ∈ N\{0} are called entries of the continued fraction expansion. We will denote the finite
continued fraction expansion by [a0, a1, a2, . . . , an].

Every finite continued fraction expansion correspond to a rational number p/q (which can be obtained by
clearing out denominators).

Example 1.6.1. For example
1

2 + 1
3

=
1

2·3+1
3

=
3

7
.

Conversely, all rational numbers in [0, 1] admit a representation as a finite continued fraction12.

Example 1.6.2. For example
3

4
=

1

1 + 1
3

,
49

200
=

1

3 + 1
4+ 1

12+ 1
4

.

12This representatin is not unique: if the last digit an of a finite CF is 1, then [a0, . . . , an−1, 1] = [a0, . . . , an−1 + 1]. If one requires
that the last entry is different from one, though, then one can prove that the representation as finite continued fraction is unique.
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10

1

1/3 1/21/4...

...

Figure 1.8: The first branches of the graph of the Gauss map.

Every irrational number x ∈ (0, 1) can be expressed through a (unique) infinite continued fraction13, that we
denote by

[a0, a1, a2, a3, . . . ] =
1

a0 +
1

a1+
1

a2+ 1
a3+...

.

Example 1.6.3. For example

π = 3 +
1

7 + 1
15+ 1

1+ 1
293+...

,

1

1 + 1
1+ 1

1+ 1
1+...

=

√
5− 1

2
.

The number (
√
5 − 1)/2 is known as golden mean14 and it has the lowest possible continued fraction entries, all

entries equal to one. Similarly, the number whose CF entries are all equal to 2 is known as silver mean.

One can see that a number is rational if and only if the continued fraction expansion is finite.
If x is an irrational number whose infinite continued fraction expansion is [a0, a1, a2, . . . ], one can truncate the

continued fraction expansion at level n and obtain a rational number that we denote pn/qn

pn
qn

= [a0, a1, a2, . . . , an].

These numbers pn/qn are called convergents of the continued fraction.
Two of the important properties of convergents are the following:

13To be precise, when we write such an infinite continued fraction expression, its value is the limit of the finite continued fraction
expansion truncations [a0, a1, a2, a3, . . . , an], each of which is a well defined rational number. One should first prove that this limit
exist, see (1.13).

14The inverse of the golden mean is
√

5+1
2

, known as golden ratio. It appears often in art and in nature since it is considered
aesthetically pleasing: for example, the ratio of the width and height of the facade of the Partenon in Athens is exactly the golden ratio
and a whole Renessaince treaty, Luca Pacioli’s De divina proportione, written in 1509, is dedicated to the golden ratio in arts, science
and architecture.
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1. One can prove that pn/qn converge to x exponentially fast, i.e.

lim
n→∞

pn
qn

= x and

∣

∣

∣

∣

pn
qn

− x

∣

∣

∣

∣

≤ 1

(
√
2)n

. (1.13)

Thus, the fractions pn/qn give rational approximations of x.

2. Convergents give best approximations among all rational approximations with denominator up to qn, that is

∣

∣

∣

∣

x− pn
qn

∣

∣

∣

∣

≤
∣

∣

∣

∣

x− p

q

∣

∣

∣

∣

, ∀ p ∈ Z, 0 ≤ q ≤ qn.

One can also see that the continued fraction expansion of an irrational number is unique.

To find the continued fraction expansion of a number, we will exploit the relation with the symbolic coding of
the Gauss map, in the same way that binary expansions are related to the symbolic coding of the doubling map.

Let Pn be the subintervals of [0, 1) naturally determined by the domains of the branches of the Gauss map:

P1 =

(

1

2
, 1

]

, P2 =

(

1

3
,
1

2

]

, P3 =

(

1

4
,
1

3

]

, . . . , Pn =

(

1

n+ 1
,
1

n

]

, . . .

Note that Pn accumulate towards 0 as n increases If we add P0 = {0}, the collection {P0, P1, . . . , Pn, . . . } is a
(countable) partition15 of [0, 1].

Theorem 1.6.1. Let x be irrational. Let a0, a1, . . . , an, . . . be the itinerary of O+
G(x) with respect to the partition

{P0, P1, P2, . . . , Pn, . . . }, i.e.

x ∈ Pa0 , G(x) ∈ Pa1 , . . . , G
2(x) ∈ Pa2 , . . . , G

k(x) ∈ Pak , . . . ,

Then x = [a0, a1, a2, . . . , an, . . . ]. Thus, itineraries of the Guass map give the entries of the continued fraction
expansions.

