A characterization of Sturmian sequences

Corinna Ulcigrai

Rk: a slightly different approach than in class (this uses Farey map instead than Gauss map and defines admissibility without value)

ICTP, Trieste, 23 July 2018

The square: isometries and sectors

Let D_{4} be the group of isometries of the square.
The letters $\{A, B\}$ are invariant under
vertical symmetry and horizontal symmetry and are exachanged if we reflect diagonally

The square: isometries and sectors

Let D_{4} be the group of isometries of the square.
The letters $\{A, B\}$ are invariant under vertical symmetry and horizontal symmetry

The square: isometries and sectors

Let D_{4} be the group of isometries of the square.
The letters $\{A, B\}$ are invariant under vertical symmetry and horizontal symmetry

The square: isometries and sectors

Let D_{4} be the group of isometries of the square.
The letters $\{A, B\}$ are invariant under vertical symmetry and horizontal symmetry and are exachanged if we reflect diagonally

The square: isometries and sectors

Let D_{4} be the group of isometries of the square.
The letters $\{A, B\}$ are invariant under vertical symmetry and horizontal symmetry and are exachanged if we reflect diagonally

WLOG we can assume that $\theta \in\left[0, \frac{\pi}{2}\right]$ and, up to permuting $\{A, B\}$, let $\theta \in \Sigma_{0}:=\left[0, \frac{\pi}{4}\right]$.

The square: isometries and sectors

Let D_{4} be the group of isometries of the square.
The letters $\{A, B\}$ are invariant under vertical symmetry and horizontal symmetry and are exachanged if we reflect diagonally

WLOG we can assume that $\theta \in\left[0, \frac{\pi}{2}\right]$ and, up to permuting $\{A, B\}$, let $\theta \in \Sigma_{0}:=\left[0, \frac{\pi}{4}\right]$.

Let $\Sigma_{1}:=\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ be the other sector.

The square: possible transitions

- If $\theta \in \Sigma_{0}:=\left[0, \frac{\pi}{4}\right]$, AA does not appear:

\rightarrow If $\theta \in \sum_{1}:=\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ BB does not appear:

The square: possible transitions

- If $\theta \in \Sigma_{0}:=\left[0, \frac{\pi}{4}\right]$, AA does not appear:

\Rightarrow If $\theta \in \Sigma_{1}:=\left[\frac{\pi}{4}, \frac{\pi}{2}\right], \mathrm{BB}$ does not appear:

The square: possible transitions

- If $\theta \in \Sigma_{0}:=\left[0, \frac{\pi}{4}\right]$, AA does not appear:

- If $\theta \in \Sigma_{1}:=\left[\frac{\pi}{4}, \frac{\pi}{2}\right], \mathrm{BB}$ does not appear:

Admissible sequences

Definition
A sequence $w \in\{A, B\}^{\mathbb{Z}}$ is admissibile if it gives a infinite path on one of these two diagrams:

\mathscr{D}_{0}
\mathscr{D}_{1}
In this case, we say that w is admissible in \mathscr{D}_{0} or \mathscr{D}_{1} respectively.

Admissible sequences

Definition
A sequence $w \in\{A, B\}^{\mathbb{Z}}$ is admissibile if it gives a infinite path on one of these two diagrams:

\mathscr{D}_{0}
\mathscr{D}_{1}
In this case, we say that w is admissible in \mathscr{D}_{0} or \mathscr{D}_{1} respectively.
Lemma
A square cutting sequence is admissible.
If $\theta \in \Sigma_{0}=\left[0, \frac{\pi}{4}\right], w$ is admissible in \mathscr{O}_{0}, if $\theta \in \Sigma_{1}=\left[\frac{\pi}{4}, \frac{\pi}{2}\right], w$ is admissibile in \mathscr{D}_{1}.

Admissible sequences

Definition

A sequence $w \in\{A, B\}^{\mathbb{Z}}$ is admissibile if it gives a infinite path on one of these two diagrams:

\mathscr{D}_{0}
\mathscr{D}_{1}
In this case, we say that w is admissible in \mathscr{D}_{0} or \mathscr{D}_{1} respectively.
Lemma
A square cutting sequence is admissible.
If $\theta \in \Sigma_{0}=\left[0, \frac{\pi}{4}\right], w$ is admissible in \mathscr{D}_{0}, if $\theta \in \Sigma_{1}=\left[\frac{\pi}{4}, \frac{\pi}{2}\right], w$ is
admissibile in \mathscr{D}_{1}.

