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Chapter 3

Ergodic Theory

In this last part of our course we will introduce the main ideas and concepts in ergodic theory. Ergodic theory
is a branch of dynamical systems which has strict connections with analysis and probability theory. The discrete
dynamical systems f : X → X studied in topological dynamics were continuous maps f on metric spaces X (or
more in general, topological spaces). In ergodic theory, f : X → X will be a measure-preserving map on a
measure space X (we will see the corresponding definitions below). While the focus in topological dynamics was to
understand the qualitative behavior (for example, periodicity or density) of all orbits, in ergodic theory we will not
study all orbits, but only typical1 orbits, but will investigate more quantitative dynamical properties, as frequencies
of visits, equidistribution and mixing.

An example of a basic question studied in ergodic theory is the following. Let A ⊂ X be a subset of the space
X. Consider the visits of an orbit O

+
f (x) to the set A. If we consider a finite orbit segment {x, f(x), . . . , fn−1(x)},

the number of visits to A up to time n is given by

Card { 0 ≤ k ≤ n− 1, fk(x) ∈ A }. (3.1)

A convenient way to write this quantity is the following. Let χA be the characteristic function of the set A, that
is a function χA : X → R given by

χA(x) =

{

1 if x ∈ A
0 if x /∈ A

Consider the following sum along the orbit
n−1
∑

k=0

χA(f
k(x)). (3.2)

This sum gives exactly the number (3.1) of visits to A up to time n. This is because χA(f
k(x)) = 1 if and only if

fk(x) ∈ A and it is zero otherwise, so that there are as many ones in the sum in (3.2) than visits up to time n and
summing them all up one gets the total number of visits up to time n.

If we divide the number of visits up to time n by the time n, we get the frequency of visits up to time n, that is

Card{0 ≤ k < n, such that fk(x) ∈ X}
n

=
1

n

n−1
∑

k=0

χA(f
k(x)).

The frequency is a number between 0 and 1.

Q1 Does the frequency of visits converge to a limit as n tends to infinity? (for all points? for a typical point?)

Q2 If the limit exists, what does the frequency tend to?

A useful notion to consider for dynamical systems on the circle (or on the unit interval) is that of uniform distri-
bution.

1Typical will become precise when we introduce measures: by typical orbit we mean the orbit of almost every point, that is all
orbits of points in a set of full measure.
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Definition 3.0.1. Let {xn}n∈N be a sequence in [0, 1] (or R/Z). We say that {xn}n∈N is uniformly distributed if
for all intervals I ⊂ [0, 1] we have that

lim
n→∞

1

n

n−1
∑

k=0

χI(xk) = |I|.

Where |I| denotes the length of the interval |I|. An equivalent definition is for all continuous functions f : R/Z → R

we should have
1

n

n−1
∑

k=0

f(xk) =

∫ 1

0

f(x)dx.

So if we have a dynamical system T : [0, 1] → [0, 1] (or T : R/Z → R/Z) we can ask whether orbits
{x, T (x), T 2(x), . . .} are uniformly distributed or not.

Example 3.0.1. Let Rα : R/Z → R/Z be the rotation given by Rα(x) = x + α. If α ∈ Q then for all x ∈ R/Z
the orbit of Rα will be periodic, so cannot be dense and thus cannot be uniformly distributed (why?). On the
otherhand if α /∈ Q it will turn out for all x ∈ R/Z the orbit of Rα will be uniformly distributed (this is often
thought of as the 1st ergodic theorem to have been proved, it was proved independently in 1909 and 1910 by Bohl,
Sierpiński and Weyl.)

A more complicated example is the following

Example 3.0.2. Let T : [0, 1) → [0, 1) be the doubling map given by T (x) = 2x mod 1. We know that there
is a dense set of x for which the orbit of T will be periodic and hence not uniformly distributed. However it will
turn out the for ‘almost all’ x the orbit of T will be uniformly distributed (where almost all can be thought of as
meaning except for a set of length 0.

We may also have maps T : [0, 1) → [0, 1) where for ‘typical’ x orbits are not equidistributed

lim
n→∞

1

n

n−1
∑

i=0

XA(T
i(x)) =

∫

A

f(x)dx

for some suitable function f (we will see that the Gauss map is an example of such a map). To make these notions
precise we need to introduce some measure theory which will have the additional advantage of introducing a theory
of integration which is more suited to our purposes.

3.1 Measures and Measure Spaces

Intuitively, a measure µ on a space X is a function from a collection of subsets of X, called measurable sets, which
assigns to each measurable set A its measure µ(A), that is a positive number (possibly infinity). You already know
at least two natural examples of measures.

Example 3.1.1. Let X = R. The 1-dimensional Lebesgue measure λ on R assigns to each interval [a, b] ∈ R its
length:

λ([a, b]) = b− a, a, b ∈ R.

Let X = R2. The 2-dimensional Lebesgue measure, that we will still call λ, assigns to each measurable set2 A ⊂ R2

its area, which is given by the integral3

λ(A) = Area(A) =

∫

A

dxdy.

2We will precisely define what are the measurable sets for the Lebesgue measure in what follows.
3If A is such that χA is integrable in the sense of Riemann, this integral is the usual Riemannian integral. More in general, we will

need the notion of Lebesgue integral, which we will introduce in the following lectures.
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Measurable spaces

One might hope to assign a measure to all subsets of X. Unfortunately, if we want the measure to have the
reasonable and useful properties of a measure (listed in the definition of measure below), this leads to a contradiction
(see Extra if you are curious). So, we are forced to assign a measure only to a sub-collection all subsets of X.
We ask that the collection of measurable subsets is closed under the operation of taking countable unions in the
following sense.

Definition 3.1.1. A collection A of subsets of a space X is called an algebra of subsets if

(i) The empty set ∅ ∈ A ;

(ii) A is closed under complements, that is if A ∈ A , then its complement Ac = X\A also belongs to A ;

(iii) A is closed under finite unions, that is if A1, . . . , An ∈ A , then

n
⋃

i=1

Ai ∈ A .

Example 3.1.2. If X = R an example of algebra is given by the collection A of all possible finite unions of
subintervals of R.

Exercise 3.1.1. Check that the collection A of all possible finite unions of subintervals of R is an algebra.

Definition 3.1.2. A collection A of subsets of a space X is called a σ−algebra of subsets if

(i) The empty set ∅ ∈ A ;

(ii) A is closed under complements, that is if A ∈ A , then its complement Ac = X\A also belongs to A ;

(iii) A is closed under countable unions, that is if {An, n ∈ N} ⊂ A , then

∞
⋃

n=1

An ∈ A .

Thus, a σ−algebra is an algebra which in addition is closed under the operation of taking countable unions. The
easiest way to define a σ−algebra is to start from any collection of sets, and take the closure under the operation
of taking complements and countable unions:

Definition 3.1.3. If S is a collection of subsets, we denote by A (S) the smallest σ−algebra which contains S.
The smallest means that if B is another σ−algebra which contains S, then A (S) ⊂ B. We say that A (S) is the
σ−algebra generated by S.

The following example/definition is the main example that we will consider.

Definition 3.1.4. If (X, d) is a metric space4, the Borel σ−algebra B(X) (or simply B) is the smallest σ−algebra
which contains all open sets of X. The subsets B ∈ B(X) are called Borel sets.

Borel σ-algebras are the natural collections of subsets to take as measurable sets. In virtually all of our examples,
the measurable sets will be Borel subsets.

Definition 3.1.5. A measurable space (X,A ) is a space X together with a σ−algebra A of sets. The sets in A

are called measurable sets and A is called the σ−algebra of measurable sets.

Example 3.1.3. If (X, d) is a metric space, (X,B(X)) is a measurable space, where B(X) is the Borel σ−algebra.

4The same definition of Borel σ−algebra holds more in general if X is a topological space, so that we know what are the open sets.
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Measures

We can now give the formal definition of measure.

Definition 3.1.6. Let (X,A ) be a measurable space. A measure µ is a function µ : A → R+ ∪ {+∞} such that

(i) µ(∅) = 0;

(ii) If {An, n ∈ N} ⊂ A is a countable collection of pairwise disjoint measurable subsets, that is if An∩Am = ∅
for all n 6= m, then

µ

(

∞
⋃

n=1

An

)

=
∞
∑

n=1

µ(An). (3.3)

We say that the measure µ is finite if µ(X) < ∞.

Remark that to have (3.3) we need to assume that An are disjoint.

Example 3.1.4. You can check that both length and area have this natural property: for example the area of the
union of disjoint sets is the sum of the areas. If X = R, the Lebesgue measure on R is not finite, since λ(R) = +∞.
On the contrary, the Lebesgue measure restricted to an interval X = [a, b] ⊂ R is finite since λ([a, b]) < ∞.
Similarly, if T2 is the torus and we consider the area λ, Area(T2) = λ(T2) = 1 < ∞, so λ is a finite measure on T2.

Definition 3.1.7. A measure space (X,A , µ) is a measurable space (X,A ) and a measure µ : A → R+ ∪ {+∞}.
If µ(X) = 1, we say that (X,A , µ) is a probability space.

If we just work directly from the definition of a measure it is hard to produce examples of measures. One simple
example is the following (as well as being simple it also turns out to be extremely useful).

Example 3.1.5. Let X a space and x ∈ X a point. In this example we can take A to be the collection of all
subsets of X. The measure δx, called Dirac measure at x, is defined by

δx(A) =

{

1 if x ∈ A
0 if x /∈ A.

Thus, the measure δx takes only two values, 0 and 1, and assigns measure 1 only to the sets which contain the
point x.

It is also straight forward to see that if (X,A ) is a measurable space and µ1, µ2 are measures on (X,A ) them
µ1, µ2 : A → R+ ∪ {+∞} given by

µ1 + µ2(A) = µ1(A) + µ2(A) for all A ∈ A

is also a measure.

In very few examples (like the Dirac measure) it is possible to define a measure by explicitly saying which values
it assigns to all measurable sets. The following theorem shows that it is not necessary to do this and one can
define the measure only on a smaller collection of sets.

Theorem 3.1.1. [Carathéodory Extension Theorem] Let A be an algebra of subsets of X. If µ∗ : A → R+

satisfies

(i) µ∗(∅) = 0; µ∗(X) < ∞;

(ii) If {An, n ∈ N} ⊂ A is a countable collection of pairwise disjoiint sets in the algebra A and

∞
⋃

n=1

An ∈ A ⇒ µ∗

(

∞
⋃

n=1

An

)

=
∞
∑

n=1

µ∗(An).

Then there exists a unique measure µ : B(A ) → R+ on the σ−algebra B(A ) generated by A which extends
µ∗ (in the sense that it has the prescribed values on the sets of A ). We will refer to µ∗ as a premeasure.
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Remark that since A is only an algebra and not a σ−algebra,
⋃∞

n=1 An ∈ A does not have to belong to A .
Thus, (ii) has to hold only for collections of sets An for which the countable union happens to still belong to A .
Thus, the theorem states that if we have a function µ∗ that behaves like a measure on an algebra, it can indeed be
extended (and uniquely) to a measure.

This theorem will be used mostly in the following two ways:

1. To define a measure on the σ−algebra B(S) generated by S, it is enough to define µ on S in such a way
that it satisfies the assumptions of the Theorem on the algebra generated by S. This automatically defines a
measure on the whole σ−algebra B(S).

2. If we have two measures µ, ν and we want to show that µ = ν, it is enough to check that µ(A) = ν(A) for all
A ∈ A where A is an algebra that generates the σ−algebra of all measurable sets. Then, by the uniqueness
part of the Theorem, the measures µ and ν are the same measure.

We can now formally define the following measures

Example 3.1.6. Let a, b ∈ R with a < b consider the interval [a, b] ⊂ R. We can define Lebesgue meausre λ on
intervals (c, d) ⊂ [a, b], by setting λ((c, d)) = d − c. This clearly defines by additivity also a premeasure λ on the
algebra consisting of finite unions of intervals. If A = ∪n

i=1(ai, bi) and (ai, bi) are disjoint intervals, we just define

µ(A) =

n
∑

i=1

bi − ai.

Since the condition (ii) of the theorem holds, this automatically defines the Lebesgue measure on the σ−algebra
generated by all intervals, that is on all Borel subsets of [a, b]. The same method works to define Lebesgue measure
on the whole of R however as stated the Carathéodory Extension Theorem only holds when the premeasure is
finite. However in fact it holds with a slightly weaker assumption (σ-finiteness) which allows us to define Lebesgue
measure on the whole of R, see remark 3.1.2.

Example 3.1.7. Let X = T2. Consider sets of the form [a, b]× [c, d], that we call rectangles. Define a measure λ
by setting

λ([a, b]× [c, d]) = (b− a)(d− c).

The collection of all finite unions of rectangles is an algebra. Extending the definition of λ to union of rectangles
by additivity, condition (ii) of the theorem automatically holds. Thus, the Theorem guarantees that we defined
a Lebesgue measure on the σ−algebra generated by all rectangles, which coincides with all Borel subsets. This is
again the 2−dimensional Lebesgue measure λ on T2.

Example 3.1.8. If we have a non-negative Riemann integrable (shortly we will extend this to Lebesgue integrable)
function f : R → R+ then for any subinterval A ⊂ R we can define

µf (A) =

∫

A

f(x)dx.

Now if we consider a disjoint finite union of subintervals A1, . . . , An ⊂ R we can write

µf (∪n
i=1Ai) =

n
∑

i=1

µf (Ai).

Now any finite union of subintervals can be rewritten as a disjoint finite union of subintervals, the set of finite
unions of subintervals forms an algebra and µf satisfies the conditions to apply Thoerem 3.1.1. Thus we can extend
µf to a measure on (R,B), since the σ-algebra generated by our algebra is the Borel σ-algebra.

Extras: Remarks

Remark 3.1.1. Condition (iii) in the definition of algebra, that is

(iii) A is closed under finite unions, that is if A1, . . . , An ∈ A , then

n
⋃

i=1

Ai ∈ A ;

5



MATH36206 - MATHM6206 Ergodic Theory

can be equivalently replaced by the following condition

(iii)’ A is closed under intersections, that is if A,B ∈ A , then A ∩B ∈ A ;

In some books, the definition of algebra is given using (i), (ii), (iii)′.

Exercise 3.1.2. Show that a set satisfies conditions (i), (ii), (iii) if and only if it satisfies (i), (ii), (iii)′.

Remark 3.1.2. The condition µ∗(X) < ∞ in the Extension theorem can be relaxed. It is enough that X = ∪nXn

where each Xn is such that µ∗(Xn) < ∞. We say in this case that the resulting measure µ is σ−finite. For example,
the Lebesgue measure on R is σ−finite since

R = ∪n[−n, n], and λ([−n, n]) = 2n < ∞.

Extras: necessity of restricting the class of measurable sets

One might wonder why we need to use σ−algebras of measurable sets in the definition of measure and why we
cannot ask that a measure is defined on the whole collection of subsets of X. Let X = Rn and consider the Lebesgue
measure λ. It is natural to ask that the Lebesgue measure, that intuitively represents the concept of length, or
area or volume ..., has the following properties:

(i) λ has the countable additivity property in the Definition of measure, that is if A1, . . . , An, . . . are disjoint
subsets of X for which λ is defined, then

λ

(

∞
⋃

n=1

An

)

=
∞
∑

n=1

λ(An);

(ii) If two sets A,B ⊂ Rn are congruent, in the sense that A and B are mapped to each other by translations,
rotations or reflections, then they should have the same length (or area or volume...). In particular, if
A = B + c, where c ∈ Rn, then λ(A) = λ(B);

(iii) λ([0, 1)n) = 1 (this is simply a renormalization requirement).

Let us show that unfortunately these three properties and the requirement that λ is defined on all subsets of X
are incompatible.

For simplicity, let us take n = 1 and X = R. Consider [0, 1) ⊂ R and let α be an irrational. Consider the
rotation Rα : [0, 1) → [0, 1) and consider all the orbits O

+
Rα

(x) of the rotation Rα. Let us pick
5 a representative x

for each orbit and so that, if R is the set of representative, we can write the whole interval as union over all the
orbits of the representatives:

[0, 1] =
⋃

x∈R

O
+
Rα

(x).

Since O
+
Rα

(x) =
⋃

n∈N{Rn
α(x)}, we can rewrite

[0, 1] =
⋃

x∈R

⋃

n∈N

{Rn
α(x)} =

⋃

n∈N

⋃

x∈R

{Rn
α(x)} =

⋃

n∈N

An where An =
⋃

x∈R

{Rn
α(x)}. (3.4)

Let assume that λ is defined on all subsets of X and has the Properties (i), (ii) and (iii) above. In particular,
λ(An) is defined for each n ∈ N. The sets An are such that An+1 = Rα(An), they are all obtained from each other
by translations, so by Property (i)

λ(An) = λ(Am), for all n, n ∈ N.

By Property (iii), λ([0, 1]) = 1. Moreover, {An}n∈N are clearly disjoint sets, so by Property (ii), we have

∑

n∈N

λ(An) = λ

(

⋃

n∈N

An

)

= λ([0, 1]) = 1.

5To pick a representative for each orbit, we are implicitly using the Axiom of choice.
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But since λ(An) = λ(Am) for all m,n, if µ(An) > 0, this gives a contradiction (since a series with equal positive
terms diverges), but if µ(An) = 0, this also gives a contradiction (since a series with all terms equal to zero is
zero). This shows that requiring all these three condition and asking that λ is defined on all subsets of R gives a
contradiction.

This problem is solved when we consider the Lebesgue measure λ only on the collection of Borel subsets. It
turns out that the sets An which lead us to a contradiction are not measurable (they do not belong to the σ−algebra
B generated by open sets). Thus, λ(An) is simply not defined.

One could consider weakening the countable additivity condition, even if countable additivity is very useful for
the theory of limits and continuity. Nevertheless, even if one substitutes Property (i) with finite additivity

(i)’ λ has the finite additivity property in the Definition of measure, that is if A1, . . . , An are disjoint subsets of
X for which λ is defined, then

λ

(

n
⋃

k=1

Ak

)

=

n
∑

k=1

λ(Ak);

and asks that a measure is defined on all subsets and has Properties (i)′, (ii), (iii) one still gets paradoxical results
for n ≥ 3, as was by Banach and Tarski in 1924 in the famous:

Theorem 3.1.2 (Banach-Tarski paradox). Let U, V be any two bounded open sets in Rn, n ≥ 3. One can decompose
each of them in finitely many disjoint pieces

U =
⋃

k=1,...,n

Ak, V =
⋃

k=1,...,n

Bk,

such that each Ak is congruent to each Bk.

For example, if we take U to be a sphere of volume one and V to be a sphere of volume two, one can cut up the
smaller sphere in finitely many pieces, move them by translations and reflections and recompose the bigger sphere.
If each of these pieces had a well defined volume, we would get a contradiction: each pair of congruent pieces has
the same volume, but the volume of their union has doubled! In conclusion, it is better to give up the hope that
all subsets are measurable and accept that there are non measurable subsets.

3.2 Measure preserving transformations

In this section we present the definition and many examples of measure-preserving transformations. Let (X,B, µ)
be a measure space. For the ergodic theory part of our course, we will use the notation T : X → X for the map
giving a discrete dynamical system, instead than f : X → X (T stands for transformation). This is because we
will use the letter f for functions f : X → R (which will play the role of observables).

Definition 3.2.1. A transformation T : X → X is measurable, if for any measurable set A ∈ B the preimage is
again measurable, that is T−1(A) ∈ B.

One can show that if (X, d) is a metric space, B = B(X) is the Borel σ−algebra and T : X → X is continuous,
than in particular T is measurable. All the transformations we will consider will be measurable.

[Even if not explicitly stated, when in the context of ergodic theory we consider a transformation T : X → X
on a measurable space (X,B) we implicitly assume that it is measurable.]

Definition 3.2.2. A transformation T : X → X is measure-preserving if it is measurable and if for all measurable
sets

µ(T−1(A)) = µ(A), for all A ∈ B. (3.5)

We also say that the transformation T preserves µ.

If µ satisfies (3.5), we say that the measure µ is invariant under the transformation T .

Notice that in (3.5) one uses T−1 and not T . This is essential if T is not invertible, as it can be seen in Example
3.2.1 below (on the other hand, one could alternatively use forward images if T is invertible, see Remark 3.2.2
below). Notice also that we need to assume that T is measurable to guarantee that T−1(A) is measurable, so that
we can consider µ(T−1(A)) (recall that a measure is defined only on measurable sets).

We will see many examples of measure-preserving transformations both in this lecture and in the next ones.
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Remark 3.2.1. Let T be measurable. Let us define T∗µ : B → R+ ∪ {+∞} by

T∗µ(A) = µ(T−1(A)), A ∈ B.

