Corinna Ulcigrai

Rk: a slightly different approach than in class (this uses Farey map instead than Gauss map and defines admissibility without value)

ICTP, Trieste, 23 July 2018

《曰》 《聞》 《臣》 《臣》 三臣

Let D_4 be the group of isometries of the square.

The letters $\{A, B\}$ are invariant under vertical symmetry and horizontal symmetry and are exachanged if we reflect diagonally

WLOG we can assume that $heta\in[0,rac{\pi}{2}]$ and, up to permuting $\{A,B\}$, let $heta\in\Sigma_0:=[0,rac{\pi}{4}]$.

Let $\Sigma_1 := \left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ be the other sector.

Let D_4 be the group of isometries of the square.

The letters $\{A, B\}$ are invariant under vertical symmetry and horizontal symmetry and are exachanged if we reflect diagonally

・ロト ・ 同ト ・ ヨト ・ ヨト

WLOG we can assume that $\theta \in [0, \frac{\pi}{2}]$ and, up to permuting $\{A, B\}$, let $\theta \in \Sigma_0 := [0, \frac{\pi}{4}]$.

Let $\Sigma_1 := \begin{bmatrix} \frac{\pi}{4}, \frac{\pi}{2} \end{bmatrix}$ be the other sector.

Let D_4 be the group of isometries of the square.

The letters $\{A, B\}$ are invariant under vertical symmetry and horizontal symmetry

and are exachanged if we reflect diagonally

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

WLOG we can assume that $heta \in [0, rac{\pi}{2}]$ and, up to permuting $\{A, B\}$, let $heta \in \Sigma_0 := [0, rac{\pi}{4}]$.

Let $\Sigma_1 := \begin{bmatrix} \frac{\pi}{4}, \frac{\pi}{2} \end{bmatrix}$ be the other sector.

Let D_4 be the group of isometries of the square.

The letters $\{A, B\}$ are invariant under vertical symmetry and horizontal symmetry and are exachanged if we reflect diagonally

人口 医水黄 医水黄 医水黄素 化甘油

WLOG we can assume that $\theta \in [0, \frac{\pi}{2}]$ and, up to permuting $\{A, B\}$, let $\theta \in \Sigma_0 := [0, \frac{\pi}{4}]$.

Let $\Sigma_1 := \left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ be the other sector.

Let D_4 be the group of isometries of the square.

The letters $\{A, B\}$ are invariant under vertical symmetry and horizontal symmetry and are exachanged if we reflect diagonally

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

WLOG we can assume that $\theta \in [0, \frac{\pi}{2}]$ and, up to permuting $\{A, B\}$, let $\theta \in \Sigma_0 := [0, \frac{\pi}{4}]$.

Let D_4 be the group of isometries of the square.

The letters $\{A, B\}$ are invariant under vertical symmetry and horizontal symmetry and are exachanged if we reflect diagonally

WLOG we can assume that $\theta \in [0, \frac{\pi}{2}]$ and, up to permuting $\{A, B\}$, let $\theta \in \Sigma_0 := [0, \frac{\pi}{4}]$.

Let $\Sigma_1 := \left[rac{\pi}{4}, rac{\pi}{2}
ight]$ be the other sector.

The square: possible transitions

The square: possible transitions

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - 釣A(?)

The square: possible transitions

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Definition

A sequence $w \in \{A, B\}^{\mathbb{Z}}$ is *admissibile* if it gives a infinite path on one of these two diagrams:

Dı

э

イロト 不得 トイヨト イヨト

In this case, we say that w is admissible in \mathscr{D}_0 or \mathscr{D}_1 respectively.

Do

Lemma

A square cutting sequence is admissible

If $\theta \in \Sigma_0 = [0, \frac{\pi}{4}]$, w is admissible in \mathscr{D}_0 , if $\theta \in \Sigma_1 = [\frac{\pi}{4}, \frac{\pi}{2}]$, w is admissibile in \mathscr{D}_1 .

Definition

A sequence $w \in \{A, B\}^{\mathbb{Z}}$ is *admissibile* if it gives a infinite path on one of these two diagrams:

D1

(日) (四) (日) (日) (日)

In this case, we say that w is admissible in \mathscr{D}_0 or \mathscr{D}_1 respectively.

