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The octagon: admissible sequences for 0 < 6§ < 7/8

Using isometries of the octagon, we can
reduce to consider

s
9e0,5].

The transitions (pairs of consecutive letters) which can appear are:

D

Each octagon cutting sequence of a trajectory in direction 0 < 0 < 7/8
determines a path in the diagram in Figure.

For the other 7/8 sectors, one gets similar diagrams with permuted
letters.
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Def: A sequence w € {A, B, C, D}” is admissible if it gives an infinite
path on one of the 8 possible diagrams (8 types):
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Lemma
An octagon cutting sequence is admissible.
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Derived sequences

Definition
A letter in {A, B, C, D} is sandwiched if it is preceeded and followed by
the same letter.

Example
In D BB CB A A D the letter C is sandwiched between to Bs.

Definition (Derived sequence)

If w is an octagon cutting sequence, the derived sequence w’ is obtained
keeping only letters which are sandwitched.

Example
fw=...DADBCCBCCBDADBCBDBDBCBD...,
w=... A B A C DBD C

Definition (Derivable sequences)

A sequence w € {A, B, C, D}” is derivable if it is admissible and its
derivative is still admissible. The sequence w is infinitely derivable if each
of its derivatives is derivable.
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Characterization of octagon cutting sequences

Theorem (Smillie-Ulcigrai)

An octagon cutting sequence is infinitely derivable.

» Remark 1. we prove a similar characterization for every regular 2n-gon.
It also holds for double n-gon (n odd), see Diana Dauvis.

» Remark 2: It is not a sufficient condition for the closure (differently than
the square). But:

Theorem (Smillie-Ulcigrai )

One can write substitutions o;, where 1 < i <7 on an alphabet A'
s.t. w is in the closure of octagon cutting sequences iff

3 (ik)i, (Li )k s-t. w=T;

lim o;0; -0, L.
onﬁoo nvnR Ik

[where T, converts sequences in A" to sequences in A admissible in sector i.]

Remark: This is called an .%’-adic presentation.
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|deas from proofs

As in the case of the square, the theorems follow if we prove that:

Theorem
If w is an octagon cutting sequence, also the derived sequence w' is an
octagon cutting sequence.

To prove it, one uses an argument in the same spirit of:

i.e. one uses renormalization.
We need: a map to renormalize the octagon!
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Geometric renormalization for the octagon
Let w be the cutting sequence of a trajectory in direction 0 < 6 < 7/8.

Let O/ = <‘01 2(“;‘@) 0.

The magic of the octagon: Veech showed that O’ can be mapped back
to O by cutting and pasting by translations.
1

Lemma
The derived sequence w’ coincides with the cutting sequence of the same
trajectory in direction 6 with respect to the sides of O'.

Let us renormalize by applying the inverse: O’ — O , 06— 6.

Cor.: The derived sequence is an octagon cutt. sequence (in direction ¢’).

RePeai;getJ:haLcuttingsequermes are infinitely derivable.
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The octagon surface

Take a regular octagon O. ldenfity opposite sides (with same label) by
translations:

> We get a surface of genus 2 (pretzel).
> |t is a flat surface (locally Euclidean)

» Biinfinite trajectories of the linear flow are geodesics for the flat
metric.
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Cut and paste for the octagon

Let O/ = (‘01 2(145‘/§)> 0.

()
ol

O and O’ can be cut and pasted into each other by translations:
Hence O and O’ give the same translation surface.
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Translation surfaces
Glueing polygons by translations we get translation surfaces:

Definition

A translation surface S is a closed dimension two manifold with a locally
Euclidean structure, apart from finitely many points ¥ C S, called singularities:
each point outside ¥ has a neighbourbood isomorphic to R?; changes of
coordinates between neighbourhoods are translations; points in ¥ are conical
singularities of cone angle 2wk, k € N.

» The linear flow ¢ in direction 6 is well defined outside singularities;
> At conical singularities, ¢/ has saddle points.

[Further Refs: Zorich, Flat Surfaces; Masur, Ergodic Theory of Flat Surfaces.]
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Affine diffeomorphisms of translation surfaces

Examples of translation surfaces S which have non trivial affine
diffeomorphisms:

Ex 1 The torus T?:

Ex 2 The regular octagon surface So:

The torus and the octagon surfaces are examples of Veech surfaces, i.e.

surfaces which are rich of affine diffeos.

[Def: A translation surface is a Veech (or lattice) surface if the linear parts of

affine diffeos give a lattice in SL(2,RR).]
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Veech surfaces
> Veech surfaces (rich of affine diffeos) are actively researched in
Teichmiiller dynamics, since:

» Veech surfaces are dynamically optimal, i.e. they satisfy Veech
dichotomy:
biinfinite linear trajectories are either periodic or dense and
uniformely distributed;

Known (primitive) Veech surfaces:

» The square (and square-tiled surfaces),

» Regular polygon surfaces (2n-gon and double n-gons) (Veech)

» Ward surfaces (special case of Bouw Moeller surfaces)

» Bouw Moeller surfaces (Bouw-Moeller, Hooper)

» [-shaped family of g = 2 surfaces discovered by Calta and McMullen

> NEW: Cathedral surfaces in the gothic locus ( McMullen, Mukamel,
Wright)

» Finitess results... ( Aulicio, Bainbridge, Eskin, Filip, Nguyen, Lanneau,

Moeller, Wright...)
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Bouw-Moeller surfaces Sy, ,

Sm.n has m semi-regular polygons with rotational symmetry 27/n.

E.g. 543 has 4 polygons:
2 semi-regular hexagons,
2 triangles)

E.g. 534 has 3 polygons: 2
octagons, 2 squares)

[Polygonal presentation by Pat Hooper (in some cases by A. Wright)]
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Characterization of Bouw-Moeller cutting sequences

Consider linear trajectories on the Bouw-Moeller surface Sy, p.

Labels pairs of sides by 7/ \8
an alphabet A. 2\

Theorem (Diana Davis- Irene Pasquinelli-U")

One can write substitutions o;, 1 <i < (m—1)(n—1), s.t. w is in the
closure of cutting sequences for Sp, ,, iff

= (ik)ieNa s.t. WEﬂO’,'IO','Z'”O','kﬂZ.

n

» This gives an S-adic characterization and a recognition algorithm;
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I[ETs as Poincaré sections

Consider a linear flow on a translation surface. Take a transverse section.

A B C D
' >T
D C B A

The Poincaré first return map on a section is an interval exchange
transformation (IET).

[Remark: Linear flows on translation surfaces and IETs have entropy zero.
Cutting sequences of linear trajectories and itineraries of IETs have linear
complexity. ]