One can check that T∗µ is a measure. The measure T∗µ is called push-forward of µ with respect to T . Equivalently,
T is measure-preserving if and only if T∗µ = µ.

Exercise 3.2.1. Verify that if µ is a measure on the measurable space (X,B) and T is a measurable transformation,
the push-forward T∗µ is a measure on (X,B).

Thanks to the extension theorem, to prove that a measure is invariant, it is not necessary to check the measure-
preserving relation (3.5) for all measurable sets A ∈ B, but it is enough to check it for a smaller class of subsets:

Lemma 3.2.1. If the σ−algebra B is generated by an algebra A (that is, B = B(A )), then µ is preserved by T
if and only if

µ(T−1(A)) = µ(A), for all A ∈ A , (3.6)

that is, it is enough to check the measure preserving relation for the elements on the generating algebra A and then
it automatically holds for all elements of B(A ).

Proof. Consider the two measures µ and T∗µ. If (3.6) holds, then µ and T∗µ are equal on the algebra A . Moreover,
both of them satisfy the assumptions of the Extension theorem, since they are measures. The uniqueness part of
the Extension theorem states that there is a unique measure that extends their common values on the algebra.
Thus, since µ and T∗µ are both measures that extend the same values on the algebra, by uniqueness they must
coincide. Thus, µ = T∗µ, which means that T is measure-preserving. The converse is trivial: if µ and T∗µ are equal
on elements of B(A ), in particular they coincide on A .

As a consequence of this Lemma, to check that a transformation T is measure preserving, it is enough to check
it for:

(R) intervals [a, b] if X = R or X = I ⊂ R is an interval and B is the the Borel σ−algebra;

(R2) rectangles [a, b]× [a, b] if X = R2 or X = [0, 1]2 and B is the the Borel σ−algebra;

(S1) arcs if X = S1 with the Borel σ−algebra;

(Σ) cylinders C−m,n(a−m, . . . , an) if X is a shift space X = ΣN or X = ΣA and B is the σ−algebra;

[This is because finite unions of the subsets above mentioned (intervals, rectangles, arcs, cylinders) form algebras
of subsets. If one checks that µ = T∗µ on these subsets, by additivity of a measure they coincide on the whole
algebra of their finite unions. Thus, by the Lemma, µ and T∗µ coincide on the whole σ−algebra generated by them,
which is in all cases the corresponding Borel σ−algebra.]

Examples of measure-preserving transformations

Example 3.2.1. [Doubling map] Consider (X,B, λ) where X = [0, 1] and λ is the Lebesgue measure on the
Borel σ−algebra B of X. Let f(x) = 2x mod 1 be the doubling map. Let us check that f preserves λ. Since

f−1[a, b] =

[

a

2
,
b

2

]

∪
[

a+ 1

2
,
b+ 1

2

]

,

we have

λ(f−1[a, b]) =
b− a

2
+

(b+ 1)− (a+ 1)

2
= b− a = λ([a, b]),

so the relation (3.5) holds for all intervals. Since if I = ∪iIi is a (finite or countable) union of disjoint intervals
Ii = [ai, bi], we have

λ(I) =
∑

i

|bi − ai|,

one can check that λ(f−1(I)) = λ(I) holds also for all I which belong to the algebra of finite unions of intervals.
Thus, by the extension theorem (see Lemma 3.2.1 and (S1)), we have λ(f−1(B)) = λ(B) for all Borel measurable
sets.

On the other hand check that λ(f([a, b])) = 2λ([a, b]), so λ(f([a, b])) 6= λ([a, b]). This shows the importance of
using T−1 and not T in the definition of measure preserving.

8
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Example 3.2.2. [Rotations] Let Rα : S1 → S1 be a rotation. Let λ be the Lebesgue measure on the circle,
which is the same than the 1−dimensional Lebesgue measure on [0, 1] under the identification of S1 with [0, 1]/ ∼.
The measure λ(A) of an arc is then given by the arc length divided by 2π, so that λ(S1) = 1.

Remark that if Rα is the counterclockwise rotation by 2πα, than R−1
α = R−α is the clockwise rotation by 2πα.

If A is an arc, it is clear that the image of the arc under the rotation has the same arc length, so

λ(R−1
α (A)) = λ(A), for all arcs A ⊂ S1.

Thus, by the Extension theorem (see (S1) above), we have (Rα)∗λ = λ, that is Rα is measure preserving.

In this Example, one can see that we also have λ(Rα(A)) = λ(R−1
α (A)) = λ(A). This is the case more in general

for invertible transformations:

Remark 3.2.2. Suppose T is invertible with T−1 measurable. Then T preserves µ if and only if

µ(TA) = µ(A), for all measurable sets A ∈ B. (3.7)

Exercise 3.2.2. Prove the remark, by first showing that if T is invertible (injective and surjective) one has

T (T−1(A)) = A, T−1(T (A)) = A.

[Notice that this is false in general if T is not invertible. For any map T one has the inclusions

T (T−1(A)) ⊂ A, A ⊂ T−1(T (A)),

but you can give examples where the first inclusion can be strict if T is not surjective and the second inclusion
A ⊂ T−1(T (A)) is strict if T is not injective.]

In the next example, we will use the following:

Remark 3.2.3. Let (X,B, µ) be a measure-space. If T : X → X and S : X → X both preserve the measure µ,
than also their composition T ◦ S preserves the measure µ. Indeed, for each A ∈ B, since T−1(A) ∈ B since T is
measurable. Then, using first that S is measure preserving and then that T is also measure preserving, we get

µ(S−1(T−1(A))) = µ(T−1(A)) = µ(A).

Thus, T ◦ S is measure-preserving.

Example 3.2.3. [Toral automorphisms] Let fA : T2 → T2 be a toral automorphism; A denotes the correspond-
ing invertible integer matrix. Let us show that fA preserves the 2−dimensional Lebesgue measure λ on the torus.
As usual be identify T2 with the unit square [0, 1)2 with oposite sides identified. Since the set of all finite unions
of rectangles in [0, 1)2 forms an algebra which generates the Borel σ-algebra of the metric space (T2, d), and since
f−1
A = fA−1 is measurable, it is sufficient to prove λ(fA(R)) = λ(R) for all rectangles R ⊂ [0, 1)2. The image of
R under the linear transformation A is the parallelogram AR. Since | det(A)| = 1, AR has the same area as A.
The parallelogram AR can be partitioned into finitely many disjoint polygons Pj , such that for each j we find an
integer vector mj ∈ Z2 with Pj +mj ∈ [0, 1)2. Thus

fA(R) =
⋃

j

(Pj +mj).

Since fA is invertible, the sets Pj +mj are pairwise disjoint, and hence

λ(fA(R)) =
∑

j

λ(Pj +mj) =
∑

j

λ(Pj) = λ(R)

which completes the proof. (In the second equality above we have used that translations preserve the Lebesgue
measure λ.)

9
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Figure 3.1: The first branches of the graph of the Gauss map.

Example 3.2.4. [Gauss map]
Let X = [0, 1] with the Borel σ−algebra and let G : X → X be the Gauss map (see Figure 3.1). Recall that

G(0) = 0 and if 0 < x ≤ 1 we have

G(x) =

{

1

x

}

=
1

x
− n if x ∈ Pn =

(

1

n+ 1
,
1

n

]

.

The Gauss measure µ is the measure defined by the density 1
(1+x) log 2 , that is the measure that assigns to any

interval [a, b] ⊂ [0, 1] the value

µ([a, b]) =
1

log 2

∫ b

a

1

1 + x
dx.

By the Extension theorem, this defines a measure on all Borel sets. Since

∫ 1

0

1

1 + x
= log(1 + x)|10 = log 2− log 1 = log 2,

the factor log 2 in the density is such that µ([0, 1]) = 1, so the Gauss measure is a probability measure.

[The Gauss measure was discovered by Gauss who found that the correct density to consider to get invariance was
indeed 1/(1 + x).]

Proposition. The Gauss map G preserves the Gauss measure µ, that is G∗µ = µ.

Proof. Consider first an interval [a, b] ⊂ [0, 1]. Let us call Gn the branch of G which is given by restricting G to
the interval Pn. Since each Gn is surjective and monotone, the preimage G−1([a, b]) consists of countably many
intervals, each of the form G−1

n ([a, b]) (see Figure 3.1). Let us compute G−1
n ([a, b]):

G−1
n ([a, b]) = {x s.t. Gn(x) ∈ [a, b]} =

{

x s.t. a ≤ 1

x
− n ≤ b

}

=

{

x s.t.
1

b+ n
≤ x ≤ 1

a+ n

}

=

[

1

b+ n
,

1

a+ n

]

.

10
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Remark also that G−1
n ([a, b]) are clearly all disjoint. Thus, by countably additivity of a measure, we have

µ(G−1([a, b])) = µ

(

∞
⋃

n=1

G−1
n ([a, b])

)

= µ

(

∞
⋃

n=1

[

1

b+ n
,

1

a+ n

]

)

=
∞
∑

n=1

µ

([

1

b+ n
,

1

a+ n

])

=

∞
∑

n=1

∫ 1
a+n

1
b+n

1

log 2

dx

(1 + x)
=

1

log 2

∞
∑

n=1

(

log

(

1 +
1

a+ n

)

− log

(

1 +
1

b+ n

))

=
1

log 2

∞
∑

n=1

(

log

(

1 + a+ n

a+ n

)

− log

(

1 + b+ n

b+ n

))

.

By definition, the sum of the series is the limit of its partial sums and we have that

N
∑

n=1

log

(

1 + a+ n

a+ n

)

=
N
∑

n=1

log(1 + a+ n)− log(a+ n).

Remark that the sum is a telescopic sum in which consecutive terms cancel each other (write a few to be convinced),
so that

N
∑

n=1

(log(1 + a+ n)− log(a+ n)) = − log(a+ 1) + log(1 + a+N).

Similarly,
N
∑

n=1

(log(1 + b+ n)− log(b+ n)) = − log(b+ 1) + log(1 + b+N).

Thus, going back to the main computation:

G−1([a, b]) =
1

log 2
lim

N→∞

N
∑

n=1

(

log

(

1 + a+ n

a+ n

)

− log

(

1 + b+ n

b+ n

))

=
1

log 2
lim

N→∞
(log(1 + a+N)− log(a+ 1)− (log(1 + b+N)− log(b+ 1)))

=
1

log 2

[

log(b+ 1)− log(a+ 1) + lim
N→∞

(

log
1 + a+N

1 + b+N

)]

=
1

log 2
(log(b+ 1)− log(a+ 1) + 0) =

1

log 2

∫ b

a

dx

log 2(1 + x)
.

This shows that µ(A) = G∗µ(A) for all A intervals. By additivity, µ(A) = G∗µ(A) on the algebra of finite unions
of intervals. Thus, by the Extension theorem (see Lemma 3.2.1), µ = G∗µ.

Spaces and transformations in different branches of dynamics

Measure spaces and measure-preserving transformations are the central object of study in ergodic theory. Different
branches of dynamical systems study dynamical systems with different properties. In topological dynamics, the
discrete dynamical systems f : X → X studied are the ones in which X is a metric space (or more in general,
a topological space) and the transformation f is continuous. In ergodic theory, the discrete dynamical systems
f : X → X studied are the ones in which X is a measured space and the transformation f is measure-preserving.

Similarly, other branches of dynamical systems study spaces with different structures and maps which preserves
that structure (for example, in holomorphic dynamics the space X is a subset of the complex plan C (or Cn) and
the map f : X → X is a holomorphic map; in differentiable dynamics the space X is a subset of Rn (or more
in general a manifold, for example a surface) and the map f : X → X is smooth (that is differentiable and with
continuous derivatives) (as summarized in the Table below) and so on...

11
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branch of dynamics space X transformation f : X → X

Topological dynamics metric space continuous map
(or topological space)

Ergodic Theory measure space measure-preserving map

Holomorphic Dynamics subset of C (or Cn) holomorphic map

Smooth Dynamics subset of Rn smooth
(or manifold, as surface) (continuous derivatives)

3.3 Poincaré Recurrence

Let (X,B) be a measurable space and let T : X → X be a measurable transformation. Let us say that T has a
finite invariant measure if there is a measure µ invariant under T with µ(X) < ∞ (we saw many examples in the
previous lecture). Just possessing a finite invariant measure has already very important dynamical consequences.
We will see in this class Poincaré Recurrence and, in §3.7, the Birkhoff Ergodic Theorem. Both assume only that
there is a finite measure preserved by the transformation T : X → X.

Notation 3.3.1. If (X,B, µ) is a measure space, we say that a property hold for µ-almost every point and write
for µ − a.e point if the set of x ∈ X for which it fails has measure zero. Similarly, if B ⊂ X is a subset, we say
that property hold for µ-almost every point x ∈ B if the set of points in B for which it fails has measure zero.

If µ is the Lebesgue measure or if the measure is clear from the context and there is no-ambiguity, we will simply
say that the property holds for almost every point and write that it holds for a.e. x ∈ X.

Definition 3.3.1. Let B ⊂ X be a subset. We say that a point x ∈ B returns to B if there exists k ≥ 1 such that
T k(x) ∈ B. We say that x ∈ B is infinitely recurrent with respect to B if it returns infinitely often to B, that is
there exists an increasing sequence (kn)n∈N such that T kn(x) ∈ B.

Theorem 3.3.1 (Poincaré Recurrence, weak form). If (X,B, µ) is a measure space, T preserves µ and µ if
finite, then for any B ∈ B with positive measure µ(B) > 0, µ−almost every point x ∈ B returns to B (that is, the
set of points x ∈ B that never returns to B has measure zero).

Before giving the formal proof, let us explain the idea behind it: if B is a set with positive measure, let us consider
the preimages T−n(B), n ∈ N. Since T is measure preserving, all the preimages have the same measure. Since the
total measure of the space is finite, the sets B, T−1(B), . . . , T−n(B), . . . cannot be all disjoint, since otherwise the
measure of their union would have infinite measure. Thus, they have to intersect. Intersections give points in B
which return to B (if x ∈ T−n(B) ∩ T−m(B) where m > n, then Tn(x) ∈ B and Tm−n(Tn(x)) = Tm(x) ∈ B, so
Tn(x) returns to B). This only shows so far that there exists a point in B that returns. The proof strengthen this
result to almost every point.

Proof of Theorem 3.3.1. Consider the set A ⊂ B of points x ∈ B which do not return to B. Equivalently, we have
to prove that µ(A) = 0. Consider the preimages {T−n(A)}n∈N. Clearly, T

−n(A) ⊂ X, so
(

⋃

n∈N

T−n(A)

)

⊂ X ⇒ µ

(

⋃

n∈N

T−n(A)

)

≤ µ(X) < ∞,

where we used that if E ⊂ F are measurable sets, then µ(E) ≤ µ(F ) (this property of a measure, which is very
intuitive, can be formally derived from the definition of measure, see Exercise 3.3.1 below). Let us show that
{T−n(A)}n∈N are pairwise disjoint. If not, there exists n,m ∈ N , with n 6= m, such that

T−n(A) ∩ T−m(A) 6= ∅ ⇔ there exists x ∈ T−nA ∩ T−m(A).

Assume that m > n. Then
Tn(x) ∈ A, and Tm−n(Tnx) = Tm(x) ∈ A,

but this contradicts the definition of A (all points of A do not return to A). Thus, {T−n(A)}n∈N are all disjoint.
By the countable additivity property of a measure,

∞
∑

n=1

µ(T−nA) = µ

(

⋃

n∈N

T−n(A)

)

≤ µ(X).

12
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Remark now that since T is measure preserving, µ(T−n(A)) = µ(A) for all n ∈ N. Thus, we have a finite series
whose terms are all equal. If µ(A) > 0, this cannot happen (the series with constant terms equal to µ(A) > 0
diverges), so µ(A) = 0 as desired.

In the proof we used the following property of a measure, which you can derive from the properties in the
definition of a measure:

Exercise 3.3.1. Let µ be a measure on (X,B). Show using the property of a measure that if E,F ∈ B and
E ⊂ F , then µ(E) ≤ µ(F ).

If E ⊂ F is a strict inclusion, does it imply that µ(E) < µ(F )? Justify.

We can prove actually more and show that almost every point is infinitely recurrent :

Theorem 3.3.2 (Poincaré Recurrence, strong form). If (X,B, µ) is a measure space, T preserves µ and µ
if finite, then for any B ∈ B with positive measure µ(B) > 0, µ−almost every point x ∈ B is infinitely recurrent
to B (that is, the set of points x ∈ B that returns to B only finitely many times has measure zero).

Proof. Let A be the set of points in B that do not return to B infinitely many times. We want to prove that
µ(A) = 0. The points in A are the points which return only finitely many (possibly zero) times. Thus, if x ∈ A,
for all n sufficiently large Tn(x) is outside B, that is

A = {x ∈ B such that there exists k ≥ 1 such that Tn(x) /∈ B for all n ≥ k}.

Consider the set
A0 = {x ∈ B such that Tn(x) /∈ B for all n > 0 },

and the sets Ak = T−k(A0) for k ≥ 1. Then, if x ∈ T−k(A0), T
k(x) ∈ A0, so T k(x) ∈ B and Tn(T k(x)) =

T k+n(x) /∈ B for all n > 0. Thus

Ak = {x such that T k(x) ∈ B and Tn(x) /∈ B for all n > k }.

One can then write

A = B ∩
+∞
⋃

k=0

Ak. (3.8)

[Indeed, if x ∈ A, let k be the largest integer such that T k(x) ∈ B, which is well defined since there are only finitely
many such integers by definition of A. Then x ∈ Ak. Conversely, if x ∈ B ∩ Ak for some k, Tn(x) /∈ B for all
n > k, so x can return only finitely many times and belongs to A.]

From (3.8) and Exercise (3.3.1), we have

A ⊂
+∞
⋃

k=0

Ak ⇒ µ(A) ≤ µ

(

+∞
⋃

k=0

Ak

)

.

Thus, to prove that µ(A) = 0 it is enough to prove that the union ∪kAk has measure zero.
Reasoning as in the proof of the weak version of Poincaré Recurrence, since we showed that {Ak}k∈N are pairwise

disjoint, we have
∞
∑

k=0

µ(Ak) = µ

(

+∞
⋃

k=0

Ak

)

≤ µ(X) < +∞.

Furthermore, µ(Ak) = µ(A0) for all k ∈ N since Ak = T−k(A0) and T is measure preserving. Thus, the only
possibility to have a convergent series with non-negative equal terms is µ(A0) = µ(Ak) = 0 for all k ∈ N. But then

∞
∑

k=0

µ(Ak) = 0 ⇒ µ(A) ≤ µ

(

+∞
⋃

k=0

Ak

)

=

∞
∑

k=0

µ(Ak) = 0,

so µ(A) = 0 and almost every point in B is infinitely recurrent.

13
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Remarks

1. Notice that recurrence is different than density. If x ∈ B is periodic of period n, for example, it does return
to B infinitely often even if its orbit is not dense, since T kn(x) = x ∈ B for any k ∈ N. For example, consider
a rational rotation Rα where α = p/q. Then all orbits are periodic, so no points is dense. On the other hand,
Rα preserves the Lebesgue measure and the conclusion of Poincaré Recurrence Theorem holds. Given any
measurable set B, any point of B is infinitely recurrent.

2. If µ is not finite, Poincaré Recurrence Theorem does not hold. Consider for example X = R with the Borel
σ−algebra and the Lebesgue measure λ. Let T (x) = x+ 1 be the translation by 1. Then T preserves λ, but
no point x ∈ R is recurrent: all points tend to infinity under iterates of T .

Exercise 3.3.2. (a) Let X = R2 and let T : R2 → R2 be the linear transformation

T (x, y) = (x+ y, y) given by the matrix A =

(

1 1
0 1

)

.

Show that the conclusion of Poincaré Recurrence Theorem fails for T .

(b) Let X = T2 and let T : T2 → T2 be the toral automorphism given by A, that is

T (x, y) = (x+ y mod 1, y mod 1).

Show that in this case, for any rectangle R = [a, b] × [c, d] ⊂ T2 all points (x, y) ∈ R are infinitely recurrent
to R.

[Hint: separate the two cases y rational and y irrational.]

Extra 1: Is Poincaré Recurrence a paradox?

