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The square: isometries and sectors

Let D4 be the group of isometries of the
square.
The letters {A,B} are invariant under
vertical symmetry and horizontal symmetry
and are exachanged if we reflect diagonally
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B B

WLOG we can assume that θ ∈
[
0, π2

]
and, up to permuting {A,B}, let

θ ∈ Σ0 :=
[
0, π4

]
.
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1

Let Σ1 :=
[
π
4 ,

π
2

]
be the other sector.



The square: isometries and sectors

Let D4 be the group of isometries of the
square.
The letters {A,B} are invariant under
vertical symmetry and horizontal symmetry
and are exachanged if we reflect diagonally

B B

A

A

WLOG we can assume that θ ∈
[
0, π2

]
and, up to permuting {A,B}, let

θ ∈ Σ0 :=
[
0, π4

]
.

0

1

Let Σ1 :=
[
π
4 ,

π
2

]
be the other sector.



The square: isometries and sectors

Let D4 be the group of isometries of the
square.
The letters {A,B} are invariant under
vertical symmetry and horizontal symmetry
and are exachanged if we reflect diagonally

B

A

A

B

WLOG we can assume that θ ∈
[
0, π2

]
and, up to permuting {A,B}, let

θ ∈ Σ0 :=
[
0, π4

]
.

0

1

Let Σ1 :=
[
π
4 ,

π
2

]
be the other sector.



The square: isometries and sectors

Let D4 be the group of isometries of the
square.
The letters {A,B} are invariant under
vertical symmetry and horizontal symmetry
and are exachanged if we reflect diagonally

B

A

A

B

WLOG we can assume that θ ∈
[
0, π2

]
and, up to permuting {A,B}, let

θ ∈ Σ0 :=
[
0, π4

]
.

0

1

Let Σ1 :=
[
π
4 ,

π
2

]
be the other sector.



The square: isometries and sectors

Let D4 be the group of isometries of the
square.
The letters {A,B} are invariant under
vertical symmetry and horizontal symmetry
and are exachanged if we reflect diagonally

A

A

B B

WLOG we can assume that θ ∈
[
0, π2

]
and, up to permuting {A,B}, let

θ ∈ Σ0 :=
[
0, π4

]
.

0

1

Let Σ1 :=
[
π
4 ,

π
2

]
be the other sector.



The square: isometries and sectors

Let D4 be the group of isometries of the
square.
The letters {A,B} are invariant under
vertical symmetry and horizontal symmetry
and are exachanged if we reflect diagonally

A

A

B B

WLOG we can assume that θ ∈
[
0, π2

]
and, up to permuting {A,B}, let

θ ∈ Σ0 :=
[
0, π4

]
.

0

1

Let Σ1 :=
[
π
4 ,

π
2

]
be the other sector.



The square: possible transitions
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Admissible sequences

Definition
A sequence w ∈ {A,B}Z is admissibile if it gives a infinite path on one of
these two diagrams:

BA

D0

BA

D1

In this case, we say that w is admissible in D0 or D1 respectively.

Lemma
A square cutting sequence is admissible.

If θ ∈ Σ0 =
[
0, π4

]
, w is admissible in D0, if θ ∈ Σ1 =

[
π
4 ,

π
2

]
, w is

admissibile in D1.
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Derivable sequences

Definition (Derived sequence)
Let w be the cuttings sequence of a trajectory with θ ∈ Σ0. The derived
sequence w ′ is obtained erasing one B from each block of Bs. If
θ ∈ Σ1, w ′ is obtained erasing one A from each block of As.

Example
w = . . .ABBBBABBBABBBBABBBABBB . . . ,
w ′ = . . .ABBB ABB ABBB ABB ABB . . .

Definition (Derivable Sequences)
A sequence w ∈ {A,B}Z is derivable if it is admissible and the derived
sequence is admissible.

Definition
A sequence w ∈ {A,B}Z is infinitely derivable if it is admissible and all
its derived sequences are still admissible.
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Characterization of Sturmian sequences

Theorem
A square cutting sequence is infinitely derivable.

Corollary
If w is a square cutting sequence with θ ∈ Σ0, the blocks of Bs have
length n o n + 1.

Example
The sequence w = . . .ABBBBABBABBBBA . . . is NOT a square
cutting sequence. Indeed: w ′ = . . .ABBBABABBBA . . . and
w ′′ = . . .ABBAABBA . . . which is not admissible.

Theorem
Let w be infinitely derivable. Then w belongs to the closure of square
cutting sequences.

Example
(infinitely derivable sequence which is not a square cutting sequence)
. . .AAAAAABAAAAA . . .
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Direction recognition and continued fractions
Let w a square cutting sequence, for example:
w = . . .BBBABBABBABBABBBABBAABBBABBABBABBA. . .

w’ = . . .BBABABABABBABAABBABABA. . .
w” = . . .BAAAABAAABAAA. . .

Let us define {an}n ∈ NN as follows:

let a0 such that the blocks of Bs in w have length a0 or a0 + 1 (in
the example a0 = 2: BB o BBB)

let a1 such that the blocks of As in w (a0) (in the example w”) have
length a1 or a1 + 1 (in the example a1 = 3: AAA o AAAA)

. . .

let an such that the blocks of As (n odd) or Bs (n even) in
w (a0+···+an−1) have length an or an + 1;

Theorem (Direction Recognition)
The direction θ of the trajectory with cutting sequence w is given by:

θ =
1

a0 + 1
a1+

1

···+ 1
an+...
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Proof for Sturmian sequences

The key step is given by the following Lemma:

Lemma
If w is a square cutting sequence, also the derived sequence w ′ is a
square cutting sequence.

Recalling that a square cutting sequence is clearly admissible, we have:

Corollary
Square cutting sequences are infinitely derivable.

Lemma
If w is a cutting sequence of a trajectory in
direction θ, the derived sequence w ′ is a
cutting sequence of a trajectory in direction
θ′, where θ′ = F (θ) and F is the Farey map
in Figure.
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Renormalization and derivation

Let w be the cutting sequence of a trajectory in direction θ ∈ Σ0;

A

A

B Bc

in the example:
w = . . . A B B A B B B A B B A B B A B B B . . .

w̃ = . . . A B C B A B C B C B A B C B A B C B A B C B C B . . .
u = . . . A C A C C A C A C A C C . . .

= . . . A B A B B A B A B A B B . . .

The new direction θ′ is obtained applying to θ a shear. One can verify
that θ′ = F (θ) where F is the Farey map. The Farey map is the additive
version of the continued fraction algorithm.
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