Remark 1.6.1. If x is rational, then there exists n such that Gn(x) = 0 and hence Gm(x) = 0 for all m ≥ n. In
this case, Gm(x) ∈ P0 for all m ≥ n so the itinerary is eventually zero. The theorem is still true if we consider
the beginning of the itineary: the finite itinerary before the tail of 0 gives the entries of the finite continued fraction
expansion of x.

Proof. Let us first remark that

x ∈ Pn ⇔ 1

n+ 1
< x ≤ 1

n
⇔ n ≤ 1

x
< n+ 1 ⇔

[

1

x

]

= n. (1.14)

In particular, a0 = [1/x] since x ∈ Pa0 . Thus,

G(x) =

{

1

x

}

=
1

x
−
[

1

x

]

=
1

x
− a0 ⇔ x =

1

a0 +G(x)
.

Let us prove by induction that

an =

[

1

Gn(x)

]

and x =
1

a0 +
1

a1+...
1

an+Gn+1(x)

= [a0, a1, . . . , an +Gn+1(x)]. (1.15)

We have already shown that this is true for n = 0. Assume that it is proved for n and consider n + 1. Since

Gn+1(x) ∈ Pan+1
by definition of itinerary, we have an+1 =

[

1
Gn+1(x)

]

by (1.14). This proves the first part of (1.15)

for n+ 1. Then, recalling the definition of G we have

Gn+2(x) =
1

Gn+1(x)
−
[

1

Gn+1(x)

]

=
1

Gn+1(x)
− an+1 ⇔ Gn+1(x) =

1

an+1 +Gn+2(x)

15Recall that a partition is a collection of disjoint sets whose union is the whole space.
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so that, plugging that in the second part of the inductive assumption (1.15) we get

x =
1

a0 + . . . 1
an+Gn+1(x)

=
1

a0 + . . . 1
an+

1

an+1+Gn+2(x)

,

which proves the second part of (1.15) for n+1. Thus, recursively, the itinerary is producing16 the infinite continued
fraction expansion of x.

From the proof of the previous theorem, one can see the following.

Remark 1.6.2. The Gauss map acts on the digits of the CF expansion as the one-sided shift, that is

if x = [a0, a1, a2, . . . , an, . . . ]

then G(x) = [a1, a2, a3, . . . , an+1, . . . ].

One can characterize in terms of orbits of the Gauss map various class of numbers. For example:

1. Rational numbers are exactly the numbers x which have finite continued fraction expansion or equivalently
such that there exists n ∈ N such that Gn(x) = 0 (eventually mapped to zero by the Gauss map).

2. Quadratic irrationals, that is numbers of the form a+b
√
c

d
, where a, b, c, d are integers17, are exactly numbers

which have a eventually periodic continued fraction expansion or equivalently are pre-periodic points for the
Gauss map.

In number theory (and in particular in Diophantine approximation) other class of numbers (for example Badly
approximable numbers) can be characterized in terms of their continued fraction expansion18.

Example 1.6.4. We have already seen two examples of quadratic irrationals, the golden mean g and the silver
mean s:

g =
1

1 + 1
1+ 1

1+ 1
1+...

=

√
5− 1

2
, s =

1

2 + 1
2+ 1

2+ 1
2+...

=
√
2− 1.

Both the golden mean and the silver mean are fixed points of the Gauss map: G(g) = g, G(s) = s. Similarly all
other fixed points correspond to numbers whose continued fraction entries are all equal.

Example 1.6.5. Let α = −3+
√
15

2 . Then one can check that α = [2, 3, 2, 3, 2, 3, . . . ], so that the entries are periodic
and the period is 2. Thus G2(α) = α. Explicitely, since we know the itinerary of α, we can write down the equation
satisfied by α. We know that

G(α) =
1

α
− 2, since

[

1

α

]

= 2, and G(G(α)) =
1

G(α)
− 3 since

[

1

G(α)

]

= 3,

so that the equation G2(α) = α becomes
1

1
α
− 2

− 3 = α.

Using the ideas in the previous exercise, one can produce quadratic irrationals with any given periodic sequence
of CF entries.

Exercise 1.6.1. Prove that if Gn(x) = 0 then x has a representation as a finite continued fraction expansion and
thus it is rational.