Poincaré Recurrence theorem was considered for long time paradoxical. Let X be the phase space of a physical
system, for example let X include all possible states of molecules in a box. The σ−algebra B represents the
collections of observable states of the system and µ(A) is the probability of observing the state A. If T gives the
discrete time evolution of the system, it is reasonable to expect that if the system is in equilibrium, T preserves µ,
that is, the probability of observing a certain state is independent on time. Thus, we are in the set up of Poincaré
Recurrence theorem. Consider now an initial state in which all the particles are in half of the box (for example
imagine of having a wall which separates the box and then removing it). By Poincaré Recurrence Theorem, almost
surely, all the molecules will return at some point in the same half of the box. This seems counter-intuitive. In
reality, this is not a paradox, but simply the fact that the event will happen almost surely does not say anything
about the time it will take to happen again (the recurrence time). Indeed, one can show that (if the transformation
is ergodic, see next lecture) the average recurrence time is inversely proportional to the measure of the set to which
one wants to return. Thus, since the phase space is huge and the observable corresponding to all molecules in
half of the box has extremely small measure is this huge space, the time it will take will take to see again this
configuration is also huge, probably longer than the age of the universe.

Extra 2: Poincaré Recurrence for incompressible transformations

Poincaré Recurrence holds not only for measure-preserving transformations, but more in general for a larger class
of transformations called incompressible. In Exercise 3.3.3 we outline the steps of an alternative proof of the strong
form of Poincaré Recurrence which holds also for incompressible transformations.

Definition 3.3.2. Let (X,B, µ) be a finite measure space. A transformation T : X → X is called incompressible
if for any A ∈ B

A ⊂ T−1(A) ⇒ µ(T−1(A)) = µ(A).

Notice that here we only assume that the inclusion A ⊂ T−1(A) holds and not that A is invariant. Clearly if a
transformation is measure preserving, in particular it is also incompressible.

Theorem 3.3.3 (Poincaré Recurrence for incompressible transformations). If (X,B, µ) be a finite mea-
sure space and T : X → X is incompressible, then, for any B ∈ B with positive measure, µ−almost every point
x ∈ B is infinitely recurrent to B.
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Exercise 3.3.3. Prove and use the following steps to give a proof of Theorem 3.3.3:

1. The set E ⊂ A of points in A ∈ B which are infinitely recurrent can be written as

E = A ∩
⋂

n∈N

En, where En =
⋃

k≥n

T−kA;

2. The sets En are nested, that is En+1 ⊂ En, and one has µ(∩n∈NEn) = limn→∞ µ(En);

[Hint: write µ(E0\ ∩n∈N En) as a telescopic series using the disjoint sets En\En+1.]

3. Show that T−1(En) = En+1. Deduce that limn µ(En) = µ(E0).

Conclude by using the remark that A\ ∩n∈N En ⊂ E0\ ∩n∈N En.

Extra 3: Multiple recurrence and applications to arithmetic progressions.

A stronger version of Poincaré Recurrence, known asMultiple Recurrence, turned out to have an elegant applications
to an old problem in combinatorics, the one of finding arithmetic progressions in subsets of the integer numbers.

Definition 3.3.3. An arithmetic progression of length N is a set of the form

{a, a+ b, a+ 2b, . . . , a+(N−1)b} = {a+ kb, where a, b ∈ Z, b 6= 0, k = 0, . . . , N − 1}. (3.9)

For example, 5, 8, 11, 14, 17 is an arithmetic progression of length 5 with a = 5 and b = 3.
Consider the set Z and imagine of coloring the integers with a finite number r of colors. Formally, consider a

partition
Z = B1 ∪ . . . Br, where the sets Bi ⊂ Z are disjoint. (3.10)

(each set represents a color). Are there arbitrarily long arithmetic progressions of numbers all of the same color?

Theorem 3.3.4 (Van der Warden). If {B1, . . . , Br} is a finite partition of Z as in (3.10), there exists a 1 ≤ j ≤ r
such that Bj contains arithmetic progressions of arbitrary length, that is, for any N there exists a, b ∈ Z, b 6= 0,
such that {a+ kb}N−1

k=0 ⊂ Bj.

This Theorem can be proved using topological dynamics6. A proof can be found in the book by Pollicott and
Yuri. A stronger result is true. The density (or upper density) of a subset S ⊂ Z is defined as

ρ(S) = lim sup
n→∞

Card{ k ∈ S, −n ≤ k ≤ n }
2n+ 1

.

Thus, we consider the proportion of integers contained in S in each block of the form [−n, n]∩Z and take the limit
(if it exists, otherwise the limsup) as n grows. A set S ⊂ Z has positive (upper) density if ρ(S) > 0.

Theorem 3.3.5 (Szemeredi). If S ⊂ Z has positive (upper) density, it contains arithmetic progressions of arbitrary
length, that is, for any N there exists a, b ∈ Z, b 6= 0, such that {a+ kb}N−1

k=0 ⊂ S.

This result was conjectured in 1936 by Erdos and Turan. The theorem was first proved by Szemeredi in 1969
for N = 4 and then in 1975 for any N . Szemeredi’s proof is combinatorial and very complicated. A few years later,
in 1977, Furstenberg gave a proof of Szemeredi’s theorem by using ergodic theory. The essential ingredient in his
proof, which is very elegant, is based on a stroger version of Poincaré Recurrence, known as Multiple Recurrence:

Theorem 3.3.6 (Multiple Recurrence). If (X,B, µ) is a measure space, T preserves µ and µ if finite, then for
any B ∈ B with positive measure µ(B) > 0 and any N ∈ N there exists k ∈ N such that

µ
(

B ∩ T−k(B) ∩ T−2k(B) ∩ · · · ∩ T−(N−1)k(B)
)

> 0. (3.11)

6The original proof was given by Van der Waerden in 1927. The dynamical proof is due to Fursterberg and Weiss in 1978.

15



MATH36206 - MATHM6206 Ergodic Theory

The theorem conclusion means that there exists a positive measure set of points of B which return to B along an
arithmetic progression: if x belongs to the intersection (3.11), then x ∈ B, T k(x) ∈ B, T 2k(x) ∈ B, . . . , T (N−1)k(x) ∈
B, that is, returns to B happen along an arithmetic progression of return times of length N .

From the Multiple Recurrence theorem, one can deduce Szemeredi Theorem in few lines (it is enough to set up
a good space and map, which turns out to be a shift map on a shift space, find an invariant measure and translate
the problem of existence of arithmetic progressions into a problem of recurrence along an arithmetic sequence of
times). A reference both for this simple argument is again the book by Pollicott and Yuri, see §16.2 (in the same
Chapter 16 you can find also a sketch of the full proof of the Multiple Recurrence Theorem. The proof is quite
long and involved and uses more tools in ergodic theory).

A much harder question, open until recently, was whether there are arbitrarily long arithmetic progressions
such that all the elements a+ kb are prime numbers. Unfortunately Szemeredi theorem does not apply if we take
as set S the set of prime numbers: indeed, primes have zero density. Recently, Green and Tao gave a proof that
the primes contain arbitrarily large arithmetic progressions. The proof is a mixture of ergodic theory and additive
combinatorics.

3.4 Integrals with respect to a measure

Last time we saw Poincaré Recurrence Theorem. In order to state Birkhoff ergodic theorem, the other important
theorem in ergodic theory which holds for any transformation which preserve a finite measure, we need two more
ingredients: integrals with respect to a measure and the definition of an ergodic transformation. We will define
ergodic transformations in the next lecture, §3.5. In this lecture we will define integrals with respect to a measure
and give a meaning to expressions as

∫

fdµ,

∫

X

fdµ,

∫

A

fdµ.

We would like a notion of integration that generalizes the notion of Riemann integral: if X = R (or X = Rn), λ is
the Lebesgue measure and f is Riemann-integrable, we would like the above expression to reduce to

∫

X

fdλ =

∫

R

f(x) dx,

where the latter integral is the usual Riemann integral. The integral that we are going to define is known as
Lebesgue integral with respect to a measure µ (or, briefly, Lebesgue integral7), it generalizes the Riemann integral
and allows to integrate a much larger class of functions and with respect to any measure µ.

Let (X,A , µ) be a measure space. Let f : X → R be a function (remark that, while in topological dynamics
we often used the letter f for a dynamical system f : X → X, in ergodic theory the transformation is denoted by
T : X → X and here f does not map to X, but is a real-valued function).

Definition 3.4.1. A (real-valued) function f : X → R is measurable if

f−1(B) ∈ A

for all Borel sets B of R.

Remark 3.4.1. Remark that equivalently, f : X → R is measurable if and only if

f−1([a, b]) ∈ A

for all intervals [a, b] ∈ R. This follows from the fact that B is generated by the set of closed intervals.

[This definition looks similar to the definition of a measurable map from T : X → X. Indeed, they are both special
cases of a more general definition of measurable:

Definition 3.4.2. If (X,AX) and (Y,AY ) are measurable spaces and S : X → Y is a transformation, we way that
S is measurable if for any A ∈ AY , S

−1(A) ∈ AX .

If (Y,AY ) = (X,AX), this reduces to the definition of S measurable that we saw in §2.2. If (Y,A ) = (R,B)
where B are the Borel sets of R, this reduces to the above definition of measurable real-valued function.]

7Sometimes the term Lebesgue integral is used only for integration with respect to the Lebesgue measure λ.
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Example 3.4.1. [Characteristic functions] Let A ∈ A be a measurable set. Let χA be the characteristic
function of the set A (also called indicatrix of A), which, we recall, is given by

χA(x) =

{

1 if x ∈ A
0 if x /∈ A.

Let us show that χA is measurable. By the Remark 3.4.1, it is enough to show that for any interval [a, b] the
preimage χ−1

A ([a, b]) is measurable. One can easily see that, since χA assumes only to values, 1 on A and 0 on the
complement X\A, the preimage of an interval will be given by one of the following cases:

χ−1
A ([a, b]) =















A if 1 ∈ [a, b] and 0 /∈ [a, b];
X\A if 0 ∈ [a, b] and 1 /∈ [a, b];
X if both 0, 1 ∈ [a, b];
∅ if both 0, 1 /∈ [a, b].

In all cases, the preimage is measurable since A ∈ A by assumption, ∅ ∈ A by definition of σ−algebra and
X\A ∈ A and X = X\∅ ∈ A since any σ−algebra is closed under the operation of taking complements. Thus,
the indicatrix of a measurable set is a measurable function.

Definition 3.4.3. [Integrals with respect to measures] Let us define the Lebesgue integral
∫

fdµ of a mea-
surable function f with respect to a measure µ in four steps.

Step (0) [Integrals of Characteristic functions] If f = χA is the characteristic function of a measurable set A ∈ A ,
let us define

∫

f dµ =

∫

χA dµ = µ(A).

Step (1) [Integrals of Simple functions] A function is called simple if it can be written as finite linear combination
of characteristic functions of disjoint sets, that is

f =

N
∑

i=1

aiχAi
, where ai ∈ R, Ai ∈ A and Ai are disjoint.

If f is a simple function, let us define

f =
N
∑

i=1

aiχAi
⇒

∫

f dµ =
N
∑

i=1

aiµ(Ai).

Remark that this definition if natural since we want the integral to be linear, that is we want

∫

(

N
∑

i=1

aiχAi

)

dµ =

N
∑

i=1

ai

∫

χAi
dµ.

Step (2) [Integrals of Positive functions] Assume now that f : X → R+ is a measurable, non-negative function
(f(x) ≥ 0). Then let us define its integral by approximating f through simple functions:

∫

f dµ = sup

{ ∫

g dµ, where g is simple and 0 ≤ g ≤ f

}

.

This is well defined since the integral of each simple function g is defined by Step (1). Remark that the
integral of a simple function could be +∞ (for example if X = R with the Lebesgue measure and f = χR).
Thus,

∫

f dµ could be +∞. A concrete way to compute this supremum is given by the following Remark
3.4.2 (see also Example 3.4.7).

Remark 3.4.2. One can show that for any non-negative function f there exists a sequence of simple functions
(fn)n∈N such that fn ր f , that is, for all x ∈ X we have limn→∞ fn(x) = f(x) and moreover the sequence
(fn(x))n∈N is monotonically non-decreasing (we also write fn+1 ≥ fn) (see Example 3.4.7). We say that such a
sequence converge pointwise and monotonically to f .

Using this fact, one can substitute Step 2 with the following:

17
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Step (2)’ [Alternative definition of integrals of Positive functions] Let f : X → R+ be a non-negative function.
Define

∫

f dµ = lim
n→∞

∫

fn dµ, where fn are simple and fn ր f.

The limit in the previous definition exists because, since fn are non-decreasing, the sequence of integrals is
monotone and hence has a limit. One can show that the following limit does not depend on the choice of the
sequence fn ր f of simple functions converging to f , thus this is a good definition.

Step (3) [Integrable functions] Let f : X → R be a measurable function. We say that f is integrable if

∫

|f | dµ < +∞.

Let us define the positive part f+ and the negative part f− of f respectively by

f+ = max{f, 0}, f− = max{−f, 0}.

Remark that f+ and f− are both non-negative functions and that

f = f+ − f−, |f | = f+ + f−.

Thus, f is integrable if and only if
∫

f+ dµ < +∞ and
∫

f− dµ < +∞. Thus, if f is integrable we can define

∫

f dµ =

∫

f+ dµ−
∫

f− dµ.

Remark that if f is integrable the above expression is well defined since it cannot be equal to +∞−∞. [More
in general, if at least one among

∫

f+ dµ < +∞ and
∫

f− dµ < +∞, one can still define
∫

f dµ as possibly
+∞ or −∞.]

So far we have defined the integral
∫

f dµ assuming that the domain of integration was the whole space X.

Definition 3.4.4. If A ⊂ X is a measurable subset A ∈ A , define

∫

A

f dµ =

∫

χAf dµ.

[In particular, since χX(x) = 1 for all x ∈ X,
∫

X
f dµ =

∫

fdµ].

3.4.1 Examples of integration with respect to measures

Let us show some examples of integrals with respect to measures.

Example 3.4.2. If X = [a, b], B are Borel sets and λ is the Lebesgue measure and f : [a, b] → R is Riemann
integrable then one can show that

∫

f dλ =

∫ b

a

f(x)dx

where the latter is the usual Riemannian integral. Thus, the Lebesgue integral with respect to the Lebesgue
measure λ extends the usual Riemannian integral.

Example 3.4.3. If (X,A , µ) is a measure space and f : X → R is a non-negative measurable function we can
define a measure µf by

µf (A) =

∫

A

fdµ for all A ∈ A .

For example if we take ([0, 1],B, λ) and f : [0, 1] given by f(x) = 1
log(2)(1+x) then µf is the Gauss measure. We call

µf the measure given by the density f .

18
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Let X = R (or X = [a, b] or X = Rn), B be Borel sets and µg be the measure given by a non-negative function
(or density) g : X → R+. If f : R → R is a non-negative function then

∫

f dµg =

∫

f(x)g(x)dx.

More in general, for a measure space (X,A , µ) the functions f : X → R which are integrable with respect to µfare
the function f such that fg is integrable with respect to µ and for these functions we have

∫

fdµg =

∫

fgdµ.

This last example is very different of the previous two and truly shows a peculiar example of integration with
respect to a measure.

Example 3.4.4. Let (X,A ) be any measurable space, let x ∈ X and let δx be the Delta measure at x. Recall
that

δx(A) =

{

1 if x ∈ A
0 if x /∈ A

for any A ∈ A .

Let us show that if f : X → R is measurable
∫

f dδx = f(x).

Thus, integrating with respect to the point mass at x simply yields the value of f at x. The values of f at other
points do not matter.

If f = χA is a characteristic function of a measurable set, by definition

∫

f dδx =

∫

χA dδx = δx(A) =

{

1 if x ∈ A
0 if x /∈ A.

Thus, if f =
∑N

i=1 aiχAi
is simple, since the sets Ai are disjoint, there can be at most one set Aj that contains x.

Then, by linearity,
∫

(

N
∑

i=1

aiχAi

)

dδx =

{

aj if x ∈ Aj for some 1 ≤ j ≤ N,

0 if x /∈ ⋃N
i=1 Ai.

If fn ր f is a sequence of simple functions approximating a non-negative f , then one can see that the coefficient
ajn of the the sets Ajn which appear in the definition of fn and contains x has to approach f(x) as n → ∞. Thus

∫

f dδx = lim
n→∞

∫

fn dµ = lim
n→∞

ajn = f(x).

The result for general measurable functions f = f+ − f− follows again simply by linearity.

3.4.2 The spaces L1(µ) and L2(µ)

Let (X,A , µ) be a measure space. Let us introduce some notation.

Notation 3.4.1. Let L1(X,A , µ) (or simply L1(µ) is the measurable space (X,A ) is clear from the context) be
the space of equivalence classes of integrable functions

L1(X,A , µ) = L1(µ) =

{

f : X → R, f measurable,

∫

|f |dµ < +∞
}

/ ∼,

where two integrable functions f, g are considered equivalent (f ∼ g) if f = g almost everywhere. We will simply
write f ∈ L1(µ) and f will represent any function which differs from f on a measure zero set.

If f ∈ L1(µ), denote by ||f ||1 the L1−norm of f , which is defined as

||f ||1 :=

∫

|f |dµ.
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The norm || · ||1 induces a distance as follows.

Exercise 3.4.1. Show that if we set

d(f, g) = ||f − g||1, f, g ∈ L1(µ),

then d is a distance on the space L1(µ).

Remark that

f ∼ g ⇒
∫

fdµ =

∫

gdµ,

so we are consider indistinguishable from the point of view of integrals. In order for d in Exercise 3.4.1 to be a
distance, we do need to consider equivalence classes for ∼.

Notation 3.4.2. Let L2(X,A , µ) (or simply L2(µ) if the measurable space (X,A ) is clear from the context) be
the space of equivalence classes of square-integrable functions, that is

L2(X,A , µ) = L2(µ) =

{

f : X → R, f measurable,

∫

|f |2dµ < +∞
}

/ ∼,

where the equivalence relation f ∼ g is the same than above (f ∼ g iff f = g almost everywhere). If f ∈ L2(µ),
denote by ||f ||2 the L2−norm of f , which is defined as

||f ||2 :=

(∫

|f |2dµ
)1/2

.

* Exercise 3.4.2. Show that if we set

d(f, g) = ||f − g||2, f, g ∈ L2(µ),

then d is a distance on the space L2(µ).

Remark 3.4.3. One can show that if µ(X) < +∞ one has the inclusion L2(µ) ⊂ L1(µ) .

3.4.3 An equivalent definition of measure-preserving.

Let (X,A , µ) be a finite measure space. Recall that a transformation T : X → X is measure preserving iff it is
measurable and

µ(T−1(A)) = µ(A), for all A ∈ A .

An equivalent and very useful characterization of measure-preserving transformations can be given using integrals
with respect to a measure:

Lemma 3.4.1 (Measure-preserving via integration). A measurable transformation T : X → X is measure-
preserving if and only if, for any integrable function f : X → R we have

∫

f dµ =

∫

f ◦ T dµ. (3.12)

[You might have seen a special case of the previous formula: if X = R2, λ is Lebesgue, f is Riemann integrable
and T is an area-preserving transformation, which is equivalent to |det(DT )| = 1, then

∫

f(x, y) dx dy =

∫

f ◦ T (x, y) dx dy

holds simply by the change of variables formula.]

Remark 3.4.4. One can show that in Lemma 3.4.1 rather than considering all functions which are integrable , it
is enough to check that (3.12) holds for all square-integrable functions f ∈ L2(µ).
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Proof of Lemma 3.4.1. Let us first assume that (3.12) hold and show that T is measure preserving. Let A ∈ A .
Let us first remark that

χA ◦ T = χT−1(A), (3.13)

since by definition of characteristic function, for each x ∈ X

χA ◦ T (x) = χA(T (x)) =

{

1 if T (x) ∈ A ⇔ x ∈ T−1(A)
0 if T (x) /∈ A ⇔ x /∈ T−1(A),

which coincides exactly with the definition of

χT−1(A) =

{

1 if x ∈ T−1(A)
0 if x /∈ T−1(A).

Consider the function χA, which, as we saw in Example 3.4.1, is measurable. Then, we have

µ(T−1(A)) =

∫

χT−1(A) dµ (by Step 0 in the definition of integrals)

=

∫

χA ◦ T dµ by (3.13)

=

∫

χA dµ by (3.12)

= µ(A) (again by Step 0 in the definition of integrals) .

Since this can be done for any A ∈ A , T is measure-preserving.

Conversely, let us assume that T is measure-preserving and let us show that (3.12) holds for any measurable
function f . Let us go through the same steps that we followed in the definition of integrals:

1. Consider first the case where f = χA is the indicatrix of A ∈ A . Then, by definition of measure-preserving
and definition of integrals (Step 0), using again that χA ◦ T = χT−1(A) in (3.13), we have

∫

χA ◦ T dµ =

∫

χT−1(A) dµ = µ(T−1(A)) = µ(A) =

∫

χA dµ.

Thus, we showed that (3.12) holds for any characteristic function of measurable set.

