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The square: isometries and sectors

Let D4 be the group of isometries of the
square.

The letters {A, B} are invariant under B B
vertical symmetry and horizontal symmetry
and are exachanged if we reflect diagonally

A

WLOG we can assume that 6 € [O, %] and, up to permuting {A, B}, let
6eo:=107%]

Let ¥; := [Z, Z] be the other sector.
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> If 6 € T := [0, Z], AA does not appear:
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> If 6 € ¥1 := [7, %], BB does not appear:
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Admissible sequences

Definition
A sequence w € {A, B}” is admissibile if it gives a infinite path on one of
these two diagrams:

e A
@0 @1
In this case, we say that w is admissible in Zy or 2; respectively.

Lemma
A square cutting sequence is admissible.

If0exg= [O, %] w is admissible in %, if 0 € ¥1 = [%, g} w is
admissibile in 2.
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Derivable sequences

Definition (Derived sequence)

Let w be the cuttings sequence of a trajectory with § € L. The derived
sequence w’ is obtained erasing one B from each block of Bs. If
0 € X1, w' is obtained erasing one A from each block of As.

Example

w=...ABBBBABBBABBBBABBBABBE ...,
w' =...ABBB ABB ABBB ABB ABB

Definition (Derivable Sequences)

A sequence w € {A, B}~ is derivable if it is admissible and the derived
sequence is admissible.

Definition
A sequence w € {A, B}Z is infinitely derivable if it is admissible and all
its derived sequences are still admissible.
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Characterization of Sturmian sequences

Theorem
A square cutting sequence is infinitely derivable.

Corollary

If w is a square cutting sequence with 0 € ¥, the blocks of Bs have
length n o n+ 1.

Example
The sequence w = ... ABBBBABBABBBBA . .. is NOT a square
cutting sequence. Indeed: w' = ... ABBBABABBBA... and

w'” = ... ABBAABBA. .. which is not admissible.

Theorem
Let w be infinitely derivable. Then w belongs to the closure of square
cutting sequences.

Example

(infinitely derivable sequence which is not a square cutting sequence)
... AAAAAABAAAAA. ..
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Direction recognition and continued fractions

Let w a square cutting sequence, for example:

w = ... BBBABBABBABBABBBABBAABBBABBABBABBA. ..
w' = ... BBABABABABBABAABBABABA...

w’ = ...BAAAABAAABAAA. ..

Let us define {a,}, € NV as follows:

let ag such that the blocks of Bs in w have length ag or ag + 1 (in
the example ag = 2: BB o BBB)

let a; such that the blocks of As in w(%) (in the example w") have
length a; or a3 + 1 (in the example a; = 3: AAA o AAAA)

let a, such that the blocks of As (n odd) or Bs (n even) in
w0t +an—1) have length a, or a, + 1;

Theorem (Direction Recognition)

The direction 0 of the trajectory with cutting sequence w is given by:

1

1
do + ar+ 11
"'+an+...

9:
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Proof for Sturmian sequences

The key step is given by the following Lemma:

Lemma
If w is a square cutting sequence, also the derived sequence w' is a
square cutting sequence.

Recalling that a square cutting sequence is clearly admissible, we have:

Corollary
Square cutting sequences are infinitely derivable.

Lemma

If w is a cutting sequence of a trajectory in Sl
direction 0, the derived sequence w’ is a £04)
cutting sequence of a trajectory in direction

0’, where ' = F(0) and F is the Farey map %(84)
in Figure. 20

3(43) Z(43)

T 548 T
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Let w be the cutting sequence of a trajectory in direction 6 € X;

A
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A
in the example:
w=...ABB ABBB ABB ABB ABBB
w =...ABCBABCBCBABCBABCBABCBCB...
v =...A C A C C A C A C A C C

Let us cut and paste the rectangle.

Consider the cutting sequence u with respect to the parallelogram [1.
To obtain u from W it is enough to drop the Bs.
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A

the example:
=...ABB ABBB ABB ABB ABBB

=...ABCBABCBCBABCBABCBABCBCB...
=...A C A C CA C A C A C C ...
=...A B A B B A B A B A B B

>

S 23
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Renormalization and derivation

Let w be the cutting sequence of a trajectory in direction 6 € ¥;

A
—
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A
in the example:
w=...ABB ABBB ABB ABB ABBB
w=...ABCBABCBCBABCBABCBABCBCB...
v =...A C A C CA CA C A C cC
w=...A B A B BA B A B A B B

Let us renormalize: we can transform I1 in a square by the shear

<(1) 711 . Let us transform back the Cs into Bs.

The sequence thus obtained is the derived sequence.
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Renormalization and derivation

Let w be the cutting sequence of a trajectory in direction 6 € X;

A
—
B B
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A
in the example:
w=...ABB ABBB ABB ABB ABBB
w=...ABCBABCBCBABCBABCBABCBCB...
v =...A C A C C A C A C A C cC
w=...A B A B BA B A B A B B
To check it:

ABBBA — ABCBCBA—-ACCA —ABBA
act as derivation.
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Renormalization and derivation

Let w be the cutting sequence of a trajectory in direction 6 € ¥;
A

Summarizing:

We showed that the sequence w' is the cutting sequence of a new
trajectory in the square (thus still a square cutting sequence). The new
direction 6’ is obtained applying to 6 a shear. One can verify that

0’ = F(0) where F is the Farey map. The Farey map is the additive
version of the continued fraction algorithm.



