Cutting sequences in other polygons

Consider a regular polygon with $2 n$ sides glued by translations
E.g. the regular octagon with opposite sides glued.
Label pairs of sides by an alphabet \mathcal{A}. E.g. $\mathcal{A}=\{A, B, C, D\}$.

Let φ_{t}^{θ} be the linear flow in direction θ :
trajectories are straight lines in direction θ

with sides identifications.

Cutting sequences in other polygons

Consider a regular polygon with $2 n$ sides glued by translations
E.g. the regular octagon with opposite sides glued.

Label pairs of sides by an alphabet \mathcal{A}. E.g. $\mathcal{A}=\{A, B, C, D\}$.

Let φ_{t}^{θ} be the linear flow in direction θ : trajectories are straight lines in direction θ
 with sides identifications.

Definition (Cutting sequence)
The cutting sequence in $\mathcal{A}^{\mathbb{Z}}$ that codes a bi-infinite linear trajectory of φ_{t}^{θ} consists of the sequence of labels of the sides hit by the trajectory.

Example
The cutting sequence of the trajectory in the example is:

Cutting sequences in other polygons

Consider a regular polygon with $2 n$ sides glued by translations
E.g. the regular octagon with opposite sides glued.
Label pairs of sides by an alphabet \mathcal{A}.
E.g. $\mathcal{A}=\{A, B, C, D\}$.

Let φ_{t}^{θ} be the linear flow in direction θ : trajectories are straight lines in direction θ
 with sides identifications.

Definition (Cutting sequence)
The cutting sequence in $\mathcal{A}^{\mathbb{Z}}$ that codes a bi-infinite linear trajectory of φ_{t}^{θ} consists of the sequence of labels of the sides hit by the trajectory.

Example
The cutting sequence of the trajectory in the example is:

Cutting sequences in other polygons

Consider a regular polygon with $2 n$ sides glued by translations
E.g. the regular octagon with opposite sides glued.
Label pairs of sides by an alphabet \mathcal{A}.
E.g. $\mathcal{A}=\{A, B, C, D\}$.

Let φ_{t}^{θ} be the linear flow in direction θ : trajectories are straight lines in direction θ
 with sides identifications.

Definition (Cutting sequence)
The cutting sequence in $\mathcal{A}^{\mathbb{Z}}$ that codes a bi-infinite linear trajectory of φ_{t}^{θ} consists of the sequence of labels of the sides hit by the trajectory.
Example
The cutting sequence of the trajectory in the example is:

Cutting sequences in other polygons

Consider a regular polygon with $2 n$ sides glued by translations
E.g. the regular octagon with opposite sides glued.

Label pairs of sides by an alphabet \mathcal{A}.
E.g. $\mathcal{A}=\{A, B, C, D\}$.

Let φ_{t}^{θ} be the linear flow in direction θ : trajectories are straight lines in direction θ
 with sides identifications.

Definition (Cutting sequence)
The cutting sequence in $\mathcal{A}^{\mathbb{Z}}$ that codes a bi-infinite linear trajectory of φ_{t}^{θ} consists of the sequence of labels of the sides hit by the trajectory.

Example
The cutting sequence of the trajectory in the example is:

Cutting sequences in other polygons

Consider a regular polygon with $2 n$ sides glued by translations
E.g. the regular octagon with opposite sides glued.
Label pairs of sides by an alphabet \mathcal{A}.
E.g. $\mathcal{A}=\{A, B, C, D\}$.

Let φ_{t}^{θ} be the linear flow in direction θ : trajectories are straight lines in direction θ
 with sides identifications.

Definition (Cutting sequence)
The cutting sequence in $\mathcal{A}^{\mathbb{Z}}$ that codes a bi-infinite linear trajectory of φ_{t}^{θ} consists of the sequence of labels of the sides hit by the trajectory.

Example
The cutting sequence of the trajectory in the example is:

Cutting sequences in other polygons

Consider a regular polygon with $2 n$ sides glued by translations
E.g. the regular octagon with opposite sides glued.

Label pairs of sides by an alphabet \mathcal{A}.
E.g. $\mathcal{A}=\{A, B, C, D\}$.

Let φ_{t}^{θ} be the linear flow in direction θ : trajectories are straight lines in direction θ
 with sides identifications.

Definition (Cutting sequence)
The cutting sequence in $\mathcal{A}^{\mathbb{Z}}$ that codes a bi-infinite linear trajectory of φ_{t}^{θ} consists of the sequence of labels of the sides hit by the trajectory.

Example
The cutting sequence of the trajectory in the example is:

Cutting sequences in other polygons

Consider a regular polygon with $2 n$ sides glued by translations
E.g. the regular octagon with opposite sides glued.

Label pairs of sides by an alphabet \mathcal{A}.
E.g. $\mathcal{A}=\{A, B, C, D\}$.

Let φ_{t}^{θ} be the linear flow in direction θ : trajectories are straight lines in direction θ
 with sides identifications.