2. Since integrals are linear, that is
∫

(a1f1 + a2f2)dµ = a1

∫

f1dµ+ a2

∫

f2dµ,

(3.12) holds for any simple function (see Exercise 3.4.5).

3. Consider now any non-negative measurable function f : X → R. If fn ր f is a sequence of simple functions
approximating f , one can check (see Exercise 3.4.6) that fn ◦ T ր f ◦ T is a sequence of simple functions
approximating f ◦ T . Thus, by Step (2)′ of the definition of integrals (see Remark 3.4.2), since (3.12) holds
for any of the simple functions fn, we have

∫

f dµ = lim
n→∞

∫

fn dµ = lim
n→∞

∫

fn ◦ T dµ =

∫

f ◦ T dµ.

Thus, (3.12) holds for any non-negative measurable function.

4. If f is any integrable function, (3.12) holds by taking non-negative and negative parts (see Step (3) of the
definition of integral) and again using linearity of integrals.

This concludes the proof.

Example 3.4.5. Verify that if (3.12) holds for any characteristic function of measurable set then it holds for any
simple function.

Example 3.4.6. Verify that if g is a simple function, then also g ◦ T is a simple function. Verify that if fn ր f ,
then fn ◦ T ր f ◦ T .
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3.4.4 Extras on integration with respect to a measure.

Extras 1: a sequence of simple functions approximating f .

Example 3.4.7. Let f : X → R+ be a non-negative measurable function. Let us construct a sequence of simple
functions (fn)n∈N such that fn ր f . For each n ∈ N, decompose the set [0, n] in the image into n2 equal subinterval
of the form [i/n, (i+ 1)/n) where 0 ≤ i < n2. Consider the preimages

An,i =

{

x ∈ X,
i

n
≤ f(x) <

i+ 1

n

}

= f−1

([

i

n
,
i+ 1

n

))

, i = 0, 1, . . . , n2 − 1.

Since f is measurable, each of these preimages is a measurable set. Moreover, the sets An,i are clearly disjoint.
Thus, if we define

fn =

n2−1
∑

i=0

i

n
χAn,i

, n ∈ N, (3.14)

the functions fn are simple. One can check that fn approximate f in the sense that fn ր f . In Figure 3.2 we show
an example of the construction of the functions fn.

Figure 3.2: An example of simple functions fn ր f as in (3.14), for n = 2, 3.

Remark that in the definition of Riemannian integral the domain of the function f is partitioned in small
intervals to construct a Riemannian sum, here it is the image of the function f which is partitioned into small
intervals to define the approximation by simple functions and hence its Lebesgue integral.

Exercise 3.4.3. Show that the functions fn in (3.14) converge converge pointwise and monotonically to f (that
is, fn ր f).

Extras 2: an example of function which is not Riemannian integrable.

Example 3.4.8. Let X = [0, 1], λ be the Lebesgue measure and A be the Borel sets of R. Consider the charac-
teristic function

f = χQ∩[0,1]

of rational numbers in [0, 1].
Let us show that f is not integrable according to Riemann. This is because rational points are dense in [0, 1] and

also irrational points which are in [0, 1]\Q, are dense in [0, 1]. Thus, for any partition of [0, 1] into small intervals,
each interval will contain both a rational point (on which χQ∩[0,1] has value 1) and an irrational point (on which
χQ∩[0,1] has value 0). Thus, upper Riemannian sums will always be 1 and lower Riemannian sums will always be 0
not matter how fine the partition is. Recall that the Riemann integral is defined as the common limit of upper and
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lower Riemannian sums, if this limit exist. Thus, in this case the limits exist but are different and the function is
not Riemann-integrable.

On the other hand, the set [0, 1] ∩Q is measurable and

λ([0, 1] ∩Q) = 0

since the Lebesgue measure give zero measure to each point and [0, 1] ∩ Q is a countable, so the measure of the
union is also zero by the countable additivity property of a measure. Thus, just using Step (0) of the definition of
Lebesgue integral, f is integrable according to Lebesgue and

∫

f dλ =

∫

χQ∩[0,1] dλ = λ([0, 1] ∩Q) = 0.

Exercise 3.4.4. Let g = χ[0,1]\Q be the indicatrix of irrational points in [0, 1]. Show that g is not integrable
according to Riemann, but it is integrable according to Lebesgue and

∫

g dλ = 1.

Extras 3: two important properties of integration with respect to a measure. The Lebesgue integral
is much more powerful and convenient to use than the Riemannian integral not only because many more functions
are Lebesgue-integrable, but also because the two following Theorems hold, while both of them are false if we use
Riemannian integrals.

Theorem 3.4.1 (Monotone Convergence Theorem ). Let (X,A , µ) be a measure space. If (gn)n∈N is a sequence
of integrable functions gn : X → R such that gn ր g (they are pointwise non-decreasing and converging), then g is
integrable and

∫

gdµ =

∫

lim
n→∞

gn dµ = lim
n→∞

∫

gn dµ.

Theorem 3.4.2 (Dominated Convergence Theorem ). Let (X,A , µ) be a measure space. If (gn)n∈N is a sequence
of measurable functions gn : X → R such that gn → g pointwise, that is limn→∞ gn(x) = g(x) for all x ∈ X and
the convergence is dominated, that is |gn| ≤ h for some integrable function h, then the limit g is integrable

∫

gdµ =

∫

lim
n→∞

gn dµ = lim
n→∞

∫

gn dµ.

In both Theorems, if gn → g, either under the assumption of monotone convergence or under the assumption
of dominated convergence, we are allowed to exchange the order of limit and integration sign. Again, notice that
this is not the case for Riemann integrals.

3.5 Ergodic Transformations

In this lecture we will define the notion of ergodicity, or metric indecomposability. Ergodic measure-preserving
transformations are the building blocks of all measure-preserving transformations (as prime numbers are building
blocks of natural numbers). Moreover, ergodicity will play an important role in Birkhoff ergodic theorem.

Let (X,A , µ) be a finite measure space. In this section (and more in general when we want to talk of ergodic
transformations) we will assume that (X,A , µ) is a probability space. This is not a great restriction, since if
µ(X) < ∞, if we consider µ/µ(X) (that is, the measure rescaled by µ(X)), then µ/µ(X) is a measure with total
mass 1 and (X,A , µ/µ(X)) is a probability space. Let T : X → X be a measure-preserving transformation.

Definition 3.5.1. A set A ⊂ X is called invariant invariant under T (or simply invariant if the transformation is
clear from the context) if

T−1(A) = A.

Remark that in the definition we consider preimages T−1. This is important if the transformation is not
invertible.

Exercise 3.5.1. If T is invertible, show that A is invariant if and only if T (A) = A.
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Example 3.5.1. Assume that T is invertible and that x ∈ X is a periodic point of period n. Then

A = {x, T (x), . . . , Tn−1(x)} (3.15)

is an invariant set.

Definition 3.5.2. A measure preserving transformation T on a probability space (X,A , µ) is ergodic if and only
if for any set measurable A ∈ A such that T−1(A) = A either µ(A) = 0 or µ(A) = 1, that is all invariant sets are
trivial from the point of view of the measure.

Remark 3.5.1. A transformation which is not ergodic is reducible in the following sense. If A ∈ A is an invariant
measurable set of positive measure µ(A) > 0, then we can consider the restriction µA of the measure µ to A, that
is the measure defined by

µA(B) =
µ(A ∩B)

µ(A)
, for all B ∈ A .

It is easy to check that µA is again a probability measure and that it is invariant under T (Exercise). Remark that
we used that µ(A) > 0 to renormalize µA. Similarly, also the restriction µX\A of the measure µ to the complement
X\A, given by

µX\A(B) =
µ(X\A ∩B)

µ(X\A) , for all B ∈ A ,

is an invariant probability measure (Exercise). Remark that here we used that µ(X\A) > 0 since µ(A) < 1. Thus,
we have decomposed µ into two invariant measures µA and µX\A and one can study separately the two dynamical
systems obtained restricting T to A and to X\A. In this sense, non ergodic transformations are decomposable while
ergodic transformations are indecomposable.

As prime numbers, that cannot be written as product of prime numbers, are the basic building block used to
decompose any other integer number, similarly ergodic transformations, that are indecomposable in this metric
sense, are the basic building block used to study any other measure-preserving transformation.

Exercise 3.5.2. Let (X,A ) be a measurable space and T : X → X be a transformation.

(a) Check that if µ1 and µ2 are probability measures on (X,A ), then any linear combination

µ = λµ1 + (1− λ)µ2, where 0 ≤ λ ≤ 1,

is again a measure. Check that it is a probability measure.

(b) Let µ be a measure on (X,A ) preserved by T . Let A ∈ A be a measurable set with positive measure
µ(A) > 0. Check that by setting

µ1(B) =
µ(A ∩B)

µ(A)
for all B ∈ A , µ2(B) =

µ(Ac ∩B)

µ(Ac)
for all B ∈ A ,

(where Ac = X\A denotes the complement of A in X) one defines two probability measures µ1 and µ2. Show
that if A is invariant under T , then both µ1 and µ2 are invariant under T .

(c) Show using the two previous points that a probability measure µ invariant under T is ergodic if it cannot be
written as strict linear combination of two invariant probability measures for T , that is as

µ = λµ1 + (1− λ)µ2, where 0 < λ < 1, µ1 6= µ2. (3.16)

[The converse is also true, but harder to prove: a measure µ is ergodic if and only if it cannot be decomposed
as in (3.16).]

Part (a) of Exercise 3.5.2 shows that the space of all probability T -invariant measures is convex (recall that a
set C is a convex if for any x, y ∈ C and any 0 ≤ λ ≤ 1 the points λx+(1−λ)λy all belong to C). If C is a convex
set, the extremal points of C are the points x ∈ C which cannot be expressed as linear combination of the other
points, that is, there is no 0 < λ < 1 and x1 6= x2 such that x = λx1 + (1− λ)x2. Thus, Part (b) of Exercise 3.5.2
shows that ergodic probability measures are extremal points of the set of all probability T -invariant measures.

Let us now give an example of a non-ergodic transformation and one of an ergodic one.
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Example 3.5.2. [Rational rotations are not ergodic] Let X = S1, B its Borel subsets and λ the Lebesgue
measure. Consider a rational rotation Rα : S1 → S1 where α = p/q with p, q coprime. Consider for example the
following set in R/Z

A =

q−1
⋃

i=0

[

i

q
,
i

q
+

1

2q

]

.

The set A in S1 is shown in Figure 3.3.

Figure 3.3: An invariant set A with 0 < λ < 1 for a rational rotation Rp/q with q = 8.

The set A is clearly invariant under Rp/q, since the clockwise rotation Rp/q by 2πp/q sends each interval into
another one. Since A is union of q intervals of equal length 1/2q, λ(A) = 1/2, so 0 < λ(A) < 1. Thus, since we
constructed an invariant set whose measure is neither 0 nor 1, Rp/q is not ergodic.

[Remark that any point is periodic of period q and since Rα is invertible, any periodic orbit is an invariant set, but
it has measure zero. Thus, to show that Rp/q is not ergodic, we need to construct an invariant set with positive
measure and here we constructed one by considering the orbit of an interval.]

In the next lecture we will prove that on the other hand irrational rotations are ergodic. Thus, a rotation Rα

is ergodic if and only if α is irrational.

Let us show that the doubling map is ergodic directly using the definition of ergodicity.

Example 3.5.3. [The doubling map is ergodic] Let X = R/Z, B be Borel sets of R and λ the Lebesgue
measure. Let T : X → X be the doubling map, that is T (x) = 2x mod 1. Let us show that the doubling map is
ergodic.

Let A ∈ B be an invariant set, so that T−1(A) = A. We have to show that λ(A) is either 0 or 1. If λ(A) = 1,
we are done. Let us assume that λ(A) < 1 and show that then λ(A) has to be 0. Since we assume that λ(A) < 1,
λ(X\A) > 0. One can show (see Theorem 3.5.1 in the Extra) that a measurable set of positive measure is well
approximated by small intervals in the following sense: given ǫ > 0, we can find n ∈ N and a dyadic interval I of
length 1/2n such that

λ(I\A) > (1− ǫ)λ(I), (3.17)

that is, the proportion of points in I which are not is A is at least 1− ǫ.Recall that we showed that if I is a dyadic
interval of length 1/2n, its images T k(I) under the doubling map for 0 ≤ k ≤ n are again dyadic intervals of size
1/2n−k. In particular, the length λ(T k(I)) is 2kλ(I) and for k = n, Tn(I) = R/Z = X. Furthermore we can
calculate that

λ(Tn(I\A)) = 2nλ(I\A) = (1− ǫ).

We now need to show that Tn(I\A) ⊆ X\A. To do this suppose x ∈ Tn(I\A) and x ∈ A. We then have that
there exists y ∈ I\A such that Tn(y) = x and therefore y ∈ T−n(A) = A. This is a contradiction since y ∈ I\A.
Therefore there is no such x and Tn(I\A) ⊆ X\A. Putting this together means that

λ(X\A) ≥ λ(Tn(I\A)) ≥ 1− ǫ.

Since λ(X\A) ≥ 1 − ǫ holds for all ǫ > 0, we conclude that λ(X\A) = 1 and hence λ(A) = 0. This concludes the
proof that the doubling map is ergodic.
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To prove directly from the definition that the doubling map is ergodic, we had to use a fact from measure theory
that we stated without a proof (the existence of the interval in (3.17), see also Theorem 3.5.1 in the Extra). In the
following lecture, §3.6, we will see how to prove ergodicity using Fourier series and we will see that is possible to
reprove that the doubling map is ergodic by using Fourier series, which gives a simpler and self-contained proof.

Exercise 3.5.3. Let X = [0, 1], B the Borel σ−algebra, λ the 1−dimensional Lebesgue measure. Let m > 1 is an
integer and consider the linear expanding map Tm(x) = mx mod 1. Show that Tm is ergodic.
[Hint: mimic the previous proof that the doubling map is ergodic.]

Ergodicity via invariant functions

The following equivalent definition of ergodicity is also very useful to prove that a transformation is ergodic:

Lemma 3.5.1 (Ergodicity via measurable invariant functions). A measure preserving transformation T :
X → X is ergodic if and only if, any measurable function f : X → R that is invariant, that is such that

f ◦ T = f almost everywhere (that is, f(T (x)) = f(x) for µ− almost every x ∈ X) (3.18)

is µ-almost everywhere constant (that is, there exists c ∈ R such that f(x) = c for µ-a.e. x ∈ X).

Proof. Assume first that (3.18) hold. Let A ∈ B be an invariant set. Consider its characteristic function χA, which
is measurable (see Example 3.4.1 in §3.4). Let us check that χA is an invariant function, that is χA ◦ T = χA.
Recall that we showed last time that χA ◦ T = χT−1(A) (see equation (3.14) in §3.4). Thus

χA ◦ T = χT−1(A) = χA, (since T−1(A) = A).

Thus, we can apply (3.18) to χA and conclude that χA is almost everywhere constant. But since an indicatrix
function takes only the values 0 and 1, either

χA = 0 a.e. ⇒ µ(A) =

∫

A

χAdµ = 0, or (3.19)

χA = 1 a.e. ⇒ µ(A) =

∫

A

χAdµ = 1. (3.20)

This concludes the proof that T is ergodic.

Let us assume now that T is ergodic and prove (3.18). Let f : X → R be a measurable function. Assume that
f ◦T = f almost everywhere. One can redefine f on a set of measure zero so that the redefined function, which we
will still call f , is invariant everywhere, that is f(T (x) = f(x) for all x ∈ X (see Exercise 3.5.4).

Consider the sets
At = {x ∈ X, such that f(x) > t}, t ∈ R.

The set At are called level sets of the function f and they are measurable since At = f−1((t,+∞)) and f is
measurable, which by definition means that the preimage of each interval is in B. Let us show that each At is
invariant :

T−1(At) = {x ∈ X, such that T (x) ∈ At} (by definition of preimage)

= {x ∈ X, such that f(T (x)) > t} (by definition of T (x) ∈ At)

= {x ∈ X, such that f(x) > t} (since f(T (x)) = f(x))

= At.

Thus, since T is ergodic, for each t ∈ R either µ(At) = 0 or µ(At) = 1. If the function f is constant equal to c
almost everywhere, then µ(At) = 1 for all t < c (since f(x) = c > t for a.e. x ∈ X), while µ(At) = 0 for all t ≥ c
(since f(x) = c ≤ t for a.e. x ∈ X). On the other hand, if f is not constant almost everywhere, one can find a
level set t0 such that 0 < µ(t0) < 1, which is a contradiction with what we just proved. Thus, f has to be constant
almost everywhere. This shows that (3.18) holds when T is ergodic.

Exercise 3.5.4. Let T : X → X be a measure preserving transformation of the measured space (X,B, µ). Let
f be a measurable function f : X → R that is invariant almost everywhere under T , that is f ◦ T (x) = f(x) for
µ-almost every x ∈ X.
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(a) Consider the set

E =
⋃

n∈N

T−n(N), where N = { x such that f(T (x)) 6= f(x) }.

Show that µ(E) = 0 and that T−1(E) ⊂ E.

(b) Define a new function f̃ by setting:

f̃(x) =

{

f(x) if x /∈ E
0 if x ∈ E,

Show that f = f̃ µ-almost everywhere and that f̃ ◦ T = f̃ holds everywhere, that is f̃(T (x)) = f̃(x) for all
x ∈ X.

Exercise 3.5.5. Let Rα : R/Z → R/Z be a rational rotation, where α = p/q and p, q are coprime. Show that Rα

is not ergodic by exhibiting a non-constant invariant function.

One can show that in Lemma 3.5.1 instead then considering all functions which are measurable, it is enough to
check that (3.18) holds for all integrable functions f ∈ L1(µ) or for all square-integrable functions f ∈ L2(µ) (the
definition of these spaces was given in §3.4 We have the following two variants of Lemma 3.5.1:

Lemma 3.5.2 (Ergodicity via invariant integrable functions). Let (X,B, µ) be a probability space and
T : X → X a measure preserving transformation. Then T : X → X is ergodic if and only if

for all f ∈ L1(X,B, µ), f ◦ T = f µ− a.e. ⇒ f µ− a.e. constant.

Lemma 3.5.3 (Ergodicity via invariant square integrable functions). Let (X,B, µ) be a probability space
and T : X → X a measure preserving transformation. Then T : X → X is ergodic if and only if

for all f ∈ L2(X,B, µ), f ◦ T = f µ− a.e. ⇒ f µ− a.e. constant.

Exercise 3.5.6. Let (X,B, µ) be a measured space and T : X → X be a measure-preserving transformation.
Consider the space L2(X,B, µ) of square integrable functions.

Let UT : L2(X,B, µ) → L2(X,B, µ) be given by

UT (f) = f ◦ T.

(a) Check that L2(X,B, µ) is a vector space and UT is linear, that is for all f, g ∈ L2(µ) and a, b ∈ R,

af + bg ∈ L2(X,B, µ) and UT (af + bg) = aUT (f) + bUT (g).

(b) Show that UT preserves the L2(µ)−norm, that is for any f ∈ L2(µ) we have ||UT (f)||2 = ||f ||2. Deduce that
if d : L2(µ)× L2(µ) → R+ is the distance given by

d(f, g) = ||f − g||2, for all f, g ∈ L2(µ),

UT is an isometry, that is

d(UT (f), UT (g)) = d(f, g) for all f, g ∈ L2(µ);

(c) Verify that if a function is constant almost everywhere, then it is an eigenvector of UT with eigenvalue 1.
Assume in addition that (X,B, µ) is a probability space. Show that T is ergodic if and only if the only
eigenfunctions f ∈ L2(µ) of UT corresponding to the eigenvalue 1 are constant functions.

[Hint: Both Part (b) and (c) of the exercise consist only of recalling and re-interpreting definitions.]

The operator UT is known as the Koopman operator associated to T . Many ergodic properties can be equiva-
lently rephrased in terms of properties of the operator UT , as ergodicity in Part (c). The study of the properties of
UT and its spectrum (for example, its eigenvalues) is known as spectral theory of dynamical systems.
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Extra: Lebesgue density points

In the proof that the doubling map is ergodic, we used the following Theorem from measure theory, known as
Lebesgue density Theorem.

Let X = Rn and λ be n−dimensional Lebesgue measure. Let A ⊂ Rn be a Borel measurable set. Let B(x, ǫ)
denote the ball of radius ǫ at x. The density of A at x, denoted by dx(A), is by definition

dx(A) = lim
ǫ→0

λ(A ∩B(x, ǫ))

λ(B(x, ǫ))
.