* Exercise 1.6.2. Prove that if Gn(x) = x then x satisfies an equation of degree two with integer entries. Conclude
that x is a quadratic irrational.

16One should still prove that the finite continued fractions in (1.15) do converge, as n tends to infinity and that the limit is x. This
can be done by the same method that one can use to show that convergents tend to x exponentially fast.

17Equivalently, one can define quadratic irrationals as solutions of equations of degree two with integer coefficients.
18One can defined Badly approximable numbers as the numbers for which there exists a number A such that all entries an of their

continued fraction expansion are bounded by A. In particular, quadratic irrationals are badly approximable.
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Appendix A

Extras to Part I

A.1 Extras to Sec. 1.1

A.1.1 Continuous Dynamical Systems

A continous dynamical system can be given by a 1−parameter family of maps ft : X → X where t ∈ R. The main
example is given by solutions of a differential equation. Let X ⊂ Rn be a space, g : X → Rn a function, x0 ∈ X an
initial condition and

{

ẋ(t) = g(x)
x(0) = x0

(A.1)

be a differential equation. If the solution x(x0, t) is well defined, unique and exists for all t and all initial conditions
x0 ∈ X, if we set ft(x0) := x(x0, t) we have an example of a continous dynamical system. In this case, an orbit is
given by the trajectory described by the solution:

Definition A.1.1. If {ft}t∈R is a continuous dynamical system, we denote

Oft(x) := {ft(x), t ∈ R}.
More in general, a 1-parameter family {ft}t∈R is called a flow if f0 is the identity map and for all t, s ∈ R we

have ft+s = ft ◦ fs, i.e.
ft+s(x) = ft(fs(x)) = fs(ft(x)), for all x ∈ X.

A.1.2 Dynamical systems as actions

A more formal way to define a dynamical system is the following, using the notion of action.
Let X be a space and G group (as Z or R or Rd) or a semigroup (as N).

Definition A.1.2. An action of G on X is a map ψ : G×X → X such that, if we write ψ(g, x) = ψg(x) we have

(1) If e id the identity element of G, ψe : X → X is the identity map;

(2) For all g1, g2 ∈ G we have ψg1 ◦ ψg2 = ψg1g2 .
1

A discrete dynamical systems is then defined as an action of the group Z or of the semigroup N. A continous
dynamical system is an action of R. There are more complicated dynamical systems defined for example by actions
of other groups (for example Rd).

Exercise A.1.1. Prove that the iterates of a map f : X → X give an action of N on X. The action N×X → X
is given by

(n, x) → fn(x).

Prove that if f is invertible, one has an action of Z.

Exercise A.1.2. Prove that the solutions of a differential equation as (A.1) (assuming that for all points x0 ∈ X
the solutions are unique and well defined for all times) give an action of R on X.

1If X has an additional structure (for example X is a topological space or X is a measured space), we can ask the additional
requirement that for each g ∈ G, ψg : X → X preserves the structure of X (for example ψg is a continous map if X is a topological
space or ψg preserves the measure. We will see more precisely these definitions in Chapters 2 and 4.
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A.2 Extra to Section 1.2

A.2.1 Dirichlet’s theorem

Let us show an application to number theory. The following result is known as Dirichlet’s theorem:

Theorem A.2.1 ((Dirichlet Theorem)). If α is irrational, for each δ > 0 there exists an integer q with 0 < q ≤ 1/δ
and p ∈ Z such that

∣

∣

∣

∣

α− p

q

∣

∣

∣

∣

≤ δ

q

The theorem shows how well an irrational number can be approximated by rational numbers. It is a first important
keystone in the theory of Diophantine Approximation.

Proof. Note that in additive notation the orbit of 0 contains the points

Rnα(0) = nα mod 1.

We saw in the proof of Theorem 1.2.1 that when α is irrational, the orbit O+
Rα

(0) consists of distinct points. If we
choose N large so that 1/N ≤ δ, by Pigeon Hole principle there exists 0 ≤ n < m ≤ N such that

d(Rm(0), Rn(0)) <
1

N
.

Let us call q = m− n, so 0 < q ≤ N . Since Rα is an isometry,

d(0, Rq(0)) = d(0, Rm−n(0)) = d(Rn(0), Rm−n(Rn(0))) = d(Rm(0), Rn(0)) <
1

N
.