Admissible sequences

Definition

A sequence $w \in\{A, B\}^{\mathbb{Z}}$ is admissibile if it gives a infinite path on one of these two diagrams:

\mathscr{D}_{0}

$$
\mathscr{D}_{1}
$$

In this case, we say that w is admissible in \mathscr{D}_{0} or \mathscr{D}_{1} respectively.
Lemma
A square cutting sequence is admissible.
If $\theta \in \Sigma_{0}=\left[0, \frac{\pi}{4}\right], w$ is admissible in \mathscr{D}_{0}, if $\theta \in \Sigma_{1}=\left[\frac{\pi}{4}, \frac{\pi}{2}\right], w$ is admissibile in \mathscr{D}_{1}.

Derivable sequences

Definition (Derived sequence)
Let w be the cuttings sequence of a trajectory with $\theta \in \Sigma_{0}$. The derived sequence w^{\prime} is obtained erasing one B from each block of B s.
$\theta \in \Sigma_{1}, w^{\prime}$ is obtained erasing one A from each block of $A s$.
Example
$w=\ldots$ ABBBBABBBABBBBABBBABBB
$w^{\prime}=\ldots A B B B \quad A B B \quad A B B B \quad A B B \quad A B B$
Definition (Derivable Sequences)
A sequence $w \in\{A, B\}^{\mathbb{Z}}$ is derivable if it is admissible and the derived sequence is admissible.

Definition
A sequence $w \in\{A, B\}^{\mathbb{Z}}$ is infinitely derivable if it is admissible and all its derived sequences are still admissible.

Derivable sequences

Definition (Derived sequence)
Let w be the cuttings sequence of a trajectory with $\theta \in \Sigma_{0}$. The derived sequence w^{\prime} is obtained erasing one B from each block of B s.

```
0\in\mp@subsup{\Sigma}{1}{},\mp@subsup{w}{}{\prime}}\mathrm{ is obtained erasing one A from each block of As.
```

Example
$w=\ldots A B B B B A B B B A B B B B A B B A B B B \ldots$,
$w^{\prime}=\ldots A B B B \quad A B B \quad A B B B \quad A B B \quad A B B$
Definition (Derivable Sequences)
A sequence $w \in\{A, B\}^{\mathbb{Z}}$ is derivable if it is admissible and the derived sequence is admissible.

Definition
A sequence $w \in\{A, B\}^{2}$ is infinitely derivable if it is admissible and all its derived sequences are still admissible.

Derivable sequences

Definition (Derived sequence)
Let w be the cuttings sequence of a trajectory with $\theta \in \Sigma_{0}$. The derived sequence w^{\prime} is obtained erasing one B from each block of B s.

Example
$w=\ldots A B B B B A B B B A B B B B A B B B A B B B \ldots$,
$w^{\prime}=\ldots A B B B \quad A B B \quad A B B B \quad A B B \quad A B B \quad \ldots$
Definition (Derivable Sequences)
A sequence $w \in\{A, B\}^{\mathbb{Z}}$ is derivable if it is admissible and the derived sequence is admissible.

Definition
A sequence $w \in\{A, B\}^{\mathbb{Z}}$ is infinitely derivable if it is admissible and all its derived sequences are still admissible.

Derivable sequences

Definition (Derived sequence)
Let w be the cuttings sequence of a trajectory with $\theta \in \Sigma_{0}$. The derived sequence w^{\prime} is obtained erasing one B from each block of B s. If $\theta \in \Sigma_{1}, w^{\prime}$ is obtained erasing one A from each block of A s.

Example
$w=\ldots A B B B B A B B B A B B B B A B B B A B B B \ldots$,
$w^{\prime}=\ldots A B B B \quad A B B \quad A B B B \quad A B B \quad A B B \quad \ldots$
Definition (Derivable Sequences)
A sequence $w \in\{A, B\}^{\mathbb{Z}}$ is derivable if it is admissible and the derived sequence is admissible.

Definition
A sequence $w \in\{A, B\}^{\mathbb{Z}}$ is infinitely derivable if it is admissible and all its derived sequences are still admissible.

Derivable sequences

Definition (Derived sequence)

Let w be the cuttings sequence of a trajectory with $\theta \in \Sigma_{0}$. The derived sequence w^{\prime} is obtained erasing one B from each block of B s. If $\theta \in \Sigma_{1}, w^{\prime}$ is obtained erasing one A from each block of A s.

Example

$w=\ldots A B B B B A B B B A B B B B A B B B A B B B \ldots$,
$w^{\prime}=\ldots A B B B \quad A B B \quad A B B B \quad A B B \quad A B B \quad \ldots$
Definition (Derivable Sequences)
A sequence $w \in\{A, B\}^{\mathbb{Z}}$ is derivable if it is admissible and the derived sequence is admissible.

Definition
A sequence $w \in\{A, B\}^{\mathbb{Z}}$ is infinitely derivable if it is admissible and all its derived sequences are still admissible.