A point x ∈ A is called a Lebesgue density point for A if the density dx(A) = 1. Thus, if x is a density point, small
intervals containing x intersect A on a large proportion of their measure, tending to 1 as the size of the interval
tends to zero.

Theorem 3.5.1 (Lebesgue density). Let X = Rn and λ be n−dimensional Lebesgue measure. If A ⊂ Rn is a
Borel measurable set with positive measure λ(A) > 0, almost every point x ∈ A is a Lebesgue density point for A.

This theorem implies that measurable sets can be well approximated by small intervals: on a small scale,
measurable sets fill densely the space, so if I is sufficiently small and intersects the set A, most of the points in I
are contained in A (only a set of points whose measure is a proportion ǫ of the total measure is left out). Similarly,
other small intervals will be missed almost completely by the set A, so that the set can be approximated well by a
union of small intervals.

Exercise 3.5.7. Deduce from the Lebesgue density Theorem the fact that we used in the proof that the doubling
map is ergodic, that is: if µ(X\A) > 0, given any ǫ > 0, we can find n ∈ N and a dyadic interval I of length 1/2n

such that
λ(I\A) > (1− ǫ)λ(I).

3.6 Ergodicity using Fourier Series

In the previous lecture §3.5 we defined ergodicity and showed from the definition that the doubling map is ergodic.
In this lecture we will show how to use Fourier Series to show that certain measure preserving transformations
defined on R/Z or on the torus Tn = Rn/Zn are ergodic. Proving ergodicity using Fourier Series turns out to be
very simple and elegant. We first give a brief overview of the basics of Fourier Series.

Let (X,B, µ) be a measure space. In §3.4 we defined integrals with respect to a measure. Recall that we also
introduced the following notation for the spaces of integrable and square-integrable functions

L1(X,B, µ) = L1(µ) = {f : X → R, f measurable,

∫

|f |dµ < +∞}/ ∼,

L2(X,B, µ) = L2(µ) = {f : X → R, f measurable,

∫

|f |2dµ < +∞}/ ∼,

where f ∼ g if f = g µ-almost everywhere and the norms are respectively given by ||f ||1 :=
∫

|f |dµ and ||f ||2 :=
(
∫

|f |2dµ)1/2.

Fourier Series

Let X = R/Z with the Lebesgue measure λ. Consider a function f : R/Z → R (more in general, one can consider
a function f : R → R which is 1−periodic, that is f(x+ 1) = f(x) for all x ∈ R). We would like to represent f as
superposition of harmonics, decomposing it via the basic oscillating functions

sin(2πnx), cos(2πnx), n = 0, 1, 2, . . . ,

More precisely, we would like to represent f as a linear combination

a0
2

+

∞
∑

n=1

an cos(2πnx) +

∞
∑

n=1

bn sin(2πnx).
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Instead than using this notation, we prefer to use the complex notation, which is more compact. Recall the identity

e2πix = cos(2πnx) + i sin(2πnx).

Using this identity, one can can show that we can equivalently write

a0
2

+

∞
∑

n=1

an cos(2πnx) +

∞
∑

n=1

bn sin(2πnx) =

+∞
∑

n=−∞

cne
2πinx, (3.21)

where cn =







1
2 (an − ibn) if n > 0,
a0/2 if n = 0,
1
2 (a−n + ib−n) if n < 0.

(3.22)

Thus, we look for a representation of f of the form

+∞
∑

n=−∞

cne
2πinx.

[Using this complex form, more in general, one can try to represent more in general functions f : R/Z → C. See
also Exercise 3.6.1, Part (b)].

Exercise 3.6.1. (a) Verify that if an, bn and cn are related by (3.22), then (3.21) holds.
Assume that

f =

+∞
∑

n=−∞

cne
2πinx.

(b) Show that f is real if and only if c−n = cn for all n ∈ Z (where z denotes the complex conjugate of z);

(c) Show that f is even (that is f(−x) = f(x) for all x) if and only if cn = c−n for all n ∈ Z;

show that f is odd (that is f(−x) = −f(x) for all x) if and only if cn = −c−n for all n ∈ Z.

Definition 3.6.1. If f ∈ L1(R/Z,B, µ) we say that the Fourier series of f is the expression

+∞
∑

n=−∞

cne
2πinx, where cn =

∫

f(x)e−2πinxdµ, n ∈ Z.

The cn, n ∈ Z, are called Fourier coefficients of f . Remark that c0 =
∫

fdµ.
We denote by SNf the N th partial sum of the Fourier series of f , given by

SNf(x) =
+N
∑

n=−N

cne
2πinx.

One needs the assumption f ∈ L1(µ) to guarantee that the Fourier coefficients, and hence the Fourier series, is
well-defined. The following property of the Fourier coefficients can be easily proved and is very helpful to use to
prove ergodicity in certain examples (see Exercise 3.6.3):

Lemma 3.6.1 (Riemann-Lebesgue Lemma). If f ∈ L1(µ), the Fourier coefficients cn in Definition 3.6.1 tend
to zero in modulus, that is |cn| → 0 as |n| → ∞.

Unfortunately, as you should know well from the study of series, the fact that the coefficients tend to zero is
not enough to guarantee that the Fourier series converges. It is natural to ask when the Fourier series converges
for all points and when does it actually represents the function f from which we started and in which sense. We
list below some answers to these questions.

Once we have a representation of f as a Fourier series (in one of the senses here below), one can use Fourier
series as a tool which turns out to be very useful in applications. We will use them to show ergodicity, but more in
general Fourier series can be used to solve differential equations and have a huge number of applications in applied
mathematics.

The following can be proved:
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(F1) If f : R/Z → R is differentiable and the derivative is continuous, than its Fourier series converges at every
point:

f(x) =

+∞
∑

n=−∞

cne
2πinx, for all x ∈ R/Z.

We say in this case that SNf converges pointwise to f .

[Remark that if f is only continuous (but not necessarily differentiable), it is not necessarily true that the
Fourier series of f converges to f pointwise. The proof of pointwise convergence can be found in many books
in Real Analysis or Harmonic Analysis.]

(F2) If f ∈ L2(µ),
||SNf − f ||2 → 0 as N → +∞, (3.23)

so that SNf approximate f better and better in the L2−norm. We say in this case that the Fourier series
converges to f in L2.

[The proof of this statement is not hard and relies entirely on linear algebra. One can prove that L2(µ) is a
vector space and that the exponentials e2πin form an orthogonal linear bases.]

(F3) If f ∈ L2(λ), one can actually show a much stronger statement (Carlson’s Theorem):

f(x) =

+∞
∑

n=−∞

cne
2πinx for a.e.x ∈ R/Z.

[This result if very hard to prove, it was a hard open question and object of research for decades. The proof
given by Carleson is very hard and many people have tried to understand it and simplify it.]

We will only use Fourier series for L2−functions. A crucial property of Fourier series that we will use is uniqueness :

(F4) If f ∈ L1(µ) and cn = 0 for all n ∈ Z, then f = 0. Recall that if µ is finite, L2(µ) ⊂ L1(µ). As a consequence,
if µ is a probability measure and f ∈ L2(µ)

∑

cne
2πinx =

∑

c′ne
2πinx

where the equality holds in the L2 sense explained in (F2), then cn = c′n for all n ∈ Z. Thus, the coefficients
of the Fourier series of a function f ∈ L2(µ) are unique.

Higher dimensional Fourier Series

Let X = Rd/Zd. One can analogously want to represent a function f : Rd/Zd → R as a linear combination of
products of harmonics in all directions. A Fourier series in higher dimension (in complex notation) is an expression
of the form

+∞
∑

n1=−∞

+∞
∑

n2=−∞

· · ·
+∞
∑

nd=−∞

cn1,n2,...,nd
e2πin1x1e2πin2x2 . . . e2πindxd .

A more compact notation for this expression can be obtained by using vectors and scalar products: if we write

x = (x1, x2, . . . , xd), n = (n1, n2, . . . , nd), < n, x >= n1x1 + n2x2 + · · ·+ ndxd,

and write cn for cn1,...,nd
, since e2πin1x1e2πin2x2 . . . e2πindxd = e2πi(n1x1+···+ndxd), we can rewrite the above expression

in the compact form
∑

n∈Zd

cne
2πi<n,x>.

If f ∈ L1(Rd/Zd,B, µ) then we say that the above expression is the Fourier series of f if the coefficients cn are
given by

cn =

∫

fe−2πi<n,x>dµ.

One can prove for these higher dimensional Fourier series results analogous to the 1 dimensional case. In particular:
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(HF1) A result analogous to the Riemann Lebesgue Lemma holds: if f ∈ L1(µ), the Fourier coefficients of f are
such that |cn| → 0 as n → ∞ (here n → ∞ means that the vector n tends to infinity in Rd, for example its

norm
√

n2
1 + · · ·+ n2

d grows).

(HF2) If f ∈ L2(µ), the Fourier series of f converges to f in L2(µ), in other words if we consider

SNf =

+N
∑

n1=−N

+N
∑

n2=−N

· · ·
+N
∑

nd=−N

cne
2πi<n,x>

then ||SNf − f ||2 → 0 as N → +∞;

(HF3) The Fourier coefficients of f ∈ L2(µ) are unique, so if

∑

n∈Zd

cne
2πi<n,x> =

∑

n∈Zd

c′ne
2πi<n,x>

(where the equality holds in L2(µ)) then cn = c′n for all vectors n ∈ Zd.

Ergodicity of irrational rotations.

Consider the probability space (R/Z,B, λ). Let Rα : R/Z → R/Z be a rotation. We showed last time that if
α = p/q is rational, Rp/q is not ergodic. Using Fourier series, let us now show that if α /∈ Q, then Rα is ergodic
with respect to Lebesgue. Thus, rotations Rα are ergodic if and only if α is irrational.

Proof. Let us prove ergodicity by using L2− invariant functions: given f ∈ L2(λ), we want to show that if f◦Rα = f
almost everywhere, then it is constant almost everywhere. By Lemma 3.5.3, this is equivalent to prove ergodicity.
Since f ∈ L2(R/Z,B, λ), f is equal in L2 to its Fourier series

+∞
∑

n=−∞

cne
2πinx, where cn =

∫

f(x)e−2πinxdx, n ∈ Z.

By plugging Rα(x) = x + α mod 1 in the Fourier series (and remarking that modulo 1 has no influence since
e2πik = 1 for any k ∈ Z) we get that the Fourier series for F ◦Rα is

+∞
∑

n=−∞

cne
2πin(x+α) =

+∞
∑

n=−∞

cne
2πinαe2πinx.

Since f = f ◦ Rα almost everywhere we know that f = f ◦ Rα in L2 and so both Fourier series must be the
same. Thus, by uniqueness of the Fourier coefficients, by equating the two different expressions for the nth Fourier
coefficient in front of e2πinx, we must have

cn = cne
2πinα ⇔ cn(1− e2πinα) = 0 for all n ∈ Z.

If (1− e2πinα) 6= 1 we can then conclude that cn = 0. Since α is irrational, all orbits of Rα are infinite and distinct,
thus in particular the orbit Rn

α(0) = nα mod 1 consists of distinct points. Thus, nα mod 1 6= 0 for all n 6= 0,
which shows that

for all n 6= 0, (1− e2πinα) 6= 1 ⇒ cn = 0.

Thus all Fourier coefficients are zero apart from possibly c0 and f = c0 is constant. This concludes the proof of
ergodicity.

Exercise 3.6.2. (a) Where does the above proof fail if α is rational?

(b) Show that Rp/q is not ergodic by exhibiting a function which is invariant but not constant;

(c) If α = p/q where p, q are coprime, what are all the possible Fourier series of invariant functions f ∈
L2(R/Z,B, λ)?
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Ergodicity of linear expanding maps. Other measure-preserving transformations of R/Z can be proved to
be ergodic by using Fourier series. For example:

Exercise 3.6.3. Prove using Fourier series that the doubling map T : R/Z → R/Z is ergodic with respect to λ
Lebesgue.

[Hint: Use Riemann-Lebesgue Lemma.]

Exercise 3.6.4. Prove using Fourier series that any linear expanding map Tm(x) = mx mod 1 on R/Zwhere
m > 1 is an integer is ergodic with respect to the 1−dimensional Lebesgue measure λ.

Ergodicity of toral automorphisms.

Let A be a d × d matrix with integer entries and determinant ±1. Then A determines a toral automorphism
TA : Td = Rd/Zd of the d−dimensional torus by fist acting linearly by A and then taking the result modulo 1, as
follows:

TA(x1, . . . , xd) =





d
∑

j=1

A1jxj mod 1,

d
∑

j=1

A2jxj mod 1, . . . ,

d
∑

j=1

Adjxj mod 1



 .

(The CAT map is an example where d = 2.) The proof that the map TA is well defined is exactly the same than
in the case d = 2. Consider as a measure space (Td,B, λ) where B are Borel sets and λ is the d-dimensional
Lebesgue measure on the torus. Remark that λ(Td) = 1, so the space is a probability space. One can check that
since |det(A)| = 1 the map TA preserves the Lebesgue probability measure.

Using higher dimensional Fourier series, we will prove the following Theorem. Let us call a complex number
λ ∈ C a root of unity if λn = 1 for some n ∈ N. Remark that by solving the equation λn = 1 the nth roots of unity
are exactly the n complex numbers of modulus 1 and of the form

e2πik/n, k = 0, 1, . . . , n− 1.

Theorem 3.6.1. Let TA : Td → Td be the toral automorphism determined by the matrix A. Then TA is ergodic if
and only if the matrix A has no eigenvalues which are roots of unity.

As in d = 2, we call a toral automorphism TA hyperbolic if the matrix A has no eigenvalues λ with |λ| = 1.

Corollary 3.6.1. If TA : Td → Td is a hyperbolic toral automorphism, then it is ergodic.

Proof. The Corollary follows simply because if λn = 1, clearly |λ| = 1, so ruling out eigenvalues with modulus 1
automatically rules out in particular eigenvalues that are roots of unity.

Example 3.6.1. The CAT map TA(x, y) = (2x + y mod 1, x + y mod 1) is ergodic, since it has eigenvalues
(1±

√
5)/2.

Proof of Theorem 3.6.1. Assume that A has no roots of unity as eigenvalues. Let us prove ergodicity of TA by
using Fourier series. Let f ∈ L2(Td,B, λ) be an invariant function, that is f ◦ TA = f λ-almost everywhere. We
want to show that f is constant λ-almost everywhere. Since f ∈ L2(λ), f is equal in L2(λ) to its Fourier series

∑

n∈Zd

cne
2πi<n,x>, where cn =

∫

f(x)e−2πi<n,x>dµ, n ∈ Zd. (3.24)

Thus, we also have

f(TA(x)) =
∑

n∈Zd

cne
2πi<n,Ax> (3.25)

(where we used that the modulo one part of the definition does not contribute to the coefficients, since if k ∈ Zd,
then < n, k >∈ Z so e2πi<n,k> = 1). Remark that, if At denotes the transpose of the matrix A, we have

< n,Ax >=< Atn, x >, (3.26)
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since

< n,Ax > =
d
∑

i=1

ni, (Ax)i =
d
∑

i=1

ni





d
∑

j=1

Aijxj



 =
d
∑

i=1

d
∑

j=1

niAijxj

=
d
∑

j=1

d
∑

i=1

At
jinixj =

d
∑

j=1

(

d
∑

i=1

At
jini

)

xj =
d
∑

j=1

(Atx)jxj =< Atn, x > .

Thus, using (3.26) we have the Fourier series for f ◦ TA

∑

n∈Zd

cne
2πi<Atn,x>. (3.27)

Since f = f ◦TA by assumptions, the two Fourier series for f and f ◦TA are equal and since the Fourier coefficients
are unique, the coefficients of the same terms must be the same. Consider the term e2πi<Atn,x> in (3.27), which
has Fourier coefficient cn. The same term in (3.24) has Fourier coefficient cAtn. Thus, we must have

cn = cAtn for all n ∈ Zd.

If for some n ∈ Zd we have |cn| 6= 0, then, since

cn = cAtn = c(At)2n = · · · = c(At)kn = . . .

all the terms c(At)kn for k ∈ N are equal and with modulus different than zero. If the indexes

n = Atn = (At)2n = · · · = (At)kn = . . . (3.28)

are all distinct and thus there is an infinite number of coefficient with equal and non-zero modulus, this gives
a contradiction, since otherwise the Fourier series would not converge (recall that by Riemann Lebesgue Lemma
|cm| → 0 as m → ∞). Thus, there can be only finitely many different terms in (3.28), which means that there
exists k1 6= k2 such that

(At)k1n = (At)k2n ⇒ (At)kn = n, where k = |k1 − k2|.

If n is not the zero vector 0 = (0, . . . , 0), this shows that n is an eigenvector for (At)k with eigenvalue 1. Thus At

must have an eigenvalue λ which is a root of unity (see the Remark below and apply it to the matrix At). But
since the eigenvaleus of At are the same than the eigenvalues of A (since det(At−λId) = det(A−λId)), this would
imply that also A has an eigenvalue which is a root of unity, which is excluded by assumption. Thus n = 0.

We showed that if |cn| 6= 0 then n = 0. Thus, for all n 6= 0, cn = 0 and f = c0. Thus, f is constant almost
everywhere. This concludes the proof that TA is ergodic if A has no eigenvalues which are roots of unity.

The converse implication is left as an exercise (Exercise 3.6.5).

Remark 3.6.1. To see that if Ak has eigenvector v with eigenvalue 1 then A has an eigenvalue which is a kth root
of unity (when working in the complex numbers) take the subspace

W = span{v,Av, . . . , Ak−1v}.

Note that for any x ∈ W we must have A(x) ∈ W so A must have an eigenvector y ∈ W with eigenvalue λ. We

then know that Aky = λky. However for any x ∈ W we will have that Akx = x and thus λk = 1 and so λ is a kth
root of union.

Exercise 3.6.5. Assume that the d × d integral matrix A has an eigenvalue λ which is a root of unity, that is,
λk = 1 for some k ∈ N.

(a) Show that there exists n ∈ Zd such that n 6= 0 and

(At)kn = n,

where At denotes the transpose matrix of A;

[Hint: Show first that there exists n ∈ Rd such that n 6= 0 and (At)kn = n. Use that A has integer entries to
conclude that we can choose n in Zd.]
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(b) Prove that the toral endomorphism TA : Rd/Zd → Rd/Zd associated to such a matrix A is not ergodic.

[Hint: Use Fourier series to construct a non-constant invariant function.]

Thus, this exercise proves the converse implication in Theorem 3.6.1: if A has an eigenvalue λ which is a root of
unity, then TA is not ergodic.

Other measure-preserving transformations of Rd/Zd can be proved to be ergodic by using higher-dimensional
Fourier series.

Ergodicity of translations on the torus. Let α = (α1, α2, . . . , αd) ∈ Rd. The translation by α on the
d−dimensional torus Td = Rd/Zdis the transformation Rα : Td → Td given by

Rα(x1, x2, . . . , xd) = (x1 + α1 mod 1, x2 + α2 mod 1, . . . , xd + αd mod 1).

Exercise 3.6.6. Show that Rα : Td → Td preserves the d−dimensional Lebesgue measure λ on Borel sets B on
Td = Rd/Zd.

[Hint: You can either verify the area-preserving relation first for rectangles or use the characterization of measure-
preserving using functions and a change of variables.]

We say that the translation vector α is irrational if the components α1, α2, . . . , αd are rationally independent,
that is if

n1α1 + n2α2 + · · ·+ ndαd = k for some n1, n2, . . . , nd, k ∈ Z ⇒ n1 = · · · = nd = k = 0.

Equivalently, α is irrational is there is no n ∈ Zd\{0} such that < n, x >= k for some integer k ∈ Z.

Proposition 1. The translation Rα on Td is ergodic if and only if α is irrational.

Exercise 3.6.7. Prove Proposition 1:

(a) using Fourier series, show that if there is no n = (n1, n2, . . . , nd) ∈ Zd, n 6= (0, . . . , 0), such that

< n,α >= n1α1 + n2α2 + · · ·+ ndαd = k for some k ∈ Z,

then Rα is ergodic with respect to the d−dimentional Lebesgue measure λ;

(b) If there exists n = (n1, n2, . . . , nd) ∈ Zd such that n 6= 0 and < n,α >∈ Z, show that Rα is not ergodic.

[Hint: Look for a non-constant invariant function f : X → C whose Fourier series has only one term. You
can then use it to find a real-valued non-constant invariant function.]

Ergodicity of the skew product over an irrational rotation. Let X = T2 (with the Borel σ−algebra and
the Lebesgue measure λ. Let α ∈ R and consider the map T : T2 → T2 given by

T (x, y) = (x+ α mod 1, x+ y mod 1). (3.29)

Exercise 3.6.8. Check that T preserves the two dimensional Lebesgue measure λ. [Hint: You can use Fubini
theorem.]