Recalling the definition of distance, this means exactly that there exists an integer p ∈ Z such that

|qα− p| ≤ 1

N
≤ δ.

As a Corollary, one can show the following version of Dirichlet theorem:

Exercise A.2.1. Show that if α is irrational, there are infinitely many fractions p/q where p ∈ Z, q ∈ N that solve
the equation

∣

∣

∣

∣

α− p

q

∣

∣

∣

∣

≤ 1

q2
.

A.3 Extra to Section 1.3

A.3.1 A conjugacy for the doubling map.

In order to obtain a conjugacy between the doubling map f : X → X and a shift is to consider the shift space Σ/∼
with the equivalence relation a ∼ b if and only if there exists a k ∈ N such that ai = bi for 0 ≤ i < k and

ak = 1, ai = 1 for all i > k, bk = 0, bi = 1 for all i > k.

The sequences which are identified are sequences with tails of 0s and 1s which correspond to two possible choices
of binary digits for a dyadic rational.

Theorem A.3.1. The map ψ : Σ/∼→ X is well defined and it is a conjugacy between the doubling map f and
σ : Σ/∼→ Σ/∼.

Exercise A.3.1. Prove Theorem A.3.1.

Exercise A.3.2. Let D be the set of dyadic rationals and let Σ′ be the sequences which do not end with a tail of
0s or 1s. Verify that ψ : Σ′ → X −D is a conjugacy.
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A.4 Extras to Section 1.5

A.4.1 A discrete toral automorphism

As an illustration of Theorem on periodic points of hyperbolic toral automorphisms, one can see Figure A.1, in
which iterates of a discretization of the Cat Map is plotted. If the image is made by a finite number of pixels,
say q2, each representing a point (p1/q, p2/q) with rational coordinates, then an iterate of fA is the identity by
Theorem 1.5.1 proved in this section.

Figure A.1: A discrete version of the Arnold CAT map.

A.4.2 Pick’s theorem on the area of a parallelogram with integer vertices

Let us state and prove Pick’s Theorem (which was used in the computation of the number of periodic points for a
hyperbolic toral automorphism).

Theorem A.4.1 (Pick’s Theorem). The area of a parallelogram P ⊂ R2 whose vertices are integer points in Z2

is given by the number of points of Z2 which are contained, where points on the edges are counted as half and all
vertices count as a single point. More precisely, let i be the number of points with integer coordinates in the interior
of P and b be the number of points with integer coordinates on the perimeter of P . Then, Area(P ) = i+(b/2)+ 1.

Let us remark that this form implies as a corollary the formulation used in the lecture notes. Indeed, consider
P/∼ obtained by glueing opposite parallel sides of P . Then the points with integer coordinates on the sides of P
are glued together in pairs, and all the vertices of P are identifyed to produce the equivalence class of a unique
point on P/∼. Thus, the points with integer coordinates in P/∼ are exactly i+ (b/2) + 1. so the number of integer
po P/∼
Before the proof, let us present some lemmas.

Lemma A.4.1. If a polygon P as in the assumptions of Pick’s theorem is divided into two smaller polygons, P1

and P2 by a path whose endpoints also belong to Z2, then, if Pick’s formula holds for both P1 and P2, it also holds
for P .

Proof. The interior points with integer coordinates inside P, whose cardinality we denote by i, all fall either into
the interior of P1 (i1 of them) or into the interior of P2 (i2 of them) or on the path that was drawn to divide P
(i3 of them), so i = i1 + i2 + i3. Two of the boundary points of P (set b3 = 2) are the endpoints of the dividing
path that formed P1 and P2, while b1 other boundary points are boundary points of P1, and b2 boundary points
are boundary points of P2, so b1 + b2 + b3 = b.

By Pick’s formula applied to each of the smaller polygons,

Area(P1) = i1 +
b1 + b3 + i3

2
+ 1, Area(P2) = i2 +

b2 + b3 + i3
2

+ 1,

and clearly Area(P1) +Area(P2) = Area(P ), so we get

Area(P ) = Area(P1) +Area(P2) = i1 + (b1 + b3 + i3)/2 + 1 + i2 + (b2 + b3 + i3)/2 + 1

= i1 + i2 + i3 + (b1 + b2 + 2b3)/2 + 2

= i+ (b/2) + b3/2 + 2,
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and since b3 = 2, we have proved that i+ (b/2) + 1 = Area(P ), that is, that Pick’s formula holds for P .