Lemma

A square cutting sequence is admissible. If $\theta \in \Sigma_0 = \begin{bmatrix} 0, \frac{\pi}{4} \end{bmatrix}$, w is admissible in \mathscr{D}_0 , if $\theta \in \Sigma_1 = \begin{bmatrix} \frac{\pi}{4}, \frac{\pi}{2} \end{bmatrix}$, w is admissible in \mathscr{D}_1 .

Definition

A sequence $w \in \{A, B\}^{\mathbb{Z}}$ is *admissibile* if it gives a infinite path on one of these two diagrams:

D1

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In this case, we say that w is admissible in \mathcal{D}_0 or \mathcal{D}_1 respectively.

Lemma

A square cutting sequence is admissible.

If $\theta \in \Sigma_0 = \begin{bmatrix} 0, \frac{\pi}{4} \end{bmatrix}$, w is admissible in \mathscr{D}_0 , if $\theta \in \Sigma_1 = \begin{bmatrix} \frac{\pi}{4}, \frac{\pi}{2} \end{bmatrix}$, w is admissibile in \mathscr{D}_1 .

Definition

A sequence $w \in \{A, B\}^{\mathbb{Z}}$ is *admissibile* if it gives a infinite path on one of these two diagrams:

 \mathcal{D}_1

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

In this case, we say that w is admissible in \mathcal{D}_0 or \mathcal{D}_1 respectively.

Lemma

A square cutting sequence is admissible.

If $\theta \in \Sigma_0 = \begin{bmatrix} 0, \frac{\pi}{4} \end{bmatrix}$, w is admissible in \mathscr{D}_0 , if $\theta \in \Sigma_1 = \begin{bmatrix} \frac{\pi}{4}, \frac{\pi}{2} \end{bmatrix}$, w is admissible in \mathscr{D}_1 .

Definition (Derived sequence)

Let w be the cuttings sequence of a trajectory with $\theta \in \Sigma_0$. The derived sequence w' is obtained erasing one B from each block of Bs. If $\theta \in \Sigma_1$, w' is obtained erasing one A from each block of As.

Example

 $w = \dots ABBBBABBBABBBBABBBABBB \dots$, $w' = \dots ABBB ABB ABB ABB ABB ABB \dots$.

Definition (Derivable Sequences)

A sequence $w \in \{A, B\}^{\mathbb{Z}}$ is *derivable* if it is admissible and the derived sequence is admissible.

Definition

A sequence $w \in \{A, B\}^{\mathbb{Z}}$ is *infinitely derivable* if it is admissible and all its derived sequences are still admissible.

Definition (Derived sequence)

Let w be the cuttings sequence of a trajectory with $\theta \in \Sigma_0$. The derived sequence w' is obtained erasing one B from each block of Bs. If $\theta \in \Sigma_1$, w' is obtained erasing one A from each block of As.

Example

$w = \dots ABBBBABBBABBBBABBBABBB \dots$, $w' = \dots ABBB ABB ABB ABB ABB \dots$

Definition (Derivable Sequences)

A sequence $w \in \{A, B\}^{\mathbb{Z}}$ is *derivable* if it is admissible and the derived sequence is admissible.

Definition

A sequence $w \in \{A, B\}^{\mathbb{Z}}$ is *infinitely derivable* if it is admissible and all its derived sequences are still admissible.

Definition (Derived sequence)

Let w be the cuttings sequence of a trajectory with $\theta \in \Sigma_0$. The derived sequence w' is obtained erasing one B from each block of Bs. If $\theta \in \Sigma_1$, w' is obtained erasing one A from each block of As.

Example

$w = \dots ABBBBABBBABBBBABBBABBBBABBB \dots$, $w' = \dots ABBB ABB ABB ABB ABB ABB \dots$

Definition (Derivable Sequences)

A sequence $w \in \{A, B\}^{\mathbb{Z}}$ is *derivable* if it is admissible and the derived sequence is admissible.

Definition

A sequence $w \in \{A, B\}^{\mathbb{Z}}$ is *infinitely derivable* if it is admissible and all its derived sequences are still admissible.

Definition (Derived sequence)

Let w be the cuttings sequence of a trajectory with $\theta \in \Sigma_0$. The derived sequence w' is obtained erasing one B from each block of Bs. If $\theta \in \Sigma_1$, w' is obtained erasing one A from each block of As.

