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Sturmian sequences complexity

Sturmian sequences are characterized by having the smallest possible
complexity among non-periodic sequences:

I Let P(n) denote the number of words of lenght n which appear in
the word w .

I P(n) = n for all n large iff w is periodic (Exercise).

I A sequence is Sturmian iff P(n) = n + 1 for all n ∈ N.

References:

I C. Series’ caracterization as
infinitely derivable

(Ref: Math. Intelligencer)

I Characterization via substitutions
(S-adic presentation)

(Ref: Arnoux, Pyteas-Fogg )
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One step of the proof of the key Lemma.

Let w be the cutting sequence in direction 0 ≤ θ < π/4 (type 1), e.g.:

w = . . . 0 1 1 0 1 1 1 0 1 1 0 1 1 0 1 1 1 . . .

w̃ = . . . 0 1 1 1 0 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 . . .
u = . . . 0 1 0 1 1 0 1 0 1 0 1 1 . . .

= . . . 0 1 0 1 1 0 1 0 1 0 1 1 . . .

Let us add the diagonal 1.

Let w̃ be the extended sequence:
Each 11 becomes 111; 01 stays 01
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Let us cut and paste the rectangle.

Consider the cutting sequence u with respect to the parallelogram Π.
To obtain u from w̃ it is enough to drop the 1s.
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)
. Let us transform back the 1s into 1s.

Remark: The blocks of 1s are now shorter by one. Repeat k times to
check that the sequence thus obtained is the derived sequence.
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