Derivable sequences

Definition (Derived sequence)

Let w be the cuttings sequence of a trajectory with $\theta \in \Sigma_{0}$. The derived sequence w^{\prime} is obtained erasing one B from each block of B s. If $\theta \in \Sigma_{1}, w^{\prime}$ is obtained erasing one A from each block of A s.

Example

$w=\ldots A B B B B A B B B A B B B B A B B B A B B B \ldots$,
$w^{\prime}=\ldots A B B B \quad A B B \quad A B B B \quad A B B \quad A B B \quad \ldots$
Definition (Derivable Sequences)
A sequence $w \in\{A, B\}^{\mathbb{Z}}$ is derivable if it is admissible and the derived sequence is admissible.

Definition

A sequence $w \in\{A, B\}^{\mathbb{Z}}$ is infinitely derivable if it is admissible and all its derived sequences are still admissible.

Characterization of Sturmian sequences

Theorem
A square cutting sequence is infinitely derivable.
Corollary
If w is a square cutting sequence with $\theta \in \Sigma_{0}$, the blocks of Bs have length $n \circ n+1$.

Example
The sequence $w=\ldots A B B B B A B B A B B B B A \ldots$ is NOT a square cutting sequence. Indeed: $w^{\prime}=\ldots A B B B A B A B B B A \ldots$ and $w^{\prime \prime}=\ldots A B B A A B B A \ldots$ which is not admissible.

Theorem
Let w be infinitely derivable. Then w belongs to the closure of square cutting sequences.

Example
(infinitely derivable sequence which is not a square cutting sequence) ... AAAAAABAAAAA.

Characterization of Sturmian sequences

Theorem
A square cutting sequence is infinitely derivable.
Corollary
If w is a square cutting sequence with $\theta \in \Sigma_{0}$, the blocks of Bs have length $n \circ n+1$.

Example
The sequence $w=\ldots A B B B B A B B A B B B B A \ldots$ is NOT a square
cutting sequence. Indeed: $w^{\prime}=\ldots A B B B A B A B B B A \ldots$ and
$w^{\prime \prime}=\ldots A B B A A B B A \ldots$ which is not admissible.
Theorem
Let w be infinitely derivable. Then w belongs to the closure of square cutting sequences.

Example
(infinitely derivable sequence which is not a square cutting sequence) AAAAAABAAAAA

Characterization of Sturmian sequences

Theorem
A square cutting sequence is infinitely derivable.
Corollary
If w is a square cutting sequence with $\theta \in \Sigma_{0}$, the blocks of Bs have length n o $n+1$.

Example
The sequence $w=\ldots A B B B B A B B A B B B B A \ldots$ is NOT a square cutting sequence. Indeed: $w^{\prime}=\ldots A B B B A B A B B B A \ldots$ and $w^{\prime \prime}=\ldots A B B A A B B A \ldots$ which is not admissible.

Theorem
Let w be infinitely derivable. Then w belongs to the closure of square cutting sequences.

Example
(infinitely derivable sequence which is not a square cutting sequence) AAAAAABAAAAA

Characterization of Sturmian sequences

Theorem
A square cutting sequence is infinitely derivable.
Corollary
If w is a square cutting sequence with $\theta \in \Sigma_{0}$, the blocks of Bs have length n o $n+1$.

Example
The sequence $w=\ldots A B B B B A B B A B B B B A \ldots$ is NOT a square cutting sequence. Indeed: $w^{\prime}=\ldots A B B B A B A B B B A \ldots$ and $w^{\prime \prime}=\ldots$ ABBAABBA \ldots which is not admissible.
Theorem
Let w be infinitely derivable. Then w belongs to the closure of square
cutting sequences.
Example
(infinitely derivable sequence which is not a square cutting sequence) AAAAAABAAAAA

Characterization of Sturmian sequences

Theorem
A square cutting sequence is infinitely derivable.
Corollary
If w is a square cutting sequence with $\theta \in \Sigma_{0}$, the blocks of Bs have length n o $n+1$.

Example
The sequence $w=\ldots A B B B B A B B A B B B B A \ldots$ is NOT a square cutting sequence. Indeed: $w^{\prime}=\ldots A B B B A B A B B B A \ldots$ and

Theorem
Let w be infinitely derivable. Then w belongs to the closure of square cutting sequences.

Example
(infinitely derivable sequence which is not a square cutting sequence) AAAAAABAAAAA

Characterization of Sturmian sequences

Theorem
A square cutting sequence is infinitely derivable.
Corollary
If w is a square cutting sequence with $\theta \in \Sigma_{0}$, the blocks of Bs have length n o $n+1$.

Example
The sequence $w=\ldots A B B B B A B B A B B B B A \ldots$ is NOT a square cutting sequence. Indeed: $w^{\prime}=\ldots A B B B A B A B B B A \ldots$ and $w^{\prime \prime}=\ldots A B B A A B B A \ldots$ which is not admissible.