Example

 $w = \dots ABBBBABBBABBBBABBBABBBBABBB \dots$, $w' = \dots ABBB ABB ABB ABB ABB ABB \dots$

Definition (Derivable Sequences)

A sequence $w \in \{A, B\}^{\mathbb{Z}}$ is *derivable* if it is admissible and the derived sequence is admissible.

Definition

A sequence $w \in \{A, B\}^{\mathbb{Z}}$ is *infinitely derivable* if it is admissible and all its derived sequences are still admissible.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition (Derived sequence)

Let w be the cuttings sequence of a trajectory with $\theta \in \Sigma_0$. The derived sequence w' is obtained erasing one B from each block of Bs. If $\theta \in \Sigma_1$, w' is obtained erasing one A from each block of As.

Example

 $w = \dots ABBBBABBBABBBBABBBABBB \dots$, $w' = \dots ABBB ABB ABB ABB ABB ABB \dots$

Definition (Derivable Sequences)

A sequence $w \in \{A, B\}^{\mathbb{Z}}$ is *derivable* if it is admissible and the derived sequence is admissible.

Definition

A sequence $w \in \{A, B\}^{\mathbb{Z}}$ is *infinitely derivable* if it is admissible and all its derived sequences are still admissible.

Definition (Derived sequence)

Let w be the cuttings sequence of a trajectory with $\theta \in \Sigma_0$. The derived sequence w' is obtained erasing one B from each block of Bs. If $\theta \in \Sigma_1$, w' is obtained erasing one A from each block of As.

Example

 $w = \dots ABBBBABBBABBBBABBBABBB \dots$, $w' = \dots ABBB ABB ABB ABB ABB ABB \dots$

Definition (Derivable Sequences)

A sequence $w \in \{A, B\}^{\mathbb{Z}}$ is *derivable* if it is admissible and the derived sequence is admissible.

Definition

A sequence $w \in \{A, B\}^{\mathbb{Z}}$ is *infinitely derivable* if it is admissible and all its derived sequences are still admissible.

Theorem

A square cutting sequence is infinitely derivable.

Corollary

If w is a square cutting sequence with $\theta \in \Sigma_0$, the blocks of Bs have length n o n + 1.

Example

The sequence $w = \dots ABBBBABBABBBBA...$ is NOT a square cutting sequence. Indeed: $w' = \dots ABBBABBBBA...$ and $w'' = \dots ABBAABBA...$ which is not admissible.

Theorem

Let w be infinitely derivable. Then w belongs to the closure of square cutting sequences.

Example

(infinitely derivable sequence which is not a square cutting sequence) ... AAAAAABAAAAA...

Theorem

A square cutting sequence is infinitely derivable.

Corollary

If w is a square cutting sequence with $\theta \in \Sigma_0$, the blocks of Bs have length n o n + 1.

Example

The sequence $w = \dots ABBBBABBABBBBA...$ is NOT a square cutting sequence. Indeed: $w' = \dots ABBBABBBBA...$ and $w'' = \dots ABBAABBA...$ which is not admissible.

Theorem

Let w be infinitely derivable. Then w belongs to the closure of square cutting sequences.

Example

(infinitely derivable sequence which is not a square cutting sequence) ... AAAAAABAAAAA...

Theorem

A square cutting sequence is infinitely derivable.

Corollary

If w is a square cutting sequence with $\theta \in \Sigma_0$, the blocks of Bs have length n o n + 1.

Example

The sequence $w = \dots ABBBBABBABBBBA...$ is NOT a square cutting sequence. Indeed: $w' = \dots ABBBABBBBA...$ and $w'' = \dots ABBAABBA...$ which is not admissible.

Theorem

Let w be infinitely derivable. Then w belongs to the closure of square cutting sequences.

Example

(infinitely derivable sequence which is not a square cutting sequence) ... AAAAAABAAAAA...

Theorem

A square cutting sequence is infinitely derivable.

Corollary

If w is a square cutting sequence with $\theta \in \Sigma_0$, the blocks of Bs have length n o n + 1.

