Sturmian seauences as sauare cutting sequeces

known as: rotation sequences, Sturmian sequences (Hedlund and Morse), Christoffel words, Beatty sequences, characteristic sequences, balanced sequences,

Sturmian seauences as sauare cutting sequeces

E.g.
known as: rotation sequences, Sturmian sequences (Hedlund and Morse), Christoffel words, Beatty sequences, characteristic sequences, balanced sequences,

Sturmian seauences as sauare cutting sequeces

E.g. ... $0101101 \ldots$
known as: rotation sequences, Sturmian sequences (Hedlund and Morse), Christoffel words, Beatty sequences, characteristic sequences, balanced sequences,

Sturmian seauences as sauare cutting sequeces

E.g. ... $0101101 \ldots$
known as: rotation sequences, Sturmian sequences (Hedlund and Morse), Christoffel words, Beatty sequences, characteristic sequences, balanced sequences,

Sturmian seauences as sauare cutting sequeces

E.g. ...0 0101101
known as: rotation sequences, Sturmian sequences (Hedlund and Morse), Christoffel words, Beatty sequences, characteristic sequences, balanced sequences,

Sturmian seauences as sauare cuttine sequeces

E.g. ... 0101101
known as: rotation sequences, Sturmian sequences (Hedlund and Morse), Christoffel words, Beatty sequences, characteristic sequences, balanced sequences,

Sturmian seauences as sauare cutting sequeces

E.g. ... 01011
known as: rotation sequences, Sturmian sequences (Hedlund and Morse), Christoffel words, Beatty sequences, characteristic sequences, balanced sequences,

Sturmian sequences as sauare cutting sequeces

E.g. $\ldots 010110$
known as: rotation sequences, Sturmian sequences (Hedlund and Morse), Christoffel words, Beatty sequences, characteristic sequences, balanced sequences.
appear in: astronomy (two rotating bodies with rationally independent periods),

Sturmian sequences as sauare cutting sequeces

Equivalently:
symbolic coding of a linear flow
in a square.
E.g. $\quad . .0101101$
known as: rotation sequences, Sturmian sequences (Hedlund and Morse), Christoffel words, Beatty sequences, characteristic sequences, balanced sequences.
appear in: astronomy (two rotating bodies with rationally independent periods),

Sturmian seauences as sauare cutting sequeces

Equivalently: symbolic coding of a linear flow in a square.
E.g. ... 010110 1...
known as: rotation sequences, Sturmian sequences (Hedlund and Morse), Christoffel words, Beatty sequences, characteristic sequences, balanced sequences,
appear in: astronomy (two rotating bodies with rationally independent periods),

Sturmian seauences as sauare cutting sequeces

Equivalently: symbolic coding of a linear flow in a square.
E.g. ... 010110 1...
known as: rotation sequences, Sturmian sequences (Hedlund and Morse), Christoffel words, Beatty sequences, characteristic sequences, balanced sequences,
appear in: astronomy (two rotating bodies with rationally independent periods),

Sturmian sequences as sauare cutting sequeces

Equivalently: symbolic coding of a linear flow in a square.
E.g. $\ldots 0101101$...
known as: rotation sequences, Sturmian sequences (Hedlund and Morse), Christoffel words, Beatty sequences, characteristic sequences, balanced sequences, ...

Sturmian seauences as sauare cutting sequeces

Equivalently: symbolic coding of a linear flow in a square.
E.g. ... $0101101 .$.
known as: rotation sequences, Sturmian sequences (Hedlund and Morse), Christoffel words, Beatty sequences, characteristic sequences, balanced sequences, ...
appear in: astronomy (two rotating bodies with rationally independent periods), music (e.g. musical scales related to $\log 3 / \log 2$), computer science, \ldots.. $\bar{\equiv}$

Sturmian sequences complexity

Sturmian sequences are characterized by having the smallest possible complexity among non-periodic sequences:
\rightarrow Let $P(n)$ denote the number of words of lenght n which appear in the word w.
$\rightarrow P(n)=n$ for all n large iff w is periodic (Exercise).
\Rightarrow A sequence is Sturmian iff $P(n)=n+1$ for all $n \in \mathbb{N}$.

References:

- C. Series' caracterization as infinitely derivable (Ref: Math. Intelligencer)
- Characterization via substitutions (S-adic presentation) (Ref: Arnoux, Pyteas-Fogg)

Sturmian sequences complexity

Sturmian sequences are characterized by having the smallest possible complexity among non-periodic sequences:

- Let $P(n)$ denote the number of words of lenght n which appear in the word w.
> $P(n)=n$ for all n large iff w is periodic (Exercise).
- A sequence is Sturmian iff $P(n)=n+1$ for all $n \in \mathbb{N}$.

References:

- C. Series' caracterization as infinitely derivable
(Ref: Math. Intelligencer)
- Characterization via substitutions (S-adic presentation) (Ref: Arnoux, Pyteas-Fogg)

Sturmian sequences complexity

Sturmian sequences are characterized by having the smallest possible complexity among non-periodic sequences:

- Let $P(n)$ denote the number of words of lenght n which appear in the word w.
- $P(n)=n$ for all n large iff w is periodic (Exercise).

