
Cutting sequences in other polygons

Consider a regular polygon
with 2n sides glued by translations

E.g. the regular octagon
with opposite sides glued.

Label pairs of sides by an alphabet A.
E.g. A = {A,B,C ,D}.

Let ϕθt be the linear flow in direction θ:
trajectories are straight lines in direction θ
with sides identifications.
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Definition (Cutting sequence)
The cutting sequence in AZ that codes a bi-infinite linear trajectory of ϕθt
consists of the sequence of labels of the sides hit by the trajectory.

Example
The cutting sequence of the trajectory in the example is:
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The cutting sequence in AZ that codes a bi-infinite linear trajectory of ϕθt
consists of the sequence of labels of the sides hit by the trajectory.

Example
The cutting sequence of the trajectory in the example is: A B B A C D



The octagon: admissible sequences for 0 ≤ θ < π/8

Using isometries of the octagon, we can
reduce to consider
θ ∈

[
0, π8

]
. 0

The transitions (pairs of consecutive letters) which can appear are:

D B

B D

A

A

C C

Each octagon cutting sequence of a trajectory in direction 0 ≤ θ ≤ π/8
determines a path in the diagram in Figure.
For the other π/8 sectors, one gets similar diagrams with permuted
letters.
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Admissible sequences

Def: A sequence w ∈ {A,B,C ,D}Z is admissible if it gives an infinite
path on one of the 8 possible diagrams (8 types):
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An octagon cutting sequence is admissible.
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Derived sequences

Definition
A letter in {A,B,C ,D} is sandwiched if it is preceeded and followed by
the same letter.

Example
In D B B C B A A D the letter C is sandwiched between to Bs.

Definition (Derived sequence)
If w is an octagon cutting sequence, the derived sequence w ′ is obtained
keeping only letters which are sandwitched.

Example
If w = . . . D A D B C C B C C B D A D B C B D B D B C B D . . . ,

If

w’ = . . . A

Definition (Derivable sequences)
A sequence w ∈ {A,B,C ,D}Z is derivable if it is admissible and its
derivative is still admissible. The sequence w is infinitely derivable if each
of its derivatives is derivable.
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Characterization of octagon cutting sequences

Theorem (Smillie-Ulcigrai)
An octagon cutting sequence is infinitely derivable.

I Remark 1: we prove a similar characterization for every regular 2n-gon.

It also holds for double n-gon (n odd), see Diana Davis.

I Remark 2: It is not a sufficient condition for the closure (differently than

the square). But:

Theorem (Smillie-Ulcigrai )
One can write substitutions σi , where 1 ≤ i ≤ 7

on an alphabet A′

s.t. w is in the closure of octagon cutting sequences iff

∃ (ik)i , (Lk)k s.t. w =

Ti0

lim
n→∞

σi1σi2 · · ·σikLk .

[where Ti0 converts sequences in A′ to sequences in A admissible in sector i0.]

Remark: This is called an S -adic presentation.
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I Remark 2: It is not a sufficient condition for the closure (differently than

the square). But:

Theorem (Smillie-Ulcigrai )
One can write substitutions σi , where 1 ≤ i ≤ 7 on an alphabet A′

s.t. w is in the closure of octagon cutting sequences iff

∃ (ik)i , (Lk)k s.t. w =

Ti0

lim
n→∞

σi1σi2 · · ·σikLk .

[where Ti0 converts sequences in A′ to sequences in A admissible in sector i0.]

Remark: This is called an S -adic presentation.
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Ideas from proofs

As in the case of the square, the theorems follow if we prove that:

Theorem
If w is an octagon cutting sequence, also the derived sequence w ′ is an
octagon cutting sequence.

To prove it, one uses an argument in the same spirit of:

A

A

cBc

�
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A

c c

A

�0

i.e. one uses renormalization.
We need: a map to renormalize the octagon!
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Geometric renormalization for the octagon
Let w be the cutting sequence of a trajectory in direction 0 ≤ θ ≤ π/8.

Let O ′ =

(
−1 2(1 +

√
2)

0 1

)
O.

The magic of the octagon: Veech showed that O ′ can be mapped back
to O by cutting and pasting by translations.
1

Lemma
The derived sequence w ′ coincides with the cutting sequence of the same
trajectory in direction θ with respect to the sides of O ′.