Example

The sequence $w = \dots ABBBABBABBBBA...$ is NOT a square cutting sequence. Indeed: $w' = \dots ABBABBBA...$ and $w'' = \dots ABBAABBA...$ which is not admissible.

Theorem

Let w be infinitely derivable. Then w belongs to the closure of square cutting sequences.

Example

(infinitely derivable sequence which is not a square cutting sequence) ... AAAAAABAAAAA...

Theorem

A square cutting sequence is infinitely derivable.

Corollary

If w is a square cutting sequence with $\theta \in \Sigma_0$, the blocks of Bs have length n o n + 1.

Example

The sequence $w = \dots ABBBBABBABBBBA...$ is NOT a square cutting sequence. Indeed: $w' = \dots ABBBABBBBA...$ and $w'' = \dots ABBAABBA...$ which is not admissible.

Theorem

Let w be infinitely derivable. Then w belongs to the closure of square cutting sequences.

Example

(infinitely derivable sequence which is not a square cutting sequence) ... AAAAAABAAAAA...

Theorem

A square cutting sequence is infinitely derivable.

Corollary

If w is a square cutting sequence with $\theta \in \Sigma_0$, the blocks of Bs have length n o n + 1.

Example

The sequence $w = \dots ABBBABBABBBBA...$ is NOT a square cutting sequence. Indeed: $w' = \dots ABBBABBBBA...$ and $w'' = \dots ABBAABBA...$ which is not admissible.

Theorem

Let w be infinitely derivable. Then w belongs to the closure of square cutting sequences.

Example

(infinitely derivable sequence which is not a square cutting sequence) ... AAAAAABAAAAA...

Theorem

A square cutting sequence is infinitely derivable.

Corollary

If w is a square cutting sequence with $\theta \in \Sigma_0$, the blocks of Bs have length n o n + 1.

Example

The sequence $w = \dots ABBBABBABBBBA...$ is NOT a square cutting sequence. Indeed: $w' = \dots ABBBABBBBA...$ and $w'' = \dots ABBAABBA...$ which is not admissible.

Theorem

Let w be infinitely derivable. Then w belongs to the closure of square cutting sequences.

Example

(infinitely derivable sequence which is not a square cutting sequence) ... AAAAAABAAAAA...

Theorem

A square cutting sequence is infinitely derivable.

Corollary

If w is a square cutting sequence with $\theta \in \Sigma_0$, the blocks of Bs have length n o n + 1.

Example

The sequence $w = \dots ABBBABBABBBBA...$ is NOT a square cutting sequence. Indeed: $w' = \dots ABBBABBBBA...$ and $w'' = \dots ABBAABBA...$ which is not admissible.

Theorem

Let w be infinitely derivable. Then w belongs to the closure of square cutting sequences.

Example

(infinitely derivable sequence which is not a square cutting sequence) ... AAAAAABAAAAA...

Let w a square cutting sequence, for example: w = ...BBBABBABBABBABBABBABBABBABBABBABBA...

Let us define $\{a_n\}_n \in \mathbb{N}^{\mathbb{N}}$ as follows:

let a_0 such that the blocks of *B*s in *w* have length a_0 or $a_0 + 1$ (*in the example* $a_0 = 2$: BB *o* BBB)

let a_1 such that the blocks of As in $w^{(a_0)}$ (in the example w") have length a_1 or $a_1 + 1$ (in the example $a_1 = 3$: AAA o AAAA)

let a_n such that the blocks of As(n odd) or Bs(n even) in $w^{(a_0+\cdots+a_{n-1})}$ have length a_n or $a_n + 1$;

Theorem (Direction Recognition)

The direction θ of the trajectory with cutting sequence w is given by:

・ロット (雪) ・ (日) ・ (日) ・ (日)

Let w a square cutting sequence, for example: $w = \dots BBBABBABBABBABBABBABBABBABBABBABBA...$

Let us define $\{a_n\}_n \in \mathbb{N}^{\mathbb{N}}$ as follows:

let a_0 such that the blocks of Bs in w have length a_0 or $a_0 + 1$ (*in the example* $a_0 = 2$: BB o BBB) let a_1 such that the blocks of As in $w^{(a_0)}$ (*in the example* w") have length a_1 or $a_1 + 1$ (*in the example* $a_1 = 3$: AAA o AAAA) let a_n such that the blocks of As (*n* odd) or Bs (*n* even) in