References:

- C. Series' caracterization as infinitely derivable (Ref: Math. Intelligencer)
- Characterization via substitutions (S-adic presentation) (Ref: Arnoux, Pyteas-Fogg)

Sturmian sequences complexity

Sturmian sequences are characterized by having the smallest possible complexity among non-periodic sequences:

- Let $P(n)$ denote the number of words of lenght n which appear in the word w.
- $P(n)=n$ for all n large iff w is periodic (Exercise).
- A sequence is Sturmian iff $P(n)=n+1$ for all $n \in \mathbb{N}$.

References:

- C. Series' caracterization as infinitely derivable (Ref: Math. Intelligencer)
- Characterization via substitutions (S-adic presentation) (Ref: Arnoux, Pyteas-Fogg)

Sturmian sequences complexity

Sturmian sequences are characterized by having the smallest possible complexity among non-periodic sequences:

- Let $P(n)$ denote the number of words of lenght n which appear in the word w.
- $P(n)=n$ for all n large iff w is periodic (Exercise).
- A sequence is Sturmian iff $P(n)=n+1$ for all $n \in \mathbb{N}$.

References:

- C. Series' caracterization as infinitely derivable (Ref: Math. Intelligencer)
- Characterization via substitutions (S-adic presentation)

Sturmian sequences complexity

Sturmian sequences are characterized by having the smallest possible complexity among non-periodic sequences:

- Let $P(n)$ denote the number of words of lenght n which appear in the word w.
- $P(n)=n$ for all n large iff w is periodic (Exercise).
- A sequence is Sturmian iff $P(n)=n+1$ for all $n \in \mathbb{N}$.

References:

- C. Series' caracterization as infinitely derivable (Ref: Math. Intelligencer)
- Characterization via substitutions (\mathcal{S}-adic presentation) (Ref: Arnoux, Pyteas-Fogg)

One step of the proof of the key Lemma.

Let w be the cutting sequence in direction $0 \leq \theta<\pi / 4$ (type 1), e.g.:

$$
w=\ldots 011 \quad 0111 \quad 011 \quad 011 \quad 0111 \quad \ldots
$$

One step of the proof of the key Lemma.

Let w be the cutting sequence in direction $0 \leq \theta<\pi / 4$ (type 1), e.g.:

$w=\ldots 011 \quad 0111 \quad 011 \quad 011 \quad 0111$

Let us add the diagonal 1.
Let \tilde{w} be the extended sequence:
Each 11 becomes 111; 01 stays 01

One step of the proof of the key Lemma.

Let w be the cutting sequence in direction $0 \leq \theta<\pi / 4$ (type 1), e.g.:

$w=\ldots 011 \quad 0111 \quad 011 \quad 011 \quad 0111$

Let us add the diagonal 1.
Let \tilde{w} be the extended sequence:
Each 11 becomes 111;

One step of the proof of the key Lemma.

Let w be the cutting sequence in direction $0 \leq \theta<\pi / 4$ (type 1), e.g.:

$w=\ldots 011 \quad 0111 \quad 011 \quad 011 \quad 0111$

Let us add the diagonal 1.
Let \tilde{w} be the extended sequence:
Each 11 becomes 111; 01 stays 01

One step of the proof of the key Lemma.

Let w be the cutting sequence in direction $0 \leq \theta<\pi / 4$ (type 1), e.g.:

$$
\begin{aligned}
& w=\ldots 011 \quad 0111 \quad 011 \quad 011 \quad 0111 \\
& \tilde{w}=\ldots 011101111101110111011111 \ldots
\end{aligned}
$$

Let us add the diagonal 1.
Let \tilde{w} be the extended sequence:
Each 11 becomes 111; 01 stays 01

One step of the proof of the key Lemma.

Let w be the cutting sequence in direction $0 \leq \theta<\pi / 4$ (type 1), e.g.:

Let us add the diagonal 1 .
Let \tilde{w} be the extended sequence:
Each 11 becomes 111; 01 stays 01
Let us cut and paste the rectangle.
Consider the cutting sequence u with respect to the parallelogram Π.

One step of the proof of the key Lemma.

Let w be the cutting sequence in direction $0 \leq \theta<\pi / 4$ (type 1), e.g.:

Let us add the diagonal 1 .
Let \tilde{w} be the extended sequence:
Each 11 becomes 111; 01 stays 01
Let us cut and paste the rectangle.
Consider the cutting sequence u with respect to the parallelogram Π.
To obtain u from \tilde{w} it is enough to drop the 1 s .

One step of the proof of the key Lemma.

Let w be the cutting sequence in direction $0 \leq \theta<\pi / 4$ (type 1), e.g.:

$w=\ldots 011 \quad 0111 \quad 011 \quad 011 \quad 0111$
$\tilde{w}=\ldots 011101111101110111011111 \ldots$
$u=\ldots .0 \begin{array}{llllllllllll} & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1\end{array} \ldots$

Let us add the diagonal 1.
Let \tilde{w} be the extended sequence:
Each 11 becomes 111; 01 stays 01
Let us cut and paste the rectangle.
Consider the cutting sequence u with respect to the parallelogram Π.
To obtain u from \tilde{w} it is enough to drop the 1 s .