Theorem
Let w be infinitely derivable. Then w belongs to the closure of square cutting sequences.

Example
(infinitely derivable sequence which is not a square cutting sequence) AAAAAABAAAAA

Characterization of Sturmian sequences

Theorem
A square cutting sequence is infinitely derivable.
Corollary
If w is a square cutting sequence with $\theta \in \Sigma_{0}$, the blocks of Bs have length n o $n+1$.

Example
The sequence $w=\ldots A B B B B A B B A B B B B A \ldots$ is NOT a square cutting sequence. Indeed: $w^{\prime}=\ldots A B B B A B A B B B A \ldots$ and $w^{\prime \prime}=\ldots A B B A A B B A \ldots$ which is not admissible.

Theorem
Let w be infinitely derivable. Then w belongs to the closure of square cutting sequences.

Example
(infinitely derivable sequence which is not a square cutting sequence) AAAAAABAAAAA

Characterization of Sturmian sequences

Theorem

A square cutting sequence is infinitely derivable.
Corollary
If w is a square cutting sequence with $\theta \in \Sigma_{0}$, the blocks of Bs have length n o $n+1$.

Example
The sequence $w=\ldots A B B B B A B B A B B B B A \ldots$ is NOT a square cutting sequence. Indeed: $w^{\prime}=\ldots A B B B A B A B B B A \ldots$ and $w^{\prime \prime}=\ldots A B B A A B B A \ldots$ which is not admissible.

Theorem
Let w be infinitely derivable. Then w belongs to the closure of square cutting sequences.

Example
(infinitely derivable sequence which is not a square cutting sequence)
... AAAAAABAAAAA...

Direction recognition and continued fractions

Let w a square cutting sequence, for example: $w=\ldots$ BBBABBABBABBABBBABBAABBBABBABBABBA. . .

```
Let us define {}{\mp@subsup{a}{n}{}\mp@subsup{}}{n}{}\in\mp@subsup{\mathbb{N}}{}{\mathbb{N}}\mathrm{ as follows:
    let }\mp@subsup{a}{0}{}\mathrm{ such that the blocks of Bs in w have length }\mp@subsup{a}{0}{}\mathrm{ or }\mp@subsup{a}{0}{}+1\mathrm{ (in
    the example a a = 2: BB o BBB)
    let }\mp@subsup{a}{1}{}\mathrm{ such that the blocks of As in w }\mp@subsup{w}{}{(\mp@subsup{a}{0}{})}\mathrm{ (in the example w') have
    length }\mp@subsup{a}{1}{}\mathrm{ or }\mp@subsup{a}{1}{}+1\mathrm{ (in the example }\mp@subsup{a}{1}{}=3: AAA o AAAA)
    let }\mp@subsup{a}{n}{}\mathrm{ such that the blocks of As ( }n\mathrm{ odd) or Bs ( }n\mathrm{ even) in
    w
Theorem (Direction Recognition)
The direction 0 of the trajectory with cutting sequence w is given by:
```


Direction recognition and continued fractions

Let w a square cutting sequence, for example: $w=\ldots$ BBBABBABBABBABBBABBAABBBABBABBABBA. . .

Let us define $\left\{a_{n}\right\}_{n} \in \mathbb{N}^{\mathbb{N}}$ as follows:

```
let ao such that the blocks of Bs in w have length ao or a0 + 1 (in
the example }\mp@subsup{a}{0}{}=2: BB\circBBB
let at such that the blocks of As in w}\mp@subsup{}{(\mp@subsup{a}{0}{\prime})}{(in the example w") have
length a}\mp@subsup{a}{1}{}\mathrm{ or }\mp@subsup{a}{1}{}+1\mathrm{ (in the example a}\mp@subsup{a}{1}{}=3: AAA o AAAA),
let }\mp@subsup{a}{n}{}\mathrm{ such that the blocks of As ( }n\mathrm{ odd) or Bs ( }n\mathrm{ even) in
w}\mp@subsup{}{(0++\cdots+\mp@subsup{a}{n-1}{\prime})}{\mathrm{ have length }\mp@subsup{a}{n}{}\mathrm{ or }\mp@subsup{a}{n}{}+1;
```

Theorem (Direction Recognition)
The direction θ of the trajectory with cutting sequence w is given by:

Direction recognition and continued fractions

Let w a square cutting sequence, for example:
$w=\ldots$ BBBABBABBABBABBBABBAABBBABBABBABBA. . .