A map T of the form (3.29) above, where the first coordinate of T (x, y) is a function only of the first coordinate
x, is called a skew shift. Since the T acts as a rotation on the first coordinate, this map is called a skew shift over
a rotation.

Proposition 2. The skew shift T over the rotation Rα is ergodic with respect to λ if and only if the Rα is ergodic.
Equivalently, T is ergodic if and only if α is irrational.

Exercise 3.6.9. Prove Proposition 2:

(a) Use Fourier series to show that if α is irrational then T is ergodic;

(b) Show that if α is rational then T there is a non-constant invariant function, thus T is not ergodic.
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3.7 Birkhoff Ergodic Theorem and Applications

In this section we will state the Birkhoff Ergodic Theorem, which is one of the key theorems in Ergodic Theory.
The motivation came originally from the Boltzmann Ergodic Hypothesis formulated by Boltzmann in the 1930s (see
below). The concept of ergodicity was developed exactly in order to prove the Boltzmann Ergodic Hypothesis, thus
giving birth to the field of Ergodic Theory.

Botzmann Ergodic Hypothesis

Let X be the phase space of a physical system (for example, the points of X could represent configurations of
positions and velocities of particles of a gas in a box). A measurable function f : X → R represents an observable
of the physical system, that is a quantity that can be measured, for example velocity, position, temperature and
so on. The value f(x) is the measurement of the observable f that one gets when the system is in the state x.
Time evolution of the system, if measured in discrete time units, is given by a transformation T : X → X, so that
if x ∈ X is the initial state of the system, then T (x) is the state of the system after one time unit. If the physical
system is in equilibrium, the time evolution T is a measure-preserving transformation.

In order to measure a physical quantity, one usually repeats measurements in time and consider their average.
If x ∈ X is the initial state, the measurements of the observable f : X → R at successive time units are given by
f(x), f(T (x)), . . . , f(T k(x)), . . . . Thus, the average of the first n measurements is given by

∑n−1
k=0 f(T

kx)

n
(time average).

This quantity is called time average of the observable f after time n.
On the other hand, the space average of the observable f is simply

∫

fdµ (space average).

In physics one would like to know the space average of the observable with respect to the invariant measure, but
since experimentally one computes easily time averages (just by repeating measurements of the system at successive
instant of times), it is natural to ask whether (and hope that) long time averages give a good approximation of the
space average. Boltzmann’s conjectured the following:

Boltzmann Ergodic Hypothesis: for almost every initial state x ∈ X the time averages of any observable f
converge as time tends to infinity to the space average of f .

Unfortunately, after many efforts to prove this general form of the Boltzmann Ergodic Hypothesis, it turned out
that the conclusion is not true in general, for any measure-preserving transformation T . On the other hand, under
the assumption that T is ergodic, the conclusion of the Boltzmann Ergodic Hypothesis holds and this is exactly
the content of Birkhoff Ergodic Theorem for ergodic transformations. Finding the right condition under which the
Hypothesis holds motivated the definition of ergodicity and gave birth to the study of Ergodic theory.

Two versions of Birkhoff Ergodic Theorem

The first formulation of Birkhoff Ergodic Theorem gives a result which is weaker than the Ergodic Hypothesis, but
holds in general for any measure preserving transformation that preserves a finite measure.

Theorem 3.7.1 (Birkhoff Ergodic Theorem for measure preserving transformations). Let (X,A , µ) be
a finite measured space. Let T : X → X be measure-preserving transformation. For any f ∈ L1(X,A , µ), the
following limit

lim
n→∞

1

n

n−1
∑

k=0

f(T k(x))

exists for µ-almost every x ∈ X. Moreover, if, for the x for which the limit exists we call

f(x) = lim
n→∞

1

n

n−1
∑

k=0

f(T k(x))
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the function f (which is defined almost everywhere) is invariant, that is

f ◦ T = f for µ− almost every x ∈ X,

and furthermore
∫

fdµ =

∫

fdµ.

Let us stress again that this theorem, as Poincaré Recurrence, follows simply from preserving a finite measure.
We will not prove the theorem here.

[If you are interested, a proof can be found in the lecture notes on Ergodic Theory by Omri Sarig (see section 2.2
in Chapter 2) which are available online: http://www.wisdom.weizmann.ac.il/ sarigo/506/ErgodicNotes.pdf]

The following version of Birkhoff Ergodic Theorem for ergodic transformations is simply a Corollary of this
general Birkhoff Ergodic Theorem:

Theorem 3.7.2 (Birkhoff Ergodic Theorem for ergodic transformations). Let (X,A , µ) be a probability
space. Let T : X → X be an ergodic measure-preserving transformation. For any f ∈ L1(X,A , µ),

lim
n→∞

1

n

n−1
∑

k=0

f(T k(x)) =

∫

fdµ for µ− almost every x ∈ X.

Proof. By Birkhoff Ergodic Theorem for measure preserving transformations for µ−almost every x the limit

lim
n→∞

1

n

n−1
∑

k=0

f(T k(x)) = f(x)

exists and defines a function f such that f ◦ T = f almost everywhere. Since T is ergodic, every function which is
invariant almost everywhere is constant almost everywhere. In particular, f is constant almost everywhere. If c is
the value of this constant, since µ is a probability measure

∫

fdµ = c · µ(X) = c · 1 = c,

but since the ergodic theorem for measure preserving transformations also gives that
∫

fdµ =
∫

fdµ, we conclude
that

∫

fdµ = c. Thus, for almost every x ∈ X

lim
n→∞

1

n

n−1
∑

k=0

f(T k(x)) = c =

∫

fdµ,

which is the conclusion we were looking for.

Applications of Birkhoff Ergodic Theorem

The version of Birkhoff Ergodic Theorem for ergodic transformations shows that Boltzmann’s Ergodic Hypothesis
is true if the time evolution is ergodic. Birkhoff ergodic Theorem has many other applications in different areas of
mathematics. We will show a few consequences.

1. Frequencies of Visits. Let (X,A , µ) be a probability space and let T : X → X be an ergodic measure-
preserving transformation. Let A ∈ A be a measurable set of positive measure µ(A) > 0. Given x ∈ X, the
frequencies of visits of x to A up to time n are given by

Card { 0 ≤ k ≤ n− 1, T k(x) ∈ A }
n

=
1

n

n−1
∑

k=0

χA(T
k(x)),

as we have already seen at the beginning of Chapter 3. If we apply Birkhoff ergodic theorem to the function f = χA,
which is measurable since A ∈ A and integrable since

∫

χAdµ = µ(A) ≤ µ(X) < +∞, we get that for almost every
x

lim
n→∞

1

n

n−1
∑

k=0

χA(T
k(x)) =

∫

χAdµ = µ(A).
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Thus, for almost every x in A the limit of the frequencies of visits exists and is equal to µ(A):

lim
n→∞

Card { 0 ≤ k ≤ n− 1, T k(x) ∈ A }
n

= µ(A) for µ− a.e. x ∈ X.

Example 3.7.1. Let Rα be an irrational rotation. We showed in §3.6 that Rα is ergodic with respect to λ. Thus,
if we take as set an interval [a, b], for almost every x ∈ [0, 1] we have

lim
n→∞

1

n

n−1
∑

k=0

χ[a,b](R
k
α(x)) = λ([a, b]) = b− a.

Remark 3.7.1. In the special case of the rotation, one can prove that actually the conclusion of Birkhoff ergodic
theorem holds for all initial points x ∈ X. In particular, for example, it holds for x = 0. Thus, since Rk

α(0) = {kα}
where {·} denotes the fractional part, we have

lim
n→∞

Card{0 ≤ k < n, {kα} ∈ [a, b]}
n

= λ([a, b]) = b− a.

We say that the sequence ({kα})k∈N is equidistributed in [0, 1].

* Exercise 3.7.1. Let α be irrational. Show that if

lim
n→∞

n−1
∑

k=0

χ[a,b]

(

(Rk
α(x)

)

exists for almost every point x ∈ [0, 1], then it exists for all points y and

lim
n→∞

1

n

n−1
∑

k=0

χ[a,b]

(

(Rk
α(y)

)

= lim
n→∞

1

n

n−1
∑

k=0

χ[a,b]

(

(Rk
α(x)

)

.

2. Borel Normal Numbers. Let x ∈ [0, 1] and consider its binary expansion, that is

x =

∞
∑

i=1

ai
2i
,

where the ai ∈ {0, 1} are the digits of the binary expansion of x. Remark that the binary expansion is unique for
almost every8 x ∈ X.

Definition 3.7.1. A number x ∈ [0, 1] is called normal in base 2 if the frequency of occurrence of the digit 0 is
the binary expansion and the frequency of occurrence of the digit 1 both exist and equal 1/2.

Theorem 3.7.3 ( Borel theorem on normal numbers). Almost every x ∈ [0, 1] is normal in base 2.

Proof. Let us prove the Theorem using Birkhoff ergodic theorem. Consider the doubling map T (x) = 2x mod 1.
We proved that T preserves the probability measure λ on X = [0, 1] and is ergodic with respect to λ. Recall that
we showed in §1.4.2 that

x =

∞
∑

i=1

ai
2i

⇒ T k(x) =

∞
∑

i=1

ak+i

2i
,

that is, the doubling map act as a shift on the digits of the binary expansion of x. Since the first digit a1 of the
expansion is clearly a1 = 0 if and only if x ∈ [0, 1/2) and a1 = 0 if and only if x ∈ [1/2, 1], this shows that, since
ak+1 is the first digit of the expansion of T k(x),

ak+1 =

{

0 iff T kx ∈ [0, 1/2)
1 iff T kx ∈ [1/2, 1]

8The numbers for which it is not unique are exactly the ones of the form k/2n, for which one has two expansions, one with a tail of
0 and one with a tail of 1 in the digits. Numbers of this form are clearly countable and thus have Lebesgue measure zero.
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Thus,

Card{ 1 ≤ k ≤ n ak = 0 }
n

=
Card{ 0 ≤ k < n ak+1 = 0 }

n

=
Card{ 0 ≤ k < n T k(x) ∈ [0, 1/2) }

n
.

Since T is ergodic, by Birhoff ergodic theorem applied to f = χ[0,1/2), for almost every x ∈ [0, 1]

lim
n→∞

Card{ 1 ≤ k ≤ n ak = 0 }
n

= lim
n→∞

1

n

n−1
∑

k=0

χ[0,1/2)(T
k(x)) = λ([0, 1/2)) = 1/2,

thus the frequency of occurrence of 0 is 1/2. Similarly, for almost every x ∈ [0, 1]

lim
n→∞

Card{1 ≤ k ≤ n ak = 1}
n

= lim
n→∞

1

n

n−1
∑

k=0

χ[1/2,1](T
k(x)) = λ([1/2, 1]) = 1/2.

Remark that the intersection of two full measure sets has full measure (since the complement is the union of two
measure zero sets, which has measure zero). We conclude that for almost every x ∈ [0, 1] the frequency of both 0
and 1 exists and equals 1/2, thus almost every x is normal in base 2.

Exercise 3.7.2. Consider the unit interval [0, 1] with the Lebesgue measure. Let r ≥ 2 be an integer.

(a) Give a similar definition of a number which is normal in base r;

(b) Show that almost every x ∈ [0, 1] is normal base r;

(c) Deduce that almost every x ∈ [0, 1] is simultaneously normal with respect to any base r = 2, 3, . . . , n, . . . .

3. Leading digits of powers of two. Consider the sequence (2n)n∈N of powers of two:

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, . . .

The leading digit of a number is simply the first digit in the decimal expansion. For example, the leading digit of
512 is 5. The leading digits of the previous sequence are written in bold font:

1,2,4,8,16,32,64,128,256,512,1024,2048, . . .

Consider the sequence of the leading digits:

1, 2, 4, 8, 1, 3, 6, 1, 2, 5, 1, 2, . . .

Exercise 3.7.3. What is the frequency of the digit 1 in the sequence of leading digits of (2n)n∈N?

We will use Birhoff Ergodic Theorem to answer this question. More in general, we will show that the frequency
of the digit k as leading digit in the sequence (2n)n∈N is given by

log10

(

1 +
1

k

)

where log10 denotes the logarithm in base 10 (that is, log10(a) = b if and only if 10a = b). In particular, the
frequency of occurrency of the digit 1 in the leading digits of (2n)n∈N is log10 2.

Notice that the leading digit of 2n is k if and only if there exists an integer r ≥ 0 such that

k10r ≤ 2n < (k + 1)10r.

For example, 2 · 100 ≤ 256 < 3 · 100 shows that the leading digit of 256 is 2.
Taking logarithms in base 10 and using the properties of logarithms (as log10(ab) = log10(a) + log10(b) and

log10 10
r = r), this shows that

log10(k10
r) ≤ log10 2

n < log10((k + 1)10r),

log10 k + r ≤ n log10 2 < log10(k + 1) + r.
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Thus, equivalently,
(n log10 2 mod 1) ∈ Ik = [log10 k, log10(k + 1)] .

Notice that if we call α = log10 2, the sequence

(n log10 2 mod 1)n∈N = 0, log10 2 mod 1, 2 log10 2 mod 1, 3 log10 mod 1, . . .

= 0, log10 2 mod 1, log10 2 + log10 2 mod 1, 2 log10 2 + log10 2 mod 1, . . .

is the orbit O+
Rα

(0) of 0 under the rotation by α. Thus,

Card { 0 ≤ n < N such that the leading digit of 2n is k }
N

=

Card { 0 ≤ n < N such that (n log10 2 mod 1) ∈ Ik }
N

=

Card { 0 ≤ n < N such that Rn
α(0) ∈ Ik }

N
=

1

N

N−1
∑

n=0

χIk(R
n
α(0)).

One can show that log10 2 is irrational, thus Rα is an irrational rotation and hence it is ergodic with respect to
the Lebesgue measure. By Remark 3.7.1, the Birkhoff sums of an ergodic rotation converge for all points to the
integral, so

lim
N→∞

Card{0 ≤ n < N s.t. the leading digit of 2n is k}
N

= lim
N→∞

1

N

N−1
∑

n=0

χIk(R
n
α(0))

= λ(Ik) = log10(k + 1)− log10 k = log10

(

1 +
1

k

)

.

Exercise 3.7.4. Consider the sequence {3n}n∈N of powers of 3:

1, 3, 9, 81, 243, 729, 2187, 6561, . . .

The second leading digits in the expansion in base 10, starting from n ≥ 3 (so that there is a second digit), are the
digits in bold font:

81, 243, 729, 2187, 6561, . . .

Consider the sequence of second leading digits in the expansion in base 10, starting from n ≥ 3:

1, 4, 2, 1, 5, . . .

What is the frequency of occurrence of the digit k as second leading digit of {3n}n≥3?

4. Continued Fractions. Let x ∈ [0, 1] and let us express it as a continued fraction [a0, a1, . . . , an, . . . ] where
ai are the entries of the CF expansion. Let us show that for almost every x ∈ [0, 1] the frequency of occurrence of
the digit k as entry of the continued fraction of x is given by

1

log 2
log

(

(k + 1)2

k(k + 2)

)

. (3.30)

We showed in §1.7 that the entries of the continued fraction expansion of x are given by the itinerary of O+
G(x)

with respect to the partition Pk = (1/(k+1), 1/k], that is the entry ai = k if and only if Gi(x) ∈ Pk (see Theorem
1.7.1). Thus,

Card{0 ≤ j < n such that aj = k}
n

=
1

n

n−1
∑

j=0

χPk
(Gj(x)).

Since G is ergodic with respect to the Gauss measure µ, for µ−almost every x ∈ [0, 1] the limit of the previous
quantity as n → ∞ exists and is given by

lim
n→∞

Card{0 ≤ j < n such that aj = k}
n

= lim
n→∞

1

n

n−1
∑

j=0

χPk
(Gj(x))

= µ(Pk) =

∫ 1
k

1
k+1

1

log 2

dx

1 + x
=

log(1 + x)

log 2

∣

∣

∣

∣

1
k

1
k+1

=
1

log 2
log

(

1 + 1
k

1 + 1
k+1

)

=
1

log 2
log

(

1+k
k

k+2
k+1

)

,
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which, simplifying, gives (3.30).
One can show that the same conclusion holds for Lebesgue a.e.x ∈ X, since if it failed for a set of λ-positive

measure A, it would fail for a set of µ-positive measure, since

µ(A) =

∫

A

1

(1 + x) log 2
≥ 1

2 ln 2
λ(A) > 0.

[More in general, one can show that the measure µ and the measure λ have the same sets of measure zero. Measures
with these property are called absolutely continuous with respect to each other and if a property holds for almost
every point according to one such measure, it holds also for almost every point for the other.]

Exercise 3.7.5. This was covered in class

(a) Show that the function f : [0, 1] → R defined by

f(x) = log(n), if x ∈ Pn =

(

1

n+ 1
,
1

n

]

is in L1(µ) and that
∫

fdµ =

∞
∑

n=1

log n

log 2
log

(

(n+ 1)2

n(n+ 2)

)

< +∞;

(b) Show that for almost every point x ∈ [0, 1]

1

n

n−1
∑

i=0

log ai =

∫

f(x)dµ;

(c) Deduce that for almost every point x ∈ [0, 1] the geometric mean (which is the expression in
(3.31)) of the entries of the CF has a limit and

lim
N→∞

(a0a2 . . . aN−1)
1
N =

∞
∏

n=1

(

(n+ 1)2

n(n+ 2)

)

log n
log 2

. (3.31)

Ergodicity and Birkhoff Ergodic Theorem

The second form of Birkhoff Ergodic theorem shows that ergodicity is sufficient for Boltzmann ergodic Hypothesis
to hold. It turns out that it is also necessary: if the conclusion of Birkhoff ergodic theorem holds, that is the time
averages converge to the space averages for almost every point and all observables, then the transformation T has
to be ergodic. We show this in the Theorem 3.7.4 below. In the same Theorem 3.7.4 we also show how Birkohff
ergodic Theorem can be rephrased in terms of measures of sets (see Part (3) in Theorem 3.7.4) to give another
useful characterization of ergodicity.

Theorem 3.7.4. Let (X,A , µ) be a probability space and T : X → X a measure-preserving transformation. The
following are equivalent:

(1) T is ergodic;

(2) for any f ∈ L1(X,A , µ) and µ-almost every x ∈ X,

lim
n→∞

1

n

n−1
∑

k=0

f(T k(x)) =

∫

fdµ; (3.32)

(3) for any A,B ∈ A ,

lim
n→∞

1

n

n−1
∑

k=0

µ(T−kA ∩B) = µ(A)µ(B). (3.33)
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Saying that (1), (2) and (3) are equivalent means one holds if and only if any of the others hold. In particular,
(1) equivalent to (2) shows that the conclusion of the second form of Birkhoff Ergodic theorem (Boltzmann ergodic
Hypothesis) holds if and only if T is ergodic.

The equivalence between (1) and (3) gives another characterization of ergodicity. We defined ergodicity in terms
of triviality of invariant sets (T−1(A) = A implies µ(A) = 0 or 1) and we already saw that equivalently invariant
functions are constant (f ◦T = f a.e. implies f constant a.e.). Equivalently, one can define ergodicity by requiring
that any two measurable sets A,B

lim
n→∞

1

n

n−1
∑

k=0

µ(T−kA ∩B) = µ(A)µ(B).

(Compare this characterization with the definition of mixing in the next section §3.8 and see the comments after
(3.43) in §3.8.)

Proof of Theorem 3.7.4. We will show that (1) ⇒ (2), (2) ⇒ (3) and (3) ⇒ (1). This will prove the equivalence.

The implication (1) ⇒ (2) is simply the statement of Birkhoff Ergodic Theorem for ergodic transformations: if
T is ergodic, the convergence of time averages to space averages stated in (3.32) holds for all f ∈ L1(µ) and almost
every point.

Let us show that (2) ⇒ (3). Assume that (3.32) holds for all f ∈ L1(µ) and almost every point. To show
that (3) holds, take any two measurable sets A,B ∈ A . Consider the characteristic function χA. Since

∫

χAdµ =
µ(A) ≤ µ(X) < ∞, χA ∈ L1(µ) and we can apply (3.32) to f = χA. Thus,

lim
n→∞

1

n

n−1
∑

k=0

χA(T
k(x)) =

∫

χAdµ = µ(A), for a.e. x ∈ X.

Multiplying both sides by χB(x) we have

lim
n→∞

1

n

n−1
∑

k=0

χA(T
k(x))χB(x) = µ(A)χB(x), for a.e. x ∈ X. (3.34)

Recall that we showed that χA ◦ T = χT−1(A) (see equation (3.14) in §3.4), thus χA ◦ T k = χT−k(A). Let us show
now that

χAχB = χA∩B .

