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J/ Equivalently:

symbolic coding
0 - of a linear flow

| ! ! ! ! in a square.

Eg ...010 1101...

known as: rotation sequences, Sturmian sequences (Hedlund and Morse),
Christoffel words, Beatty sequences, characteristic sequences, balanced
sequences, ...

appear in: astronomy (two rotating bodies with rationally independent periods),
music (e.g. musical scales related to log 3/ log 2), computer science, . ..



Sturmian sequences complexity

Sturmian sequences are characterized by having the smallest possible
complexity among non-periodic sequences:




Sturmian sequences complexity

Sturmian sequences are characterized by having the smallest possible
complexity among non-periodic sequences:

» Let P(n) denote the number of words of lenght n which appear in
the word w.




Sturmian sequences complexity

Sturmian sequences are characterized by having the smallest possible
complexity among non-periodic sequences:

» Let P(n) denote the number of words of lenght n which appear in
the word w.

» P(n) = nfor all n large iff w is periodic (Exercise).




Sturmian sequences complexity

Sturmian sequences are characterized by having the smallest possible
complexity among non-periodic sequences:

» Let P(n) denote the number of words of lenght n which appear in
the word w.

» P(n) = nfor all n large iff w is periodic (Exercise).
> A sequence is Sturmian iff P(n) = n+ 1 for all n € N.




Sturmian sequences complexity

Sturmian sequences are characterized by having the smallest possible
complexity among non-periodic sequences:

» Let P(n) denote the number of words of lenght n which appear in
the word w.

» P(n) = nfor all n large iff w is periodic (Exercise).
> A sequence is Sturmian iff P(n) = n+ 1 for all n € N.

References:

1 » C. Series’ caracterization as
infinitely derivable

/ 0 (Ref: Math. Intelligencer)
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Sturmian sequences are characterized by having the smallest possible
complexity among non-periodic sequences:

» Let P(n) denote the number of words of lenght n which appear in
the word w.

» P(n) = nfor all n large iff w is periodic (Exercise).
> A sequence is Sturmian iff P(n) = n+ 1 for all n € N.

. - References:

1 » C. Series’ caracterization as
infinitely derivable

/ 0 (Ref: Math. Intelligencer)

0 » Characterization via substitutions

/ (S-adic presentation)

0 (Ref: Arnoux, Pyteas-Fogg )
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