 $w^{(a_0+\cdots+a_{n-1})}$ have length a_n or a_n+1 ;

Theorem (Direction Recognition)

The direction θ of the trajectory with cutting sequence w is given by:

Let w a square cutting sequence, for example: $w = \dots BBBABBABBABBABBABBABBABBABBABBABBA...$

Let us define $\{a_n\}_n \in \mathbb{N}^{\mathbb{N}}$ as follows:

let a_0 such that the blocks of Bs in w have length a_0 or $a_0 + 1$ (in the example $a_0 = 2$: BB o BBB)

let a_1 such that the blocks of As in $w^{(a_0)}$ (in the example w") have length a_1 or $a_1 + 1$ (in the example $a_1 = 3$: AAA o AAAA)

let a_n such that the blocks of As (n odd) or Bs (n even) in $w^{(a_0+\cdots+a_{n-1})}$ have length a_n or $a_n + 1$;

Theorem (Direction Recognition)

The direction θ of the trajectory with cutting sequence w is given by:

(日)

Let us define $\{a_n\}_n \in \mathbb{N}^{\mathbb{N}}$ as follows:

let a_0 such that the blocks of Bs in w have length a_0 or $a_0 + 1$ (in the example $a_0 = 2$: BB o BBB)

let a_1 such that the blocks of As in $w^{(a_0)}$ (in the example w") have length a_1 or $a_1 + 1$ (in the example $a_1 = 3$: AAA o AAAA)

let a_n such that the blocks of As (n odd) or Bs (n even) in $w^{(a_0+\cdots+a_{n-1})}$ have length a_n or $a_n + 1$;

Theorem (Direction Recognition)

The direction θ of the trajectory with cutting sequence w is given by:

(日)

Let us define $\{a_n\}_n \in \mathbb{N}^{\mathbb{N}}$ as follows:

let a_0 such that the blocks of Bs in w have length a_0 or $a_0 + 1$ (in the example $a_0 = 2$: BB o BBB)

let a_1 such that the blocks of As in $w^{(a_0)}$ (in the example w") have length a_1 or $a_1 + 1$ (in the example $a_1 = 3$: AAA o AAAA)

```
let a_n such that the blocks of As (n \text{ odd}) or Bs (n \text{ even}) in w^{(a_0+\cdots+a_{n-1})} have length a_n or a_n + 1;
```

Theorem (Direction Recognition)

The direction θ of the trajectory with cutting sequence w is given by:

(日)

Let us define $\{a_n\}_n \in \mathbb{N}^{\mathbb{N}}$ as follows:

let a_0 such that the blocks of Bs in w have length a_0 or $a_0 + 1$ (in the example $a_0 = 2$: BB o BBB)

let a_1 such that the blocks of As in $w^{(a_0)}$ (in the example w") have length a_1 or $a_1 + 1$ (in the example $a_1 = 3$: AAA o AAAA)

let a_n such that the blocks of As (n odd) or Bs (n even) in $w^{(a_0+\cdots+a_{n-1})}$ have length a_n or $a_n + 1$;

Theorem (Direction Recognition)

The direction θ of the trajectory with cutting sequence w is given by:

Let us define $\{a_n\}_n \in \mathbb{N}^{\mathbb{N}}$ as follows:

let a_0 such that the blocks of Bs in w have length a_0 or $a_0 + 1$ (*in the example* $a_0 = 2$: BB o BBB)

let a_1 such that the blocks of As in $w^{(a_0)}$ (in the example w") have length a_1 or $a_1 + 1$ (in the example $a_1 = 3$: AAA o AAAA)

let a_n such that the blocks of As (n odd) or Bs (n even) in $w^{(a_0+\cdots+a_{n-1})}$ have length a_n or $a_n + 1$;

Theorem (Direction Recognition)

. . .

The direction θ of the trajectory with cutting sequence w is given by:

Let us define $\{a_n\}_n \in \mathbb{N}^{\mathbb{N}}$ as follows:

let a_0 such that the blocks of Bs in w have length a_0 or $a_0 + 1$ (*in the example* $a_0 = 2$: BB o BBB)

let a_1 such that the blocks of As in $w^{(a_0)}$ (in the example w") have length a_1 or $a_1 + 1$ (in the example $a_1 = 3$: AAA o AAAA)

let a_n such that the blocks of As (n odd) or Bs (n even) in $w^{(a_0+\cdots+a_{n-1})}$ have length a_n or $a_n + 1$;

Theorem (Direction Recognition)

. . .