Let us renormalize by applying the inverse: O ′ 7→ O , θ 7→ θ′.

Cor.: The derived sequence is an octagon cutt. sequence (in direction θ′).

Repeat: get that cutting sequences are infinitely derivable.
1
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The octagon surface
Take a regular octagon O. Idenfity opposite sides (with same label) by
translations:

I We get a surface of genus 2 (pretzel).

I It is a flat surface (locally Euclidean)

I Biinfinite trajectories of the linear flow are geodesics for the flat
metric.
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Cut and paste for the octagon

Let O ′ =

(
−1 2(1 +

√
2)

0 1

)
O.

O and O ′ can be cut and pasted into each other by translations:
Hence O and O ′ give the same translation surface.
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Translation surfaces
Glueing polygons by translations we get translation surfaces:

Definition
A translation surface S is a closed dimension two manifold with a locally
Euclidean structure, apart from finitely many points Σ ⊂ S , called singularities:
each point outside Σ has a neighbourbood isomorphic to R2; changes of
coordinates between neighbourhoods are translations; points in Σ are conical
singularities of cone angle 2πk, k ∈ N.

I The linear flow ϕθt in direction θ is well defined outside singularities;

I At conical singularities, ϕθt has saddle points.

[Further Refs: Zorich, Flat Surfaces; Masur, Ergodic Theory of Flat Surfaces.]
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Affine diffeomorphisms of translation surfaces
Examples of translation surfaces S which have non trivial affine
diffeomorphisms:

Ex 1 The torus T2:

A =

(
1 1
0 1

)

Ex 2 The regular octagon surface SO :

A =(
1 2(1 +

√
2)

0 1

)

The torus and the octagon surfaces are examples of Veech surfaces, i.e.
surfaces which are rich of affine diffeos.

[Def: A translation surface is a Veech (or lattice) surface if the linear parts of

affine diffeos give a lattice in SL(2,R).]
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Veech surfaces

I Veech surfaces (rich of affine diffeos) are actively researched in
Teichmüller dynamics, since:

I Veech surfaces are dynamically optimal, i.e. they satisfy Veech
dichotomy:
biinfinite linear trajectories are either periodic or dense and
uniformely distributed;

Known (primitive) Veech surfaces:

I The square (and square-tiled surfaces),

I Regular polygon surfaces (2n-gon and double n-gons) (Veech)

I Ward surfaces (special case of Bouw Moeller surfaces)

I Bouw Moeller surfaces (Bouw-Moeller, Hooper)

I L-shaped family of g = 2 surfaces discovered by Calta and McMullen

I NEW: Cathedral surfaces in the gothic locus ( McMullen, Mukamel,

Wright)

I Finitess results... ( Aulicio, Bainbridge, Eskin, Filip, Nguyen, Lanneau,

Moeller, Wright...)
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Bouw-Moeller surfaces Sm,n

Sm,n has m semi-regular polygons with rotational symmetry 2π/n.

E.g. S4,3 has 4 polygons:

2 semi-regular hexagons,

2 triangles)

E.g. S3,4 has 3 polygons: 2

octagons, 2 squares)

[Polygonal presentation by Pat Hooper (in some cases by A. Wright)]
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Characterization of Bouw-Moeller cutting sequences

Consider linear trajectories on the Bouw-Moeller surface Sm,n.

Labels pairs of sides by
an alphabet A.

Theorem (Diana Davis- Irene Pasquinelli-U’)
One can write substitutions σi , 1 ≤ i ≤ (m − 1)(n − 1), s.t. w is in the
closure of cutting sequences for Sm,n iff

∃ (ik)i∈N, s.t. w ∈
⋂
n

σi1σi2 · · ·σikA Z.

I This gives an S-adic characterization and a recognition algorithm;
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IETs as Poincaré sections

Consider a linear flow on a translation surface. Take a transverse section.

A
C

D

A

B

C

D

B

The Poincaré first return map on a section is an interval exchange
transformation (IET).

[Remark: Linear flows on translation surfaces and IETs have entropy zero.

Cutting sequences of linear trajectories and itineraries of IETs have linear

complexity. ]
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The Poincaré first return map on a section is an interval exchange
transformation (IET).

[Remark: Linear flows on translation surfaces and IETs have entropy zero.

Cutting sequences of linear trajectories and itineraries of IETs have linear

complexity. ]