Lemma A.4.2. If P is a triangle with vertices with integer coordinates, Pick’s formula holds.

Sketch of proof. The verification can be done by the following steps, using each time Lemma A.4.1. Observe that
the formula holds for any unit square (with vertices having integer coordinates). Deduce from this that the formula
is correct for any rectangle with sides parallel to the axes and integer side lengths. Deduce now that it holds
for right-angled triangles obtained by cutting such rectangles along a diagonal. Now any triangle with integer
coordinates can be turned into a rectangle of this type by attaching (at most three) such right triangles; since the
formula is correct for the right triangles and for the rectangle, it also follows for the original triangle.

Proof of Pick’s Theorem A.4.1. Every n-sided polygon (n > 3) can be subdivided into two polygons each with
fewer than n sides. By repeating this action, a polygon can be completely decomposed into triangles. By Lemma
A.4.2, Pick’s formula is correct for each triangle and by Lemma A.4.1 this proves Pick’s formula for any polygon.

A.5 Extra Section: Quadratic maps:

attracting and repelling fixed points

Let us motivate the study of the quadratic maps from a simple (but very rich!) model of population growth in
biology. Let x be the size of a population. Consider a discrete model, in which the population size grows at discrete
time intervals, say, for example, every year2. If the population y during the following year is depends only on
the present population x, we can model the growth by an equation of the form y = f(x). Thus, fn(x) gives the
population after n time intervals. The simplest model is

f(x) = µx

where µ > 0 is a parameter which gives the fertility of the species. By induction, one sees that

fn(x) = µnx,

and since
lim
n→∞

µnx = 0 if µ < 1, lim
n→∞

µnx = +∞ if µ > 1,

the population either becomes extinct (if µ < 1, there are not enough children), or it grows exponentially (if µ > 1).
This model is too simple because in reality resources are limited and if the environment is overcrowded, there

is not enough food to support exponential growth. One can assume that there is an upper value L for the size of
the population which can be supported by the environment. The second simplest model often used by biologist is:

f(x) = µx(L− x).

If x is very close to L, the population grows very slowly. If x/L is small though, we still have exponential growth
until we approach the value L. If x = L, f(x) = 0: there is not enough food and all population die before
reproducing. If does not make sense to consider values of x bigger than L (then f(x) is negative).

For convenience, we can rescale variables and assume that L = 1. One should think of x ∈ [0, 1] as a percentage,
giving the population size as a percentage of the maximum value L. We obtain the following map, that we call fµ
since it depends on the parameter µ.

fµ(x) = µx(1− x).

As µ changes, we get a family of maps known as the quadratic family. It is also called logistic family3. Values of
the parameter which are studied are 0 < µ ≤ 4. For these values,

fµ([0, 1]) ⊂ [0, 1],

so we can iterate the map. If µ > 4, some of the points in [0, 1] are mapped outside of the domain [0, 1], so we
cannot iterate our function (one can nevertheless restrict the domain and consider f only on the set of points whose

2This is the case for certain populations, for example of butterflies, which are seasonal and the size of the population the next
summer depends only on the previous generation the summer before.

3Logistic comes from the French logistique, which is derived from the lodgement of soldiers. The equations were introduced by the
sociologist and mathematician Verhulst in 1845.
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forward iterates all belong to [0, 1], which turns out to be a fractal, see Extra A.5.1). Let us here consider here
only the parameters 0 ≤ µ ≤ 4 and let us investigate orbits of fµ when 0 ≤ µ ≤ 4. Remember that the orbit O+

f (x)
can be thought of describing the behavior of an initial population x under this model. For example we would like
to know if the values fn(x) after large time n stabilize, and in this case to which values, or if it oscillates.

Consider as an example the map corresponding to µ = 5/2:

f(x) =
5

2
x(1− x).

The graph of f can be drawn noticing that it is a parabola, f(0) = f(1) = 0 and that the derivative f ′(x) = 5/2−5x
is zero at x = 1/2 for which f(1/2) = 5/8. In particular, f maps [0, 1] to [0, 1]. See Figure A.2.

1/2 10

1

5/8

Figure A.2: The graph of the quadratic map f(x) = 5
2x(1− x).