Let us define $\left\{a_{n}\right\}_{n} \in \mathbb{N}^{\mathbb{N}}$ as follows:
let a_{0} such that the blocks of B s in w have length a_{0} or $a_{0}+1$ (in the example $a_{0}=2$: $\mathrm{BB} \circ \mathrm{BBB}$)
> length a_{1} or $a_{1}+1$ (in the example $a_{1}=3$: AAA o AAAA)

let a_{n} such that the blocks of $A s(n$ odd) or $B s(n$ even) in $w^{\left(a_{0}+\cdots+a_{n-1}\right)}$ have length a_{n} or $a_{n}+1$;

Theorem (Direction Recognition)
The direction θ of the trajectory with cutting sequence w is given by:

Direction recognition and continued fractions

Let w a square cutting sequence, for example:
$w=\ldots$ BBBABBABBABBABBBABBAABBBABBABBABBA...
$w^{\prime}=\ldots$. ${ }^{\prime} B A B A B A B A B B A B A A B B A B A B A . .$.

Let us define $\left\{a_{n}\right\}_{n} \in \mathbb{N}^{\mathbb{N}}$ as follows:
let a_{0} such that the blocks of B s in w have length a_{0} or $a_{0}+1$ (in the example $a_{0}=2$: $\mathrm{BB} \circ \mathrm{BBB}$)
let a_{1} such that the blocks of $A s$ in $w^{\left(a_{0}\right)}$ (in the example $w^{\prime \prime}$) have
length a_{1} or $a_{1}+1$ (in the example $a_{1}=3$: AAA o AAAA)
let a_{n} such that the blocks of $A s(n$ odd) or $B s(n$ even) in $w^{\left(a_{0}+\cdots+a_{n-1}\right)}$ have length a_{n} or $a_{n}+1$;

Theorem (Direction Recognition)
The direction θ of the trajectory with cutting sequence w is given by:

Direction recognition and continued fractions

Let w a square cutting sequence, for example:
$w=\ldots$ BBBABBABBABBABBBABBAABBBABBABBABBA...
$w^{\prime}=\ldots$. ${ }^{\prime} B A B A B A B A B B A B A A B B A B A B A . .$.
$w^{\prime \prime}=\ldots$. ${ }^{\prime} A A A A B A A A B A A A . .$.
Let us define $\left\{a_{n}\right\}_{n} \in \mathbb{N}^{\mathbb{N}}$ as follows:
let a_{0} such that the blocks of B s in w have length a_{0} or $a_{0}+1$ (in the example $a_{0}=2$: $\mathrm{BB} \circ \mathrm{BBB}$)
> let a_{1} such that the blocks of $A s$ in $w^{\left(a_{0}\right)}$ (in the example $w^{\prime \prime}$) have
> length a_{1} or $a_{1}+1$ (in the example $a_{1}=3$: AAA o AAAA)

let a_{n} such that the blocks of $A s(n$ odd) or $B s(n$ even $)$ in $w^{\left(a_{0}+\cdots+a_{n-1}\right)}$ have length a_{n} or $a_{n}+1$;

Theorem (Direction Recognition)
The direction θ of the trajectory with cutting sequence w is given by:

Direction recognition and continued fractions

Let w a square cutting sequence, for example:
$w=\ldots$ BBBABBABBABBABBBABBAABBBABBABBABBA \ldots
$w^{\prime}=\ldots$ BBABABABABBABAABBABABA. . .
$w^{\prime \prime}=\ldots$. . $B A A A A B A A A B A A A . .$.
Let us define $\left\{a_{n}\right\}_{n} \in \mathbb{N}^{\mathbb{N}}$ as follows:
let a_{0} such that the blocks of B s in w have length a_{0} or $a_{0}+1$ (in the example $a_{0}=2$: $\mathrm{BB} \circ \mathrm{BBB}$)
let a_{1} such that the blocks of $A s$ in $w^{\left(a_{0}\right)}$ (in the example $w^{\prime \prime}$) have length a_{1} or $a_{1}+1$ (in the example $a_{1}=3$: AAA o AAAA)
let a_{n} such that the blocks of $A s(n$ odd $)$ or $B s$ (n even $)$ in $w^{\left(a_{0}+\cdots+a_{n-1}\right)}$ have length a_{n} or $a_{n}+1$;

Theorem (Direction Recognition)
The direction θ of the trajectory with cutting sequence w is given by:

Direction recognition and continued fractions

Let w a square cutting sequence, for example:
$w=\ldots$ BBBABBABBABBABBBABBAABBBABBABBABBA \ldots
$w^{\prime}=\ldots$ BBABABABABBABAABBABABA. . .
$w^{\prime \prime}=\ldots$. . $B A A A A B A A A B A A A . .$.
Let us define $\left\{a_{n}\right\}_{n} \in \mathbb{N}^{\mathbb{N}}$ as follows:
let a_{0} such that the blocks of B s in w have length a_{0} or $a_{0}+1$ (in the example $a_{0}=2$: $\mathrm{BB} \circ \mathrm{BBB}$) let a_{1} such that the blocks of $A s$ in $w^{\left(a_{0}\right)}$ (in the example $w^{\prime \prime}$) have length a_{1} or $a_{1}+1$ (in the example $a_{1}=3$: AAA o AAAA)
let a_{n} such that the blocks of $A s(n$ odd) or $B s(n$ even $)$ in $w^{\left(a_{0}+\cdots+a_{n-1}\right)}$ have length a_{n} or $a_{n}+1$;