This holds since characteristic functions take only 0 or 1 as values, so the product χAχB(x) is equal to 1 if and
only if both χA(x) = 1 and χB(x) = 1 (otherwise, if one of the two is 0, the product is 0 also). Thus, χAχB(x) = 1
if and only if x ∈ A and x ∈ B, which equivalently means that x ∈ A∩B. But a function which is 1 on A∩B and
0 otherwise is exactly the characteristic function χA∩B . Thus

χA ◦ T kχB = χT−k(A)χB = χT−k(A)∩B ,

and (3.34) can be rewritten as

lim
n→∞

1

n

n−1
∑

k=0

χT−k(A)∩B(x) = µ(A)χB(x), for a.e. x ∈ X. (3.35)

Let us integrate both sides of this equation:

∫

1

n

n−1
∑

k=0

χT−k(A)∩B(x)dµ =
1

n

n−1
∑

k=0

∫

χT−k(A)∩B(x)dµ =
1

n

n−1
∑

k=0

µ(T−kA ∩B), (3.36)

∫

µ(A)χB(x)dµ = µ(A)

∫

χB(x)dµ = µ(A)µ(B). (3.37)
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Thus, the conclusion follows if we can exchange the sign of limit with the sign of integration and show that the
limit of the integrals is the integral of the limits:

lim
n→∞

1

n

n−1
∑

k=0

µ(T−kA ∩B) = lim
n→∞

∫

1

n

n−1
∑

k=0

χT−k(A)∩B(x)dµ (by (3.36))

=

∫

(

lim
n→∞

1

n

n−1
∑

k=0

χT−k(A)∩B(x)

)

dµ (if one can exchange)

=

∫

µ(A)χB(x)dµ (by (3.35))

= µ(A)µ(B) (by (3.37)).

The step of exchanging the sign of limit with the sign of integration can be justified by using the Dominated
Convergence Theorem (see the Extra 3 in §3.4). Thus, we proved (3).

Let us show that (3) ⇒ (1). Assume that (3.33) holds for any A,B ∈ A . Let us show that T is ergodic by
using the definition. Let A ∈ A be an invariant set. Apply (3.33) to A taking also B = A, so that

lim
n→∞

1

n

n−1
∑

k=0

µ(T−kA ∩A) = µ(A)2. (3.38)

Remark that since A is invariant under T , T−k(A) = A, so that T−kA ∩A = A ∩A = A. Since if we sum n terms
equal to µ(A) and divide by n we get µ(A)

lim
n→∞

1

n

n−1
∑

k=0

µ(T−kA ∩A) = lim
n→∞

1

n

n−1
∑

k=0

µ(A) = lim
n→∞

µ(A) = µ(A),

equation (3.38) implies that µ(A) = µ(A)2. But the only positive real numbers such that x = x2 are x = 0, 1. Thus
either µ(A) = 0 or µ(A) = 1. This shows that T is ergodic.

3.8 Mixing

In this lecture we define an ergodic property stronger than ergodicity, the property of mixing. This property
formalizes the intuitive concept that a transformation mixes well from a measure-theoretical point of view. In
many examples it turns out that it is easier to prove that T is mixing than to prove that T is ergodic. Thus,
showing mixing will also provide us with more examples of ergodic transformation, especially in the case of shifts.

Let (X,A , µ) be a probability space and T : X → X a measure-preserving transformation.

Definition 3.8.1. The transformation T is mixing with respect to the measure µ (or simply mixing) if for any
pair of measurable sets A,B ∈ A

lim
n→∞

µ(T−nA ∩B) = µ(A)µ(B). (3.39)

The intuitive meaning of this definition is the following. Assume that µ(A) > 0. Then we can divide both sides
by µ(A) and get

lim
n→∞

µ(T−nA ∩B)

µ(A)
= µ(B).

Remark that since T preserves µ, µ(T−n(A)) = µ(A) for any n ∈ N, so we can rewrite

µ(T−nA ∩B)

µ(T−nA)

n→∞−−−−→ µ(B).

The ratio in the left hand side is the proportion of the measure of the set T−n(A) which intersects B. Thus, mixing
shows that the proportion of the measure of T−n(A) which intersects B tends, as n grows, to µ(B) (which is a
number between 0 and 1). In particular, if two sets B1 and B2 have the same measure, the proportion of the
measure T−n(A) in B1 and in B2 is the same. This formalizes the intuitive idea that the set T−n(A) spreads as n
grows to become equidistributed all over the space with respect to the measure µ.
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If you have seen some probability theory, the mixing equation (3.39) says that the sets A and B are asymptotically
independent, where asymptotically means that one considers backward iterates T−n(A) and T−n(A) and B tend
to become independent as the time n grows.

Remark 3.8.1. Let S be an algebra of subsets which generates the whole σ−algebra A of measurable sets. One
can prove that to show that T is mixing, it is enough to prove the mixing relation (3.39) for all sets A,B ∈ S .
Thus, since finite unions of the following sets form an algebra that generates the corresponding A , it is enough to
verify the mixing relation (3.39) for:

- A,B intervals if X = R or X = I ⊂ R is an interval and B is the the Borel σ−algebra; dyadic intervals or
intervals with rational endpoints are also sufficient;

- A,B rectangles if X = R2 or X = [0, 1]2 and B is the the Borel σ−algebra; dyadic rectangles or rectangles
whose vertices have rational endpoints are also sufficient;

- A,B cylinders if X is the shift space X = ΣN or Σ+
N or a subshift X = ΣA or Σ+

A and A is the σ−algebra
generated by cylinders;

Mixing is a stronger property than ergodicity:

Lemma 3.8.1. Let (X,A , µ) be a probability space and T : X → X a measure-preserving transformation. If T
is mixing with respect to µ, then T is ergodic with respect to µ.

In particular, if we can prove that T is mixing (which sometimes turns out to be easier than to prove ergodicity)
we also know that T is ergodic.

Proof of Lemma 3.8.1. Assume that T is mixing. Let us show that T is ergodic by using the definition. Let A ∈ A

be an invariant set. Applying the mixing relation (3.39) to A and taking also B = A, we get

lim
n→∞

µ(T−nA ∩A) = µ(A)µ(A) = µ(A)2.

Since T−1(A) = A by invariance of A, we also have T−n(A) = A for any n ∈ N and T−nA ∩A = A. Thus,

µ(A)2 = lim
n→∞

µ(T−nA ∩A) = lim
n→∞

µ(A) = µ(A).

Since the only positive real numbers such that x = x2 are x = 0, 1, either µ(A) = 0 or µ(A) = 1. This shows that
T is ergodic.

Let us recall that in §3.7 we showed that T is ergodic if and only if for any A,B ∈ A

lim
n→∞

1

n

n−1
∑

k=0

µ(T−kA ∩B) = µ(A)µ(B). (3.40)

Thus, if T is ergodic and µ(A) > 0, using as before that by invariance µ(A) = µ(T−kA), we have

lim
n→∞

1

n

n−1
∑

k=0

µ(T−kA ∩B)

µ(T−nA)
= µ(B),

which shows that the average of measure of the proportion of T−k(A) which intersects B as 0 ≤ k < n tends, as n
grows, to µ(B). Thus, ergodicity can be seen as a mixing in average property, which is a weaker requirement than
mixing.

One can use this characterization of ergodicity to show that mixing implies ergodicity:

Exercise 3.8.1. (a) Show that if {an}n∈N is a sequence of real numbers,

lim
n→∞

an = L ⇒ lim
n→∞

1

n

n−1
∑

k=0

ak = L.

[Hint: Use the definition of limit. For any ǫ > 0, split the sum in two parts, one corresponding to indexes k
for which ak is ǫ-close to L and the other made by finitely many ak.]
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(b) Use Part (a) to give an alternative proof that if T is mixing, then T is ergodic.

Exercise 3.8.2. Consider the probability space (R/Z,A , λ) and for α ∈ [0, 1). Show that the irrational rotation
given by T (x) = x+ α mod 1 is not mixing with respect to λ.

Let us show two examples of mixing transformations. The first, the doubling map, is more geometric and
provides a visual example of how sets can spread uniformly in space. The second example is the shift space with
the Bernoulli measure, that we define below. In the next section, §3.9, we will construct many more measures on
subshifts which are invariant under the shift map and prove that they are mixing. In all these examples related to
shift spaces proving mixing turns out to be easier than proving directly ergodicity.

Example 3.8.1. [The doubling map is mixing] Let T (x) = 2x mod 1 be the doubling map on ([0, 1],A , λ).
Let us show that T is mixing with respect to the invariant measure λ. By Remark 3.8.1, it is enough to check the
mixing relation (3.39) for A,B intervals. Furthermore, since also finite unions of dyadic intervals form an algebra
and generate all Borel sets A , it is enough to check it when A,B are dyadic intervals. Let us hence assume that

A =

[

k

2i
,
k + 1

2i

]

, B =

[

l

2j
,
l + 1

2j

]

, for some i, j ∈ N, 0 ≤ k < 2i, 0 ≤ l < 2j .

Since

T−1(A) =

[

k

2i+1
,
k + 1

2i+1

]

∪
[

k

2i+1
+

1

2
,
k + 1

2i+1
+

1

2

]

the preimage T−1(A) consists of 2 intervals of length 1/2i+1 spaced by 1/2. Similarly, by induction one can prove
that T−n(A) consists of 2n intervals of length 1/2i+n spaced by 1/2n.

Thus, if n > j, the dyadic intervals in T−n(A) intersect B and the intersection T−n(A) ∩ B consists of the
intervals of T−n(A) which are contained in B. The number of intervals in T−n(A) that intersect B is given by the
length of B divided by the spacing, thus the number of intervals in T−n(A) ∩B is

λ(B)

spacing
=

1/2j

1/2n
= 2n−j .

Since each interval has length 1/2i+n,

λ(T−n(A) ∩B) =
1

2i+n
2n−j =

1

2i
1

2j
= λ(A)λ(B).

This shows that T is mixing. Remark that here there is no need to take a limit, since as soon as n > j, the measure
of T−n(A) ∩B is exactly equal to the product of the measures.

Bernoulli measures on full shifts.

Let Σ+
N = {1, . . . , N}N be the full one-sided shift space and σ : Σ+

N → Σ+
N the full one-sided shift map, that, we

recall, acts like a shift on one-sided sequences:

σ((xi)
+∞
i=0 ) = (xi+1)

+∞
i=0 .

Recall that a cylinder in Σ+
N is a set of the form

Cn(a0, . . . , an) = { x = (xi)
+∞
i=0 ∈ Σ+

N , such that xi = ai for all 0 ≤ i ≤ n }.

Let A be the σ−algebra generated by cylinders9. Let us define a class of measures called Bernoulli measures on
the measurable space (Σ+

N ,A ).
Let p = (p1, . . . , pN ) be a probability vector, that is a vector such that

0 ≤ pi ≤ 1 for any 1 ≤ i ≤ N and
N
∑

i=1

pi = 1.

For example, ( 1
N , 1

N , . . . , 1
N ) is a probability vector.

9We saw in §2.7 that Σ+

N = {1, . . . , N}N is also a metric space with the distance dρ. Thus, there is also a Borel σ−algebra on Σ+

N
generated by open sets. One can see that the σ−algebra A generated by cylinders is the same than the Borel σ−algebra. This follows
from the remark that if ρ is sufficiently large, cylinders are open sets in the metric dρ.
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Definition 3.8.2. The Bernoulli measure given by the probability vector p = (p1, . . . , pN ) is the measure µp which

assigns to each cylinder Cn(a0, . . . , an) the measure

µp (Cn(a0, . . . , an)) = pa0
pa1

. . . pan
.

By the Extension Theorem, since we defined µ on all cylinders, this automatically defines a measure on the whole
σ−algebra A generated by cylinders.

Notice that the cylinder C1(i) consists of all sequences whose first digit is i. Since its measure is µp(C1(i)) = pi,
pi can be thought of as the probability of occurrence of the digit i. Similarly, you can think of the measure µp of
a cylinder as the probability of seeing the digit block a0, . . . , an. Both these probabilities do not depend on the
position in which the digit i or the block a0, . . . , an occurr:

Exercise 3.8.3. Show that for any 1 ≤ i, j ≤ N and any integers k1 6= k2 the probability of seeing the digit i in
position xk1

and the digit j in another position xk2
is given by the product pipj .

[Hint: write the set of sequences x such that xk1
= i and xk2

= j as a union of cylinders and apply the definition
of the measure.]

Proposition 3. Let σ : Σ+
N → Σ+

N be the shift and µp the Bernoulli measure on (Σ+
N ,A ) given by the probability

vector p:

(i) the measure µp is invariant under the shift σ;

(ii) the shift σ is mixing with respect to the Bernoulli measure µp.

Corollary 3.8.1. The shift σ : Σ+
N → Σ+

N is ergodic with respect to the Bernoulli measure µp.

Proof of Proposition 3. Let us prove (1). To show that σ preserves µp, let verify the relation µp(σ
−1(A)) = µp(A)

when the measurable set A is a cylinder. Consider the cylinder Cn(a0, . . . , an). Given x = (xi)
∞
i=1 ∈ Σ+

N

x ∈ σ−1(Cn(a0, . . . , an)) ⇔ σ(x) ∈ (Cn(a0, . . . , an)) ⇔
σ(x)i = ai for 0 ≤ i ≤ n ⇔ (x)i+1 = ai for 0 ≤ i ≤ n.

Thus, if x ∈ σ−1(Cn(a0, . . . , an)), x1 = a0, . . . , xn+1 = an, while x0 can be any digit in {1, . . . , N}. We can express
this condition as a union of cylinders of length n+ 1:

σ−1(Cn(a0, . . . , an)) =

N
⋃

j=1

Cn+1(j, a0, . . . , an).

Hence, by definition of the Bernoulli measure on cylinders and additivity of a measure we get

µp

(

σ−1(Cn(a0, . . . , an))
)

= µp





N
⋃

j=1

Cn+1(j, a0, . . . , an)





=

N
∑

j=1

µp (Cn+1(j, a0, . . . , an)) =

N
∑

j=1

pjpa0
pa1

· · · pan

=





N
∑

j=1

pj



 pa0
pa1

· · · pan
= pa0

pa1
· · · pan



since

N
∑

j=1

pj = 1





= µp (Cn(a0, . . . , an)) .

This shows that µp(σ
−1(A)) = µp(A) holds when A is a cylinder and by the Extension theorem this show that it

holds for all A ∈ A , so µp is invariant under the shift.

Let us prove (2). By the Remark 3.8.1, it is enough to verify the mixing relation

lim
n→∞

µp(σ
−nA ∩B) = µp(A)µp(B)
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when A,B are cylinders. Let
A = Ck(a0, . . . , ak), B = Cl(b0, . . . , bl).

If n ≥ l + 1 and x ∈ σ−n(A) ∩B, x has the following form:

x = b0, b1, . . . , bl, xl+1, . . . , xn−1, a0, . . . , ak, . . .

where the n− 1− l entries xl+1, . . . , xn−1 can be any digit in {1, . . . , N}. Indeed, since the initial block of digits is
b0, b1, . . . , bl, x ∈ Cl(b0, . . . , bl) = B. Since xn+i = ai for 0 ≤ i ≤ k, after shifting x to the left n times we get

σn (x) = (xn+i)i∈N = a0, . . . , ak, . . .

so σn (x) ∈ Ck(a0, . . . , ak) = A and x ∈ σ−n(A).
Thus, we can see the set σ−n(A)∩B = σ−n(Ck(a0, . . . , ak))∩Cl(b0, . . . , bl) for n ≥ l+1 as a union of cylinders

of length n+ k, each obtained by fixing one of the possible choices of xl+1, . . . , xn−1:

σ−n(A) ∩B =
⋃

1≤xl+1,...,xn−1≤N

Cn+k(b0, b1, . . . , bl, xl+1, . . . , xn−1, a0, . . . , ak).

Thus, by definition of the Bernoulli measure on cylinders and additivity of a measure we get

µp

(

σ−n(A) ∩B
)

=
∑

1≤xl+1,...,xn−1≤N

pb0pb1 · · · pblpxl+1
· · · pxn−1

pa0
· · · pak

= pb0pb1 · · · pbl pa0
· · · pak

N
∑

xl+1=1

N
∑

xl+2=1

· · ·
N
∑

xn−1=1

pxl+1
· · · pxn−1

= (pb0pb1 · · · pbl)(pa0
· · · pak

) = µp(A)µp(B).

where we used that
∑N

xi=1 pxi
= 1 for each i = l + 1, . . . n − 1 since p is a probability vector. This concludes the

proof of mixing.

Similar definitions can be given for the full bi-sided shift. Let ΣN = {1, . . . , N}Z and σ : ΣN → ΣN be the shift
map, whose action on ΣN is given by

σ((xi)
+∞
i=−∞) = (xi+1)

+∞
i=−∞.

Recall that a cylinder in ΣN is a set of the form

C−m,n(a−m, . . . , an) = { x = (xi)
+∞
i=−∞ ∈ ΣN , such that xi = ai for all −m ≤ i ≤ n }.

Let A be the σ−algebra generated by cylinders10 in ΣN . Bernoulli measures on the measurable space (ΣN ,B)
are defined similarly:

Definition 3.8.3. The Bernoulli measure given by the probability vector p = (p1, . . . , pN ) is the measure µp which

assigns to each cylinder Cn(a−m, . . . , an) the measure

µp (C−m,n(a−m, . . . , an)) = pa
−m

pa
−m+1

. . . pan
.

By the Extension Theorem, since we defined µ on all cylinders, this automatically defines a measure on the whole
σ−algebra B generated by cylinders.

Showing invariance in this case is even easier, since the preimage of a cylinder is again just one cylinder.

Exercise 3.8.4. Let σ : ΣN → ΣN be the two-sided shift. Show that the Bernoulli measure µp on (ΣN ,B) given
by the probability vector p is invariant under the shift σ and that σ is mixing with respect to µp.

10Again, this coincide with the Borel σ−algebra generated by open sets with respect to the metric dρ since if ρ is sufficiently large,
as we saw in §2.7, cylinders are open sets.
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3.9 Markov measures on Markov chains

In this section we will define a large class of measures on subshift spaces. We first recall the relevant definitions of
shift spaces and topological Markov chains from Chapter 2. Let ΣN be the full one-sided and let Σ+

N be the full
two-sided shift space respectively. Let A be an N ×N transition matrix. Recall that in Chapter 2, §2.7, we defined
the subshift spaces associated to the matrix A as respectively as

Σ+
A = {(ai)+∞

i=0 ∈ Σ+
N , Aaiai+1

= 1 for all i ∈ N},
ΣA = {(ai)+∞

i=−∞ ∈ ΣN , Aaiai+1
= 1 for all i ∈ Z}.

Recall also that admissible cylinders (that is, non-empty cylinders) in Σ+
A are cylinders of the form

Cn(a0, . . . , an) = { x = (xi)
+∞
i=0 ∈ Σ+

N , such that xi = ai for all 0 ≤ i ≤ n,

Aai,ai+1
= 1 for all 0 ≤ i < n },

and admissible cylinders (that is, non-empty cylinders) in ΣA are cylinders of the form

C−m,n(a−m, . . . , an) = { x = (xi)
+∞
i=−∞ ∈ ΣN , such that xi = ai for all −m ≤ i ≤ n,

Aai,ai+1
= 1 for all −m ≤ i < n }.

We will consider as measurable spaces (Σ+
A,B) and (ΣA,B) where the σ−algebras B are generated by the corre-

sponding admissible cylinders.
Recall also that the restriction of the full shifts σ and σ to Σ+

A and ΣA respectively are the maps

σ : Σ+
A → Σ+

A, σ : Σ+
A → Σ+

A,

which are called topological Markov chains.

Let us now define a large class of measures on (Σ+
A,B) and (ΣA,B), known as Markov measures. All these

measures are preserved by a topological Markov chains and we will prove that topological Markov chains are mixing
with respect to any of them.

Definition 3.9.1. An N ×N matrix P is called stochastic if P ≥ 0, that is all entries Pij ≥ 0 for all 1 ≤ i, j ≤ N
and

N
∑

j=1

Pij = 1, for all 1 ≤ i ≤ N,

that is the sum of entries of each row of P is one.

We say that the stochastic matrix P is is compatible with the transition matrix A if

Pij > 0 ⇔ Aij = 1.

Example 3.9.1. The following matrix P is an example of a stochastic matrix compatible with the transition
matrix A below:

P =





1
2

1
2 0

1
5

2
5

2
5

1
3 0 2

3



 , A =





1 1 0
1 1 1
1 0 1



 .