Fixed points of f are solutions of the equation f(x) = x. In this case, solutions of 5/2x − 5/2x2 = x or
equivalently x(3/2− 5/2x) = 0 are only x = 0 and x = 3/5.

Remark A.5.1. Graphically, fixed points are given by considering the intersections of the graph of f , that is the
set G = {(x, f(x)), x ∈ X} with the diagonal ∆ = {(x, x), x ∈ X} and taking their horizontal components.
Equivalently, x is a fixed point if and only if (x, x) ∈ G .

To have an idea of the empirical behavior of an orbit Of (x) one can use the following graphical method.

Graphical Analyses

• Draw the graph G of f and the diagonal ∆ = {(x, x), x ∈ X};

• Start from (x, 0). Move vertically up until you intersect the graph G of f at (x, f(x));

• Move horizontally until you hit the diagonal ∆, at (f(x), f(x)); the horizontal projection is now f(x);

• Move vertically to hit the graph G , and then again horizontally to hit the diagonal;

• Repeat the step above.

At step n ≥ 1 one hits the graph at (fn−1(x), fn(x)) and the diagonal at (fn(x), fn(x)). Thus the horizontal
projections of the points obtained give the orbit Of (x). This method allows to guess what is the asymptotic behavior
of Of (x). You can for example look whether the points (fn(x), fn(x)) ∈ ∆ which you obtain are converging towards
(or diverging from) a fixed point (x, x) ∈ ∆. In our example, the graphical analysis shows that values of fn(x)
tend to oscillate around 3/5 but tend to stabilize toward it, see the right picture in Figure A.3.

Exercise A.5.1. Use the graphical analysis to find fixed points and study the behavior or orbits nearby for the
following functions:

(1) g(x) = x− x2 for 0 ≤ x ≤ 1;

(2) g(x) = 2x− x2 for 0 ≤ x ≤ 1;

(3) g(x) = −x3 for −∞ ≤ x ≤ ∞;
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1/2 10

1

1/2 10

1

Figure A.3: Examples of graphical analysis.

Exercise A.5.2. Draw the behavior of the orbits of f(x) = 5/2x(1− x) near 0 and near 3/5.

The graphical analysis of fµ for µ = 5/2 suggested that for any x ∈ (0, 1) the values of fn(x) tend to oscillate
around 3/5 but to stabilize toward it. Let us prove that this is indeed the case.

Given a ball U := B(x, ǫ) = {y| d(x, y) < ǫ}, let U := B(x, ǫ) be the closed ball {y| d(x, y) ≤ ǫ}. Note that in
X = [0, 1] the ball B(x, ǫ) is simply a open interval (x − ǫ, x + ǫ) and the closed ball is the corresponding closed
interval [x − ǫ, x + ǫ]. We give here the definition using balls, since this definition holds more in general in any
metric space, that is a space where there is a notion of distance (see Chapter 2).

Definition A.5.1. We say that a fixed point x is an attracting fixed point if there exists a ball U := B(x, ǫ)
around x such that

f(U) ⊂ U, and ∩n∈N f
n(U) = {x}.

We say that a fixed point x is an repelling fixed point if there exists a ball U := B(x, ǫ) around x such that

U ⊂ f(U), and ∩n∈N f
−n(U) = {x}.

[Note that here f is not necessarily invertible. By f−1(U) we mean the set-preimage of the set U : f−1(U) is the
set of all points y such that f(y) ∈ U (that is, all preimages of U).]

Exercise A.5.3. Show that if f is invertible, x is an attracting fixed point if and only if it is a repelling fixed point
for f−1 and viceversa.

When X is an interval in R there is an easy criterion to determine whether a fixed point is attracting or repelling.

Theorem A.5.1. Let X ⊂ R be an interval and let f : X → X be a differentiable function with continuous
derivative. Let x = f(x) be a fixed point.

(1) If |f ′(x)| < 1, then x is an attracting fixed point. More precisely, we will find and open ball U such that
f(U) ⊂ U and for all y ∈ U we have

lim
n→∞

fn(y) = x.

(2) If |f ′(x)| > 1, then x is a repelling fixed point.

Remark A.5.2. Note that if |f ′(x)| = 1 it is not possible to determine just from this information whether the fixed
point is repelling or attracting.