Theorem (Direction Recognition)
The direction θ of the trajectory with cutting sequence w is given by:

Direction recognition and continued fractions

Let w a square cutting sequence, for example:
$w=\ldots$ BBBABBABBABBABBBABBAABBBABBABBABBA \ldots
$w^{\prime}=\ldots$ BBABABABABBABAABBABABA. . .
$w^{\prime \prime}=\ldots$ BAAAABAAABAAA. . .
Let us define $\left\{a_{n}\right\}_{n} \in \mathbb{N}^{\mathbb{N}}$ as follows:
let a_{0} such that the blocks of B s in w have length a_{0} or $a_{0}+1$ (in the example $a_{0}=2$: $\mathrm{BB} \circ \mathrm{BBB}$)
let a_{1} such that the blocks of $A s$ in $w^{\left(a_{0}\right)}$ (in the example $w^{\prime \prime}$) have length a_{1} or $a_{1}+1$ (in the example $a_{1}=3$: AAA o AAAA)
let a_{n} such that the blocks of A s $(n$ odd) or $B s$ (n even) in $w^{\left(a_{0}+\cdots+a_{n-1}\right)}$ have length a_{n} or $a_{n}+1$;

Direction recognition and continued fractions

Let w a square cutting sequence, for example:
$w=\ldots$ BBBABBABBABBABBBABBAABBBABBABBABBA \ldots
$w^{\prime}=\ldots$ BBABABABABBABAABBABABA. . .
$w^{\prime \prime}=\ldots$ BAAAABAAABAAA. . .
Let us define $\left\{a_{n}\right\}_{n} \in \mathbb{N}^{\mathbb{N}}$ as follows:
let a_{0} such that the blocks of $B s$ in w have length a_{0} or $a_{0}+1$ (in the example $a_{0}=2$: $\mathrm{BB} \circ \mathrm{BBB}$)
let a_{1} such that the blocks of $A s$ in $w^{\left(a_{0}\right)}$ (in the example $w^{\prime \prime}$) have length a_{1} or $a_{1}+1$ (in the example $a_{1}=3$: AAA o AAAA)
let a_{n} such that the blocks of A s $(n$ odd) or $B s$ (n even) in $w^{\left(a_{0}+\cdots+a_{n-1}\right)}$ have length a_{n} or $a_{n}+1$;

Theorem (Direction Recognition)
The direction θ of the trajectory with cutting sequence w is given by:

$$
\theta=\frac{1}{a_{0}+\frac{1}{a_{1}+\frac{1}{\cdots+\frac{1}{a_{n}+\ldots}}}}
$$

Proof for Sturmian sequences

The key step is given by the following Lemma:
Lemma
If w is a square cutting sequence, also the derived sequence w^{\prime} is a square cutting sequence.

Recalling that a square cutting sequence is clearly admissible, we have:
Corollary
Square cutting sequences are infinitely derivable.
Lemma
If w is a cutting sequence of a trajectory in
direction θ, the derived sequence w^{\prime} is a
cutting sequence of a trajectory in direction
θ^{\prime}, where $\theta^{\prime}=F(\theta)$ and F is the Farey map
in Figure.

Proof for Sturmian sequences

The key step is given by the following Lemma:
Lemma
If w is a square cutting sequence, also the derived sequence w^{\prime} is a square cutting sequence.

Recalling that a square cutting sequence is clearly admissible, we have:
Corollary
Square cutting sequences are infinitely derivable.
Lemma
If w is a cutting sequence of a trajectory in
direction θ, the derived sequence w^{\prime} is a
cutting sequence of a trajectory in direction
θ^{\prime}, where $\theta^{\prime}=F(\theta)$ and F is the Farey map
in Figure.

Proof for Sturmian sequences

The key step is given by the following Lemma:

Lemma

If w is a square cutting sequence, also the derived sequence w^{\prime} is a square cutting sequence.

Recalling that a square cutting sequence is clearly admissible, we have:
Corollary
Square cutting sequences are infinitely derivable.

Lemma

If w is a cutting sequence of a trajectory in direction θ, the derived sequence w^{\prime} is a cutting sequence of a trajectory in direction θ^{\prime}, where $\theta^{\prime}=F(\theta)$ and F is the Farey map in Figure.