The direction θ of the trajectory with cutting sequence w is given by:

Let us define $\{a_n\}_n \in \mathbb{N}^{\mathbb{N}}$ as follows: let a_0 such that the blocks of Bs in w have length a_0 or $a_0 + 1$ (in the example $a_0 = 2$: BB o BBB) let a_1 such that the blocks of As in $w^{(a_0)}$ (in the example w'') have length a_1 or $a_1 + 1$ (in the example $a_1 = 3$: AAA o AAAA) ...

let a_n such that the blocks of As (n odd) or Bs (n even) in $w^{(a_0+\cdots+a_{n-1})}$ have length a_n or $a_n + 1$;

Theorem (Direction Recognition)

The direction θ of the trajectory with cutting sequence w is given by:

$$\theta = \frac{1}{a_0 + \frac{1}{a_1 + \frac{1}{\dots + \frac{1}{a_\eta + \dots}}}}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof for Sturmian sequences

The key step is given by the following Lemma:

Lemma

If w is a square cutting sequence, also the derived sequence w' is a square cutting sequence.

Recalling that a square cutting sequence is clearly admissible, we have:

Corollary

Square cutting sequences are infinitely derivable.

Lemma

If w is a cutting sequence of a trajectory in direction θ , the derived sequence w' is a cutting sequence of a trajectory in direction θ' , where $\theta' = F(\theta)$ and F is the Farey map in Figure.

Proof for Sturmian sequences

The key step is given by the following Lemma:

Lemma

If w is a square cutting sequence, also the derived sequence w' is a square cutting sequence.

Recalling that a square cutting sequence is clearly admissible, we have:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Corollary

Square cutting sequences are infinitely derivable.

Lemma

If w is a cutting sequence of a trajectory in direction θ , the derived sequence w' is a cutting sequence of a trajectory in direction θ' , where $\theta' = F(\theta)$ and F is the Farey map in Figure.

Proof for Sturmian sequences

The key step is given by the following Lemma:

Lemma

If w is a square cutting sequence, also the derived sequence w' is a square cutting sequence.

Recalling that a square cutting sequence is clearly admissible, we have:

Corollary

Square cutting sequences are infinitely derivable.

Lemma

If w is a cutting sequence of a trajectory in direction θ , the derived sequence w' is a cutting sequence of a trajectory in direction θ' , where $\theta' = F(\theta)$ and F is the Farey map in Figure.

Let *w* be the cutting sequence of a trajectory in direction $\theta \in \Sigma_0$;

in the example:

 $w = \dots A B B A B B B A B B A B B A B B B \dots$

Let *w* be the cutting sequence of a trajectory in direction $\theta \in \Sigma_0$;

in the example:

 $w = \dots A B B A B B B A B B A B B A B B B \dots$

Let us add the diagonal C.

Let \tilde{w} be the extended sequence:

Let *w* be the cutting sequence of a trajectory in direction $\theta \in \Sigma_0$;

in the example:

 $w = \dots A B B A B B B A B B A B B A B B B \dots$

Let us add the diagonal C.

Let \tilde{w} be the extended sequence:

Each BB becomes BCB; AB stays AB

Let *w* be the cutting sequence of a trajectory in direction $\theta \in \Sigma_0$;

in the example:

 $w = \dots A B B A B B B A B B A B B A B B B \dots$

Let us add the diagonal C.

Let \tilde{w} be the extended sequence:

Each BB becomes BCB; AB stays AB

Let *w* be the cutting sequence of a trajectory in direction $\theta \in \Sigma_0$;

in the example:

Let us add the diagonal C.

Let \tilde{w} be the extended sequence:

Each BB becomes BCB; AB stays AB

Let *w* be the cutting sequence of a trajectory in direction $\theta \in \Sigma_0$;

Let us cut and paste the rectangle.