Proof. Let us prove (1). Since f ′ is continuous and |f ′(x)| < 1, there exist an ǫ > 0 such that for all y ∈ [x−ǫ, x+ǫ] =
B(x, ǫ) we have |f ′(y)| < ρ < 1. Then for all y ∈ B(x, ǫ), since f(x) = x, by Mean Value Theorem there exists
ξ ∈ B(x, ǫ) such that

|f(y)− x| = |f(y)− f(x)| = |f ′(ξ)||y − x| ≤ ρ|y − x| ≤ ρǫ.

This givens that f(y) ∈ (x− ǫ, x+ ǫ) for all y ∈ B(x, ǫ). Thus f(B(x, ǫ)) ⊂ B(x, ǫ).
Let us prove by induction that

|fn(y)− x| ≤ ρnǫ.
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We already proved it for n = 1. Assume that it holds for n ≥ 1. Then, applying mean value as before, for all
y ∈ B(x, ǫ), there exists ξ ∈ B(x, ǫ) such that

|fn+1(y)− fn+1(x)| = |f(fn(y))− f(fn(x))| = |f ′(ξ)||fn(y)− fn(x)| ≤ ρ|fn(y)− x|

and by the induction assumption, since fn+1(x) = x, this gives

|fn+1(y)− x| = |fn+1(y)− fn+1(x)| ≤ ρ|fn(y)− x| ≤ ρn+1ǫ.

Since ρ < 1, limn→∞ ρn = 0. Thus, we get at the same time that

lim
n→∞

fn(y) = x and ∩n∈N f
n(B(x, ǫ)) = {x}.

The proof of part (2) is similar.

Exercise A.5.4. Prove part (2) of Theorem A.5.1.

Exercise A.5.5. In our example f(x) = 5/2x(1− x), one can check that f ′(0) = 5/2 and f ′(3/5) = −1/2 so that
0 is a repelling fixed point and 3/5 is an attracting fixed point. Moreover, for each δ > 0, f([δ, 1]) ⊂ (0, 1) and all
points points converge to 3/5.

The dynamics of this quadratic map is then very simple, it is an attracting-repelling dynamics. If one changes
5/2 with 4 and considers the map f(x) = 4x(1− x), the behavior is completely different and much more chaotic.

Exercise A.5.6. Program a computer program to plot some iterates of f(x) = 4x(1− x) at some points. Is there
any pattern? Compare with the case f(x) = µx(1− x) with 0 < µ < 3.

For 0 ≤ µ < 3, the behavior of the maps

fµ(x) = µx(1− x).

the quadratic family is also very simple and similar to the one for µ = 5/2. There are only attracting and repelling
fixed points and all the other points are attracted or repelled.

Exercise A.5.7. Consider the quadratic family fµ for µ ∈ [0, 4].

(1) Check that for µ ∈ [0, 4] the interval I = [0, 1] is mapped to itself, i.e. fµ(I) ⊂ I.

(2) Check that the fixed points of fµ are 0 and 1− 1/µ.

(3) Determine for which values of µ each of them is a repelling or attracting fixed point according to the criterion
in Theorem A.5.1.

What happens for 3 < µ ≤ 4? When µ is slightly bigger than 3, one finds that instead than an attracting fixed
point, there is an attracting orbit: the values oscillate and tend to converge to a periodic cycle. The periods of the
periodic orbit happen to double as one moves the parameter, showing a phenomenon known as period doubling (see
the Extra A.5.2 if you want to experiment it). The dynamics as µ approaches 4 is very rich and displays interesting
new chaotic phenomena sometimes called the route to chaos. Finally, the dynamics of fµ for µ = 4 is very chaotic
and turns out to be very similar to the dynamics of the doubling map that we will see in the next lecture4, see §1.4.

A.5.1 Quadratic maps for µ > 4, Cantor fractals and invariant sets

For µ > 4 the interval I is no longer invariant under fµ, i.e. there are points which are mapped outside I. It is still
possible to consider the dynamics of fµ, but one has to restrict the domain to an invariant subset of [0, 1], i.e. to
the set C of the form

C = ∩n∈Nf
−n
µ (I). (A.2)

If x ∈ C ⊂ I, for each n ∈ N, fnµ (x) ∈ I, so that Ofµ(x) ⊂ I. This set is called the invariant set of the map fµ
and it turns out to be non-empty. The map fµ on the space X = C gives a well defined dynamical system, since

4It is possible to show that these two maps are conjugated in the sense defined in §1.4 and hence they have similar dynamical
properties, for example the same number of periodic points.
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f(C) ⊂ C and for any x ∈ C we can iterate f forever. The set C, though, has a quite complicated fractal structure:
it is a Cantor set.