Renormalization and derivation

Let w be the cutting sequence of a trajectory in direction $\theta \in \Sigma_{0}$;

in the example:
$w=\ldots$ ABB ABBB ABB ABB ABBB \ldots

The new direction θ^{\prime} is obtained applying to θ a shear. One can verify that $\theta^{\prime}=F(\theta)$ where F is the Farey map. The Farey map is the additive version of the continued fraction algorithm.

Renormalization and derivation

Let w be the cutting sequence of a trajectory in direction $\theta \in \Sigma_{0}$;

in the example:
$w=\ldots$ ABB ABBB ABB ABB ABBB

Let us add the diagonal C.
Let \tilde{w} be the extended sequence:
Each BB becomes $\mathrm{BCB} ; \mathrm{AB}$ stays $A B$
The new direction θ^{\prime} is obtained applying to θ a shear. One can verify
that $\theta^{\prime}=F(\theta)$ where F is the Farey map. The Farey map is the additive
version of the continued fraction algorithm.

Renormalization and derivation

Let w be the cutting sequence of a trajectory in direction $\theta \in \Sigma_{0}$;

in the example:
$w=\ldots$ ABB ABBB ABB ABB ABBB

Let us add the diagonal C.
Let \tilde{w} be the extended sequence:
Each $B B$ becomes $B C B ; A B$ stays $A B$
The new direction θ^{\prime} is obtained applying to θ a shear. One can verify
that $\theta^{\prime}=F(\theta)$ where F is the Farey map. The Farey map is the additive
version of the continued fraction algorithm.

Renormalization and derivation

Let w be the cutting sequence of a trajectory in direction $\theta \in \Sigma_{0}$;

in the example:
$w=\ldots$ ABB ABBB ABB ABB ABBB

Let us add the diagonal C.
Let \tilde{w} be the extended sequence:
Each $B B$ becomes $B C B ; A B$ stays $A B$
The new direction θ^{\prime} is obtained applying to θ a shear. One can verify
that $\theta^{\prime}=F(\theta)$ where F is the Farey map. The Farey map is the additive
version of the continued fraction algorithm.

Renormalization and derivation

Let w be the cutting sequence of a trajectory in direction $\theta \in \Sigma_{0}$;

in the example:

$$
\begin{aligned}
& w=\ldots \text { A B B A B B B A B B A B B A B B B } \\
& \tilde{w}=\ldots \text { A B C B A C B C B A B C B A B C B A B C B C B } \ldots
\end{aligned}
$$

Let us add the diagonal C.
Let \tilde{w} be the extended sequence:
Each $B B$ becomes $B C B ; A B$ stays $A B$

Renormalization and derivation

Let w be the cutting sequence of a trajectory in direction $\theta \in \Sigma_{0}$;

in the example:

$$
\begin{aligned}
& w=\ldots \text { A B B A B B B A B B A B B A B B B } \\
& \tilde{w}=\ldots \text { A B C B A B B C B A B C B A B C B A B C C C } \ldots
\end{aligned}
$$

Let us cut and paste the rectangle.
Consider the cutting sequence u with respect to the parallelogram Π.
To obtain u from \tilde{w} it is enough to drop the Bs
The new direction θ^{\prime} is obtained applying to θ a shear. One can verify that $\theta^{\prime}=F(\theta)$ where F is the Farey map. The Farey map is the additive

Renormalization and derivation

Let w be the cutting sequence of a trajectory in direction $\theta \in \Sigma_{0}$;

in the example:

$$
\begin{aligned}
& w=\ldots \text { A B B A B B B A B B A B B A B B B } \\
& \tilde{w}=\ldots \text { A B C B A C B C B A B C B A B C B A B C B C B } \ldots
\end{aligned}
$$

Let us cut and paste the rectangle.
Consider the cutting sequence u with respect to the parallelogram Π. To obtain u from \tilde{w} it is enough to drop the Bs.
The new direction θ^{\prime} is obtained applying to θ a shear. One can verify that $\theta^{\prime}=F(\theta)$ where F is the Farey map. The Farey map is the additive

Renormalization and derivation

Let w be the cutting sequence of a trajectory in direction $\theta \in \Sigma_{0}$;

in the example:

Let us cut and paste the rectangle.
Consider the cutting sequence u with respect to the parallelogram Π. To obtain u from \tilde{w} it is enough to drop the Bs.
The new direction θ^{\prime} is obtained applying to θ a shear. One can verify that $\theta^{\prime}=F(\theta)$ where F is the Farey map. The Farey map is the additive version of the continued fraction algorithm.

Renormalization and derivation

Let w be the cutting sequence of a trajectory in direction $\theta \in \Sigma_{0}$;

in the example:
$w=\ldots$ A B B A B B B A B B A B B A B B B
$\tilde{w}=\ldots$ A B C B A B C B C B A B C B A B C B A B C B C B \ldots
$u=\ldots A \quad C \quad A \quad C \quad C \quad A \quad C \quad A \quad C \quad A \quad C \quad C \quad \ldots$

Let us renormalize: we can transform Π in a square by the shear $\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$. Let us transform back the Cs into Bs.