Remark that the sum of each row is equal to one (while this is not the case for the sum of columns) and that the
entries which are non-zero are exactly the ones for which Aij = 1.

Exercise 3.9.1. Show that if P is stochastic if and only if the vector (1, 1, . . . , 1) ∈ RN is a right-eigenvector.

Recall that:

- P ≥ 0 is irreducible if for any i, j ∈ {1, . . . , N} there exists n, possibly dependent on i, j, such that Pn
ij > 0;

- P ≥ 0 is aperiodic (or primitive) if there exists n ∈ N such that Pn > 0, that is Pn
ij > 0 for any i, j ∈

{1, . . . , N}.

In order to define Markov measures, we need the following result, that we will prove in the next section:
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Theorem 3.9.1 (Perron Frobenius for Stochastic Matrices). If P ≥ 0 is a stochastic matrix and P is
irreducible, then 1 is a simple eigenvalue which has a unique (up to scaling) left eigenvector (p1, . . . pN ) which is a

positive probability vector. That is a vector p such that pi > 0 for each 1 ≤ i ≤ N ,
∑N

i=1 p1 = 1 and

(p1, . . . , pN )P = (p1, . . . , pN ) ⇔
N
∑

i=1

piPij = pj , for all 1 ≤ j ≤ N. (3.41)

Moreover, if P is aperiodic (sometimes called primitive), then

lim
n→∞

Pn
ij = pj , for all 1 ≤ i, j ≤ N.

Thus, the matrices Pn are converging to a matrix with all rows equal and equal to p:



 Pn
ij





n→∞−−−−→







p1 . . . pN
...

...
p1 . . . pN






.

This latter result is also known as ergodic theorem for Markov chains. Let us use Theorem 3.9.1 to define Markov
measures and to prove that they are mixing.

If P is stochastic and irreducible, by the above Theorem 3.9.1 there exists a unique positive left eigenvector
p = (p1, . . . , pN ) such that (3.41) holds.

Definition 3.9.2. Let P be an irreducible stochastic matrix compatible with A and let p be the corresponding
probability vector p such that p = pP . The Markov measure µP associated to P is the measure defined on each
cylinder as

µP (Cn(a0, . . . , an)) = pa0
Pa0a1

· · ·Pan−1an
.

One can check that this definition satisfies the assumptions of the Extension theorem and thus defines a measure
on (Σ+

A,B) on the σ−algebra B generated by cylinders.

You can think of the measure µP (Cn(a0, . . . , an)) as the probability of seeing the block a0, . . . , an. The entry pi
of the vector p gives the probability that the first digit is i and the stochastic matrix P gives transition probabilities :
the entry Pij gives the probability that the digit i is followed by the digit j. Thus, the probability of seeing a0, . . . , an
is the product of the probability pa0

of starting with the digit a0 times the probabilities of all transitions from ai
to ai+1 for 0 ≤ i ≤ n− 1, given by Paiai+1

for 0 ≤ i ≤ n− 1.
One can show that any Markov measure µP is a is a probability measure. Furthermore, the following remark

follows from the fact that P is compatible with A.

Remark 3.9.1. Since P is compatible with A, we have that µP (Cn(a0, . . . , an)) = 0 if and only the cylinder
Cn(a0, . . . , an) is empty, i.e. if a0, . . . , an is not admissible, i.e. Aaiai+1

= 0 for some 0 ≤ i < n.

Exercise 3.9.2. Let A be a N ×N transition matrix and P an N ×N irreducible stochastic matrix compatible
with A. Let µP be the associated Markov measure.

(a) Prove that µP (Σ
+
A) = 1.

(b) Prove Remark 3.9.1.

Proposition 4. Let P be an irreducible stochastic matrix compatible with A and let µP be the associated Markov
measure. Then:

(1) the Markov measure µP is invariant under the Markov chain σ : Σ+
A → Σ+

A;

(2) if P is in addition aperiodic, the Markov chain σ : Σ+
A → Σ+

A is mixing with respect to µP .

Proof. To check that σ preserves µP , let us show that the relation

µP (σ
−1(A)) = µP (A) (3.42)
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holds for all A which are cylinders. This, by the Extension theorem, is enough to deduce that the relation (3.42)
holds for all A in the σ−algebra B generated by cylinders. Let A be the cylinder

A = Cn(a0, . . . , an).

As we already saw, the preimage of A can be written as union of disjoint cylinders

σ−1(Cn(a0, . . . , an)) =

N
⋃

j=1

Cn+1(j, a0, . . . , an)

[where here, possibly, some cylinders could be empty. This happens when Aja0
= 0, so that the transition from vj

to va0
is not allowed].

The measure of the preimage, by additivity of µP is hence

µP

(

σ−1(Cn(a0, . . . , an))
)

=

N
∑

j=1

µP (Cn+1(j, a0, . . . , an)) =

N
∑

j=1

pjPja0
Pa0a1

· · ·Pan−1an
.

Since p is a left eigenvector,

pP = p ⇒
N
∑

j=1

pjPja0
= pa0

.

Thus,

µPσ
−1(Cn(a0, . . . , an)) =





N
∑

j=1

pjPja0



Pa0a1
· · ·Pan−1an

= pa0
Pa0a1

· · ·Pan−1an
= µP (Cn(a0, . . . , an)).

This concludes the proof of (1).

Assume that P is aperiodic. To prove that σ : Σ+
A → Σ+

A is mixing with respect to µP it is enough to verify the
mixing relation

lim
n→∞

µP (σ
−n(A) ∩B) = µP (A)µP (B)

for all A,B which are admissible cylinders. Let

A = Cn(a0, . . . , ak), Aaiai+1
= 1, 0 ≤ i < k; B = Cl(b0, . . . , bl) Abibi+1

= 1, 0 ≤ i < l.

As we have already seen, if n > l the intersection σ−n(A) ∩B consists of all sequences x ∈ Σ+
A of the form

x = b0, b1, . . . , bl, xl+1, xl+2, . . . , xn, a0, . . . , ak, . . .

where xl+1, . . . , xn vary between all possible admissible sequences of length n− l+1 connecting bl to a0, that is all
sequences such that Ablxl+1

= 1, Axixi+1
= 1 for all l + 1 ≤ i ≤ n and Axna0

= 1. We have

µP (σ
−n(A) ∩B) =

∑

xl+1,...,xn

pb0Pb0b1 · · ·Pbl−1bl Pblxl+1
Pxl+1xl+2

· · ·Pxna0
Pa0a1

· · ·Pak−1ak
,

where the sum vary among all possible admissible sequences xl+1, . . . , xn. Since P is compatible with A, if Axixi+1
=

0 then Pxixi+1
= 0. Thus, we can sum over all possible choices of xl+1, . . . , xn in {1, . . . , N} and have the same

result. Thus

µP (σ
−n(A) ∩B) = pb0Pb0b1 · · ·Pbl−1bl

N
∑

xl+1=1

· · ·
N
∑

xn=1

Pblxl+1
· · ·Pxna0

Pa0a1
· · ·Pak−1ak

.

Notice that the term that we gathered out of the sum is µP (B) = pb0Pb0b1 · · ·Pbl−1bl . Remark also that, by
definition of product of matrices,

Pn−l+1
bla0

=

N
∑

xl+1=1

N
∑

xl+2=1

· · ·
N
∑

xn=1

Pblxl+1
Pxl+1xl+2

· · ·Pxna0
.
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Thus,
µP (σ

−n(A) ∩B) = µP (B)Pn−l+1
bla0

Pa0a1
· · ·Pak−1ak

.

Since P is aperiodic, by Theorem 3.9.1, Pn−l+1
bla0

→ pa0
as n → ∞, thus

lim
n→∞

µP (σ
−n(A) ∩B) = µP (B)

(

lim
n→∞

Pn−l+1(bla0)
)

Pa0a1
· · ·Pak−1ak

= µP (B) pa0
Pa0a1

· · ·Pak−1ak
= µP (B)µP (A).

This concludes the proof of mixing.

3.10 Extras: Perron Frobenius Theorem,

the Ergodic Theorem for Markov chains and Google.

In this section we skecth the proof of the following Theorem, that we already used in the previous class §3.9 to
define Markov measures and prove that they are mixing (the statement in the second part is slightly different but
implies the formulation presented in §3.9, see the Corollary below).

Theorem 3.10.1. Let P ≥ 0 be a stochastic matrix and assume that P is irreducible and aperiodic. Then:

(1) (Perron Frobenius theorem for stochastic matrices) P has a unique left positive eigenvector (normal-
ized as probability vector), that is a probability vector p such that pi > 0 for each 1 ≤ i ≤ N and

(p1, . . . , pN )P = (p1, . . . , pN ) ⇔
N
∑

i=1

piPij = pj , for all 1 ≤ j ≤ N.

(2) (Ergodic theorem for Markov Chains) for any probability vector q ∈ RN we have

lim
n→∞

qPn = p, ⇔ lim
n→∞

N
∑

i=1

qiP
n
ij = pj for all 1 ≤ j ≤ N,

where p is the positive left eigenvector from Part (1). Moreover, qPn converges to p exponentially fast.

Remark 3.10.1. Part (1) of the Theorem (Perron-Frobenius Theorem for stochastic matrices) holds more in
general assuming only that P is irreducible, not necessarily aperiodic. We give here only the proof for P aperiodic
since it is simpler.

Part (2) of the Theorem 3.10.1 is used by the search engine Google (see Extra below). Moreover, Part (2) of
Theorem implies as a Corollary the second part of the statement of Theorem 3.9.1:

Corollary 3.10.1. If P is aperiodic (sometimes called primitive), and pP = p is the unique positive probability
right eigenvector of P ,

lim
n→∞

Pn
ij = pj , for all 1 ≤ i, j ≤ N.

We will prove Corollary 3.10.1 after the proof of Theorem 3.10.1.
We will write that a vector x > 0 and say that x is positive iff xi > 0 for all 1 ≤ i ≤ N and similarly we will

write x ≥ 0 and say that x is non-negative iff xi ≥ 0 for all 1 ≤ i ≤ N .

In the proof we will use the following simple verification:

Exercise 3.10.1. If P is a stochastic matrix, for any n ∈ N also Pn is a stochastic matrix.

Proof of Theorem 3.9.1. Let P be a non-negative irreducible and aperiodic matrix and let us show that P has a
unique positive left eigenvector. We can assume that P > 0 is strictly positive. If it is not, since it is irreducible,
there exists n ∈ N such that Pn > 0 and we can work with Pn instead11, since, by Exercise 3.10.1 also Pn is a
stochastic matrix.

11One can show that if the conclusions of the theorem hold for Pn > 0, then they also hold for P .
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Let us use P to define a dynamical system T : X → X so that the eigenvalue equation becomes a fixed point
equation for T . Let X be the subset of non negative vectors whose components add up to 1:

X = {x = (x1, . . . , xN ) ∈ RN such that x > 0,
N
∑

i=1

xi = 1}.

Let us denote by ||x|| the following norm

||x|| =
N
∑

i=1

|xi| =
N
∑

i=1

xi if x is non-negative.

Thus, we can also write that X is the subset positive quadrant RN
+ such that

X = {x ∈ RN
+ , ||x|| = 1} ⊂ RN

+ .

The space X is a face of a simplex, for example for N = 3 it is the face of the simplex in R3 shown in Figure 3.4(a).

y

z

x

X

(a)

y

z

x

X

T(X)2
T(X)

(b)

Figure 3.4: The simplex X when N = 3 and contraction of the map T : X → X.

Define the transformation T : X → X using left multiplication by P , that is

T (x) = xP ⇔ T (x)j =
N
∑

i=1

xiPij .

Let us check that T is well-defined, that is if x ∈ X, then T (x) ∈ X. Since P > 0 and x ≥ 0, xiPij ≥ 0 for each
i, j, so also the sum over i is non-negative for any i. This shows that T (x)j ≥ 0 for any j. Let us compute the
norm of T (x): Using that P is stochastic and that ||x|| = 1 we have

||T (x)|| =
N
∑

j=1

T (x)j =
N
∑

j=1

N
∑

i=1

xiPij =
N
∑

i=1

xi

N
∑

j=1

Pij

=

N
∑

i=1

xi (since P is stochastic)

= 1 (since ||x|| = 1).

Thus, T (x) ∈ X and T is well-defined. Finding a left eigenvector for P is equivalent to finding a fixed point for T ,
since by definition of T

T (p) = p ⇔ pP = p.

Moreover points p ∈ X are probability vectors since ||p|| = 1. The fixed point gives a positive left eigenvector if and
only if it is in the interior of X (the boundary of X consists exactly of vectors which has at least one component
equal to zero).

51



MATH36206 - MATHM6206 Ergodic Theory

To prove that T has a fixed point and that the fixed point is unique we will show that T contracts a distance.
Let d : X ×X → R+ be

d(x, y) = log
maxi xi/yi
mini xi/yi

, x, y ∈ X.

Remark that since the maximum is greater that the minimum of the rations, the argument of the logarithm is
always greater or equal than 1, so d is non negative. One can show that d is symmetric and satisfies the triangle
inequality. Moreover, if d(x, y) = 0, all ratios xi/yi, 1 ≤ i ≤ N are equal, so x is a scalar multiple of y. Since
||x|| = ||y|| = 1, x = y. Thus d is a distance on X. It is known as Hilbert projective distance.

One can show that since P > 0, the associated transformation T is a strict contraction of the Hilbert projective
distance, that is there exists a constant 0 < νP < 1 such that

d(T (x), T (y)) ≤ νP d(x, y),

(

νP is explicitely given by 1− e
maxi,j,k

Aik/Aik
Ajk/Ajk

)

.

A transformation T which strictly contracts a distance, has a unique fixed point (this result is known as Contraction
theorem). Indeed, one can show that the nexted sets Tn(X), where n ∈ N, are nested, that is

Tn+1(X) ⊂ Tn(X), n ∈ N.

(see Figure 3.4(a)) and since T is a contraction

diamd(T
n(X)) = supx,y∈Xd(Tn(x), Tn(y))

n→∞−−−−→ 0.

Thus, the intersection
⋂

n∈N Tn(X) is non-empty and consists of a unique point:

{p} =
⋂

n∈N

Tn(X).

One can show that the intersection point p is the unique fixed point and since T (X) (and thus the intersection) is
contained in the interior of X, p gives a positive left eigenvector.

Let us now prove Part (2). If y is any non-negative probability vector, y ∈ X. Thus, since p is fixed and T is a
strict contraction,

d(Tn(q), p) = d(Tn(q), Tn(p)) ≤ νnP d(q, p). (3.43)

Thus, since νP < 1, Tn
(

q
)

converges to p exponentially fast (the distance is decreasing to 0 exponentially fast)
and, recalling the definition of T , this gives that

Tn(q) = qPn n→∞−−−−→ p

and the convergence is exponential, that is the distance decreases exponentially fast, as shown by (3.43).

Let us now prove the Corollary.

Proof of Corollary 3.10.1. For each 1 ≤ i ≤ d, let e(i) be the vector whose ith entry is equal to 1 and all other
entries are zero, that is

e(1) =









1
0
. . .
0









, e(2) =









0
1
. . .
0









, . . . , e(N) =









0
0
. . .
1









.

Fix 1 ≤ i ≤ d. Since e(i) is a non-negative vector, Part (2) of Theorem 3.10.1 applyed to q = e(i) gives

lim
n→∞

e(i)Pn = p. (3.44)

Since (e(i))i = 1 and (e(i))l = 0 for all 1 ≤ l ≤ d with l 6= i,

(e(i)Pn)j =

N
∑

l=1

(e(i))lP
n
lj = Pn

ij , (3.45)

so combining (3.45) and (3.44)
lim
n→∞

Pn
ij = lim

n→∞
(e(i)Pn)j = pj .

52



MATH36206 - MATHM6206 Ergodic Theory

Extra: the Internet search engine Google.

The popular Internet search engine Google, which quickly proved out to be much faster and efficient that all the
previously available search engines, is based on a mathematical algorithm which exploits Markov chains to rank
webpages. We will briefly try to explain the main ideas behind the algorithm used by Google12.

Most search engine works in the following way:

- Crawlers, that are robot computer programs, search webpages for keywords;

- The information gathered by the crawlers is used to create a direct index, that associate each webpage to a
list of keywords;

- The direct index is used to create an inverted index, which associate to each keyword the relevant webpages;

- When a user enters a search, the inverted index is used to produce a search output ;

- The search output is ranked according to a page ranking algorithm;

- The ranked output is seen by the user.

The step which characterizes google is the page ranking algorithm. Since the webpages associated to a search are
probabily thousands and a user will probabily be able to see at most the first few 20-30 entries, it is very important
that the page-ranking algorithm does produce results which are relevant to the search.

The key idea of Brin and Page used in the Google page ranking algorithm is to rank the webpages according
to popularity, exploiting the Ergodic Theorem for Markov chains as follows. The whole web can be schematize
by a huge graph G , where vertices are webpages and arrows from the vertex vi to the vertex vj correspond to
hyperlinks pointing from the webpage i to the webpage j. The number N of vertices is huge, of the order of 2
million webpages. Let us construct a transition matrix A such that Aij = 1 if and only if there is a link between
the webpage i and the webpage j. Thus, the graph G = GA coincides with the graph of the subshift space ΣA

defined by the matrix A. Let N(i) be the number of arrows exiting the vertex i and pointing to a j 6= i (that is,
the number of non self-referential links from the webpage i).

The matrix A is not necessarily aperiodic. In order to be able to apply our mathematical tools, let us modify
the graph G as follows. Let us add a vertex v0 which is connected by an arrow to all other vertices. The new
transition matrix on N + 1 vertices, that we will still call A, is an (N + 1) × (N + 1) matrix and by construction
we have that A0i = 1 for all 1 ≤ i ≤ N .

Exercise 3.10.2. Verify that the new transition matrix A defined above is aperiodic.

Choose a damping parameter p ∈ (0, 1) (effective choices of this parameter have been object of simulations; the
parameter currently used by Google is around p = 0.75). Use p to define the following probabilities of a stochastic
matrix P compatible with A:

P0i =
1
N , for all 1 ≤ i ≤ N ;

Pii = 0, for all 1 ≤ i ≤ N ;

Pi0 =

{

1 if N(i) = 1,
1− p if N(i) 6= 1;

for all 1 ≤ i ≤ N ;

Pij =

{

0 if Aij = 0,
p

N(i) if Aij = 1;
for all 1 ≤ i, j ≤ N ; i 6= j.

Exercise 3.10.3. Verify that the (N + 1) × (N + 1) matrix P with entries Pij as above is stochastic and is
compatible with the transition matrix A.

One can understand such a definition as follows. Imagine that an Internet user surfs the web and, after looking
at the webpage i, with probability p clicks at random to one of the hyperlinks which appear in the webpage i and
points to a webpage j. In addition, once in a while, with probability 1−p, the user decides not to follow the thread
of links anymore and opens a new webpage at random. This process is simulated by the above probabilities: from
any webpage i, with probability p one jumps at random to one of the N(i) pages linked by the webpage i, so that

12As a curiosity, the Google algorithm was created in the mid Ninties by Larry Page and Sergey Brin, that at that time were graduate
students at Stanford. The father of Sergey Brin, Misha Brin, is a Professor at University of Maryland working in Dyanamical Systems
and is the author of one of the textbooks recommended for this course.
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each is reached with probability p/N(i). Moreover, one has probability 1− p of going to the page 0 and from there
equal probability 1/N to open any of the other webpages. The idea of the ranking algorithm is that this random
simulation can be used to determine which pages are very popular.

By the Perron Frobenius theorem, since P is stochastic and aperiodic, it has a unique probability left eigenvector
p. Google interprets the ith component 0 ≤ pi ≤ 1 of p as the popularity of the webpage i and ranks the webpges in
decreasing order of pi.

Remark that p is the left eigenvector of a matrix with N = 2 billions of components. There are computer
programs that compute eigenvectors of matrices, but they are not feasible with such a large matrix! How to
compute p efficiently? This time, it is the Ergodic Theorem for Markov chains that comes into play. Take an initial

positive vector, for example qj =
1
N . If we compute qPn, the theorem states that this converges exponentially fast

to p. The page ranking vector p can hence be accurately approximated computing iterations of qPn.
The Ergodic Theorem for Markov chains also intuitively explains why the vector p can be interpreted as vector

of polularity from the previously described model for a random Internet surfer. If the surfer starts at random on
an initial webpage i (with probability qi =

1
N ), and jumps to another webpage with probabilities given by P , which

describes the above model, pi represents the limiting probability that, after many clicks, he/she will end up in the
webpage i, so pi is a measure of the popularity of the webpage i according to this random simulation of the web
and a surfer.

54