Consider the cutting sequence u with respect to the parallelogram Π . To obtain u from \tilde{w} it is enough to drop the Bs. The new direction θ' is obtained applying to θ a shear. One can verify that $\theta' = F(\theta)$ where F is the Farey map. The Farey map is the additive version of the continued fraction algorithm.

Let *w* be the cutting sequence of a trajectory in direction $\theta \in \Sigma_0$;

Let us cut and paste the rectangle.

Consider the cutting sequence u with respect to the parallelogram Π . To obtain u from \tilde{w} it is enough to drop the Bs.

Let *w* be the cutting sequence of a trajectory in direction $\theta \in \Sigma_0$;

Let us cut and paste the rectangle.

Consider the cutting sequence u with respect to the parallelogram Π . To obtain u from \tilde{w} it is enough to drop the Bs.

Let *w* be the cutting sequence of a trajectory in direction $\theta \in \Sigma_0$;

in the example:

$$\begin{split} w &= \dots \ \mathsf{A} \ \mathsf{B} \ \mathsf{$$

Let us *renormalize*: we can transform Π in a square by the shear $\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$. Let us transform back the Cs into Bs.

Let *w* be the cutting sequence of a trajectory in direction $\theta \in \Sigma_0$;

in the example:

Let us *renormalize*: we can transform Π in a square by the shear $\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$. Let us transform back the Cs into Bs.

Let *w* be the cutting sequence of a trajectory in direction $\theta \in \Sigma_0$;

in the example:

Let us *renormalize*: we can transform Π in a square by the shear $\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$. Let us transform back the Cs into Bs. The sequence thus obtained is the *derived sequence*. The new direction θ' is obtained applying to θ a shear. One can vert

that $\theta' = F(\theta)$ where F is the Farey map. The Farey map is the additive version of the continued fraction algorithm.

Let *w* be the cutting sequence of a trajectory in direction $\theta \in \Sigma_0$;

in the example:

To check it:

$\mathsf{A} \; \mathsf{BBB} \; \mathsf{A} \; \to \mathsf{A} \; \mathsf{BCBCB} \; \mathsf{A} \to \mathsf{A} \; \mathsf{CC} \; \mathsf{A} \; \to \mathsf{A} \; \mathsf{BB} \; \mathsf{A}$

act as derivation.

Let *w* be the cutting sequence of a trajectory in direction $\theta \in \Sigma_0$;

in the example:

To check it:

$\mathsf{A} \; \mathsf{BBB} \; \mathsf{A} \; \to \mathsf{A} \; \mathsf{BCBCB} \; \mathsf{A} \to \mathsf{A} \; \mathsf{CC} \; \mathsf{A} \; \to \mathsf{A} \; \mathsf{BB} \; \mathsf{A}$

act as derivation.

Let *w* be the cutting sequence of a trajectory in direction $\theta \in \Sigma_0$;

in the example:

To check it:

$\mathsf{A} \; \mathsf{BBB} \; \mathsf{A} \; \to \mathsf{A} \; \mathsf{BCBCB} \; \mathsf{A} \to \mathsf{A} \; \mathsf{CC} \; \mathsf{A} \; \to \mathsf{A} \; \mathsf{BB} \; \mathsf{A}$

act as derivation.

Let *w* be the cutting sequence of a trajectory in direction $\theta \in \Sigma_0$;

in the example:

To check it:

A BBB A \rightarrow A BCBCB A \rightarrow A CC A \rightarrow A BB A act as derivation.

Summarizing:

We showed that the sequence w' is the cutting sequence of a new trajectory in the square (thus still a square cutting sequence). The new direction θ' is obtained applying to θ a shear. One can verify that $\theta' = F(\theta)$ where F is the Farey map. The Farey map is the additive version of the continued fraction algorithm.

Summarizing:

We showed that the sequence w' is the cutting sequence of a new trajectory in the square (thus still a square cutting sequence). The new direction θ' is obtained applying to θ a shear. One can verify that $\theta' = F(\theta)$ where F is the Farey map. The Farey map is the additive version of the continued fraction algorithm.

Summarizing:

We showed that the sequence w' is the cutting sequence of a new trajectory in the square (thus still a square cutting sequence). The new direction θ' is obtained applying to θ a shear. One can verify that $\theta' = F(\theta)$ where F is the Farey map. The Farey map is the additive version of the continued fraction algorithm.