The new direction θ^{\prime} is obtained applying to θ a shear. One can verify that $\theta^{\prime}=F(\theta)$ where F is the Farey map. The Farey map is the additive version of the continued fraction algorithm.

Renormalization and derivation

Let w be the cutting sequence of a trajectory in direction $\theta \in \Sigma_{0}$;

in the example:

Let us renormalize: we can transform Π in a square by the shear $\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$. Let us transform back the Cs into Bs.

The new direction θ^{\prime} is obtained applying to θ a shear. One can verify that $\theta^{\prime}=F(\theta)$ where F is the Farey map. The Farey map is the additive version of the continued fraction algorithm.

Renormalization and derivation

Let w be the cutting sequence of a trajectory in direction $\theta \in \Sigma_{0}$;

in the example:

Let us renormalize: we can transform Π in a square by the shear $\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$. Let us transform back the Cs into Bs .
The sequence thus obtained is the derived sequence.
The new direction θ^{\prime} is obtained applying to θ a shear. One can verify that $\theta^{\prime}=F(\theta)$ where F is the Farey map. The Farey map is the additive version of the continued fraction algorithm.

Renormalization and derivation

Let w be the cutting sequence of a trajectory in direction $\theta \in \Sigma_{0}$;

in the example:

To check it:
A BBB A $\rightarrow \mathrm{A} \mathrm{BCBCB} \mathrm{A}$
act as derivation.
The new direction θ^{\prime} is obtained applying to θ a shear. One can verify that $\theta^{\prime}=F(\theta)$ where F is the Farey map. The Farey map is the additive

Renormalization and derivation

Let w be the cutting sequence of a trajectory in direction $\theta \in \Sigma_{0}$;

in the example:

To check it:
A BBB A $\rightarrow \mathrm{A} \mathrm{BCBCB} \mathrm{A} \rightarrow \mathrm{ACCA}$
act as derivation.
The new direction θ^{\prime} is obtained applying to θ a shear. One can verify that $\theta^{\prime}=F(\theta)$ where F is the Farey map. The Farey map is the additive version of the continued fraction algorithm.

Renormalization and derivation

Let w be the cutting sequence of a trajectory in direction $\theta \in \Sigma_{0}$;

in the example:

To check it:
A BBB A $\rightarrow \mathrm{A} \mathrm{BCBCB} \mathrm{A} \rightarrow \mathrm{ACCA} \rightarrow \mathrm{ABBA}$
act as derivation.
The new direction θ^{\prime} is obtained applying to θ a shear. One can verify that $\theta^{\prime}=F(\theta)$ where F is the Farey map. The Farey map is the additive

Renormalization and derivation

Let w be the cutting sequence of a trajectory in direction $\theta \in \Sigma_{0}$;

in the example:

To check it:
A BBB A $\rightarrow \mathrm{A} \mathrm{BCBCB} \mathrm{A} \rightarrow \mathrm{ACCA} \rightarrow \mathrm{ABBA}$ act as derivation.
The new direction θ^{\prime} is obtained applying to θ a shear. One can verify that $\theta^{\prime}=F(\theta)$ where F is the Farey map. The Farey map is the additive version of the continued fraction algorithm.

Renormalization and derivation

Let w be the cutting sequence of a trajectory in direction $\theta \in \Sigma_{0}$;

Summarizing:
We showed that the sequence w^{\prime} is the cutting sequence of a new trajectory in the square (thus still a square cutting sequence).
direction θ^{\prime} is obtained applying to θ a shear. One can verify that
$\theta^{\prime}=F(\theta)$ where F is the Farey map. The Farey map is the additive
version of the continued fraction algorithm.

Renormalization and derivation

Let w be the cutting sequence of a trajectory in direction $\theta \in \Sigma_{0}$;

Summarizing:
We showed that the sequence w^{\prime} is the cutting sequence of a new trajectory in the square (thus still a square cutting sequence). The new direction θ^{\prime} is obtained applying to θ a shear. One can verify that $\theta^{\prime}=F(\theta)$ where F is the Farey map.

Renormalization and derivation

Let w be the cutting sequence of a trajectory in direction $\theta \in \Sigma_{0}$;

Summarizing:
We showed that the sequence w^{\prime} is the cutting sequence of a new trajectory in the square (thus still a square cutting sequence). The new direction θ^{\prime} is obtained applying to θ a shear. One can verify that $\theta^{\prime}=F(\theta)$ where F is the Farey map. The Farey map is the additive version of the continued fraction algorithm.