The best known Cantor set is the middle third Cantor set, that can be defined by the following iterative
construction. Start at level zero from C0 = [0, 1]. Divide the interval into 3 equal thirds and remove the open
middle interval, that is (1/2, 2/3). The remaining set, that we call C1, consists of the 2 closed intervals [0, 1/3] and
[2/3, 1], each of length 1/3. To go to the next stage, divide each of these two intervals into 3 equal intervals and
remove the two middle thirds. You are left with is the set

C1 =

[

0,
1

9

]

∪
[

2

9
,
1

3

]

∪
[

2

3
,
7

9

]

∪
[

8

9
, 1

]

which consists of 4 intervals of size 1/9. Iterating this construction, at step n we get a set Cn which consists
of 2n intervals of size 1/3n (see Figure A.4). The intersection C3 = ∩nCn of all these sets is not empty and is

0 1

0

0

1/3 2/3

1/3 2/3

1

14/91/9 5/9 8/9

C

C

C

C

1

0

2

3

Figure A.4: The construction of the middle-third Cantor set.

the middle-third Cantor set. The Cantor set C3 is self-similar in the following sense: if you consider for example
C3 ∩ [0, 1/3], and blow it up by applying the map x 7→ 3x, you get back the same Cantor set. This self-similarity
happens at all scales and is responsible for the fractal nature of C3.

Let f = fµ be a quadratic map with µ > 4 and let us describe its invariant set iteratively. One can see that the
points x such that f(x) ∈ I belong to the two disjoint subintervals, say I1 and I2 such that

f−1([0, 1]) = I1 ∪ I2.

The points for which f(x) ∈ I and f2(x) ∈ I belong to

f−1(I1) ∪ f−1(I2)

which consists of 4 disjoint intervals, two obtained by removing a central subinterval from I1 and the other two
obtained by removing a central interval from I2. Continuing like this, one can see that the points which can be
iterated n times belong to a disjoint union of 2n intervals. The set of points which can be iterated infinitely many
times can be obtained by iterating this construction. What is left by intersecting all the disjoint unions of 2n

intervals is also a Cantor set and has a fractal structure.

A.5.2 Quadratic maps for 3 < µ < 4, experimenting period doubling

The dynamics of the quadratic family for µ ∈ [3, 4) is very rich and displays interesting chaotic phenomena, known
as period doubling or sometimes called the route to chaos. We will not treat them in this course, but if you can
write a simple computer program, try the following exercises to get a sense of it:

Exercise A.5.8. Starting with x = 0.001, iterate fµ for µ = 2.9 and µ = 3 until you discern a clear pattern.

The population in both cases settles down, but for µ = 3 there are fairly substantial oscillations of too large
and too small population which die out slowly.

Exercise A.5.9. Starting with x = 0.66, iterate fµ for µ = 3.1 until you discern a clear pattern.

Here oscillations do not die out. It is possible to prove that they are stable, whatever the starting data, the
population keeps running into overpopulation every other year.

Exercise A.5.10. Starting with x = 0.66, iterate fµ for µ = 3.45 and µ = 3.5 until you discern a clear pattern.

Now oscillations involve four population sizes: big, small, big, small in a 4-cycle.
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Exercise A.5.11. Try to explore the behavior of fµ increasing slowly the parameter µ for values slightly larger
than µ = 3.5. Try to see if you can find oscillations of the population size of size 8, 16 and other multiples of 2.

This phenomenon is known as period doubling.

Exercise A.5.12. Starting with x = 0.5, iterate fµ for µ = 3.83 until you discern a clear pattern.

You will find that here there are oscillations, but not more of a period multiple of 2, but of period 3... then the
periods of the oscillations will become 2 · 3, 22 · 3, 23 · 3 . . . ..., that is there will be a new period doubling cascade.
The behavior of this family has been object of fascinating research and what is sometimes called route to chaos is
know well understood.

If you want to explore more about the behavior of the quadratic family for 3 ≤ µ ≤ 4 we suggest the following
references:

[4 ] R. Devaney Chaotical Dyanamical Systems, Springer

[5 ] K. Alligood, T. Sauer, j. Jorke, Chaos: an Introduction to Dyanamical Systems, Springer
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