One step of the proof of the key Lemma.

Let w be the cutting sequence in direction $0 \leq \theta<\pi / 4$ (type 1), e.g.:

$$
\begin{aligned}
& w=\ldots 011 \quad 0111 \quad 011 \quad 011 \quad 0111 \\
& \tilde{w}=\ldots 011101111101110111011111 \ldots \\
& u=\ldots .0 \begin{array}{llllllllllll}
& 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1
\end{array} \ldots
\end{aligned}
$$

Let us add the diagonal 1 .
Let \tilde{w} be the extended sequence:
Each 11 becomes 111; 01 stays 01
Let us renormalize: we can transform Π in a square by the shear
$\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$.

One step of the proof of the key Lemma.

Let w be the cutting sequence in direction $0 \leq \theta<\pi / 4$ (type 1), e.g.:

$$
\begin{aligned}
& w=\ldots 011 \quad 0111 \quad 011 \quad 011 \quad 0111 \\
& \tilde{w}=\ldots 011101111101110111011111 \ldots \\
& \begin{array}{rllllllllllllll}
u & =\ldots & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & \ldots \\
& =\ldots & 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & \ldots
\end{array}
\end{aligned}
$$

Let us add the diagonal 1 .
Let \tilde{w} be the extended sequence:
Each 11 becomes 111; 01 stays 01
Let us renormalize: we can transform Π in a square by the shear $\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$. Let us transform back the 1 s into 1 s .

One step of the proof of the key Lemma.

Let w be the cutting sequence in direction $0 \leq \theta<\pi / 4$ (type 1), e.g.:


```
w = ...011 0111 011 011 0111
\tilde{w}=\ldots..011101111101110111011111\ldots..
u}=\ldots.0.
\(\left.w^{\prime}=\ldots .0 \begin{array}{llllllllllll} & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1\end{array}\right) \ldots\)
```

Let us add the diagonal 1 .
Let \tilde{w} be the extended sequence:
Each 11 becomes 111; 01 stays 01
Let us renormalize: we can transform Π in a square by the shear
$\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$. Let us transform back the 1 s into 1 s .
Remark: The blocks of 1 s are now shorter by one.

One step of the proof of the key Lemma.

Let w be the cutting sequence in direction $0 \leq \theta<\pi / 4$ (type 1), e.g.:

$w=\ldots 011 \quad 0111 \quad 011 \quad 011 \quad 0111$
$\tilde{w}=\ldots 011101111101110111011111 \ldots$

Let us add the diagonal 1 .
Let \tilde{w} be the extended sequence:
Each 11 becomes 111; 01 stays 01
Let us renormalize: we can transform Π in a square by the shear $\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$. Let us transform back the 1 s into 1 s .
Remark: The blocks of 1 s are now shorter by one. Repeat k times to check that the sequence thus obtained is the derived sequence.

One step of the proof of the key Lemma.

Let w be the cutting sequence in direction $0 \leq \theta<\pi / 4$ (type 1), e.g.:

$w=\ldots 011 \quad 0111 \quad 011 \quad 011 \quad 0111$
$\tilde{w}=\ldots 011101111101110111011111 \ldots$

Let us add the diagonal 1 .
Let \tilde{w} be the extended sequence:
Each 11 becomes 111; 01 stays 01
Let us renormalize: we can transform Π in a square by the shear $\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$. Let us transform back the 1 s into 1 s .
Remark: The blocks of 1 s are now shorter by one. Repeat k times to check that the sequence thus obtained is the derived sequence.

One step of the proof of the key Lemma.

Let w be the cutting sequence in direction $0 \leq \theta<\pi / 4$ (type 1), e.g.:

$w=\ldots 011 \quad 0111 \quad 011 \quad 011 \quad 0111$
$\tilde{w}=\ldots 011101111101110111011111 \ldots$

Let us add the diagonal 1 .
Let \tilde{w} be the extended sequence:
Each 11 becomes 111; 01 stays 01
Let us renormalize: we can transform Π in a square by the shear $\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$. Let us transform back the 1 s into 1 s .
Remark: The blocks of 1 s are now shorter by one. Repeat k times to check that the sequence thus obtained is the derived sequence.

One step of the proof of the key Lemma.

Let w be the cutting sequence in direction $0 \leq \theta<\pi / 4$ (type 1), e.g.:

$w=\ldots 011 \quad 0111 \quad 011 \quad 011 \quad 0111$
$\tilde{w}=\ldots 011101111101110111011111 \ldots$

Let us add the diagonal 1 .
Let \tilde{w} be the extended sequence:
Each 11 becomes 111; 01 stays 01
Let us renormalize: we can transform Π in a square by the shear $\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$. Let us transform back the 1 s into 1 s .
Remark: The blocks of 1 s are now shorter by one. Repeat k times to check that the sequence thus obtained is the derived sequence.