Definition (Cutting sequence)
The cutting sequence in $\mathcal{A}^{\mathbb{Z}}$ that codes a bi-infinite linear trajectory of φ_{t}^{θ} consists of the sequence of labels of the sides hit by the trajectory.

Example
The cutting sequence of the trajectory in the example is:

Cutting sequences in other polygons

Consider a regular polygon with $2 n$ sides glued by translations
E.g. the regular octagon with opposite sides glued.

Label pairs of sides by an alphabet \mathcal{A}.
E.g. $\mathcal{A}=\{A, B, C, D\}$.

Let φ_{t}^{θ} be the linear flow in direction θ : trajectories are straight lines in direction θ
 with sides identifications.

Definition (Cutting sequence)
The cutting sequence in $\mathcal{A}^{\mathbb{Z}}$ that codes a bi-infinite linear trajectory of φ_{t}^{θ} consists of the sequence of labels of the sides hit by the trajectory.

Example
The cutting sequence of the trajectory in the example is: A

Cutting sequences in other polygons

Consider a regular polygon with $2 n$ sides glued by translations
E.g. the regular octagon with opposite sides glued.

Label pairs of sides by an alphabet \mathcal{A}.
E.g. $\mathcal{A}=\{A, B, C, D\}$.

Let φ_{t}^{θ} be the linear flow in direction θ : trajectories are straight lines in direction θ
 with sides identifications.

Definition (Cutting sequence)
The cutting sequence in $\mathcal{A}^{\mathbb{Z}}$ that codes a bi-infinite linear trajectory of φ_{t}^{θ} consists of the sequence of labels of the sides hit by the trajectory.

Example
The cutting sequence of the trajectory in the example is: $A B$

Cutting sequences in other polygons

Consider a regular polygon with $2 n$ sides glued by translations
E.g. the regular octagon with opposite sides glued.

Label pairs of sides by an alphabet \mathcal{A}.
E.g. $\mathcal{A}=\{A, B, C, D\}$.

Let φ_{t}^{θ} be the linear flow in direction θ : trajectories are straight lines in direction θ
 with sides identifications.

Definition (Cutting sequence)
The cutting sequence in $\mathcal{A}^{\mathbb{Z}}$ that codes a bi-infinite linear trajectory of φ_{t}^{θ} consists of the sequence of labels of the sides hit by the trajectory.

Example
The cutting sequence of the trajectory in the example is: $A B B$

Cutting sequences in other polygons

Consider a regular polygon with $2 n$ sides glued by translations
E.g. the regular octagon with opposite sides glued.

Label pairs of sides by an alphabet \mathcal{A}.
E.g. $\mathcal{A}=\{A, B, C, D\}$.

Let φ_{t}^{θ} be the linear flow in direction θ : trajectories are straight lines in direction θ
 with sides identifications.

Definition (Cutting sequence)
The cutting sequence in $\mathcal{A}^{\mathbb{Z}}$ that codes a bi-infinite linear trajectory of φ_{t}^{θ} consists of the sequence of labels of the sides hit by the trajectory.

Example
The cutting sequence of the trajectory in the example is: $A B B A$

Cutting sequences in other polygons

Consider a regular polygon with $2 n$ sides glued by translations
E.g. the regular octagon with opposite sides glued.

Label pairs of sides by an alphabet \mathcal{A}.
E.g. $\mathcal{A}=\{A, B, C, D\}$.

Let φ_{t}^{θ} be the linear flow in direction θ : trajectories are straight lines in direction θ
 with sides identifications.

Definition (Cutting sequence)
The cutting sequence in $\mathcal{A}^{\mathbb{Z}}$ that codes a bi-infinite linear trajectory of φ_{t}^{θ} consists of the sequence of labels of the sides hit by the trajectory.

Example
The cutting sequence of the trajectory in the example is: $A B B A C$

Cutting sequences in other polygons

Consider a regular polygon with $2 n$ sides glued by translations
E.g. the regular octagon with opposite sides glued.
Label pairs of sides by an alphabet \mathcal{A}.
E.g. $\mathcal{A}=\{A, B, C, D\}$.

Let φ_{t}^{θ} be the linear flow in direction θ : trajectories are straight lines in direction θ
 with sides identifications.

Definition (Cutting sequence)
The cutting sequence in $\mathcal{A}^{\mathbb{Z}}$ that codes a bi-infinite linear trajectory of φ_{t}^{θ} consists of the sequence of labels of the sides hit by the trajectory.

Example
The cutting sequence of the trajectory in the example is: $A B B A C D$

Cutting sequences in other polygons

Consider a regular polygon with $2 n$ sides glued by translations
E.g. the regular octagon with opposite sides glued.

Label pairs of sides by an alphabet \mathcal{A}.
E.g. $\mathcal{A}=\{A, B, C, D\}$.

Let φ_{t}^{θ} be the linear flow in direction θ : trajectories are straight lines in direction θ
 with sides identifications.

Definition (Cutting sequence)
The cutting sequence in $\mathcal{A}^{\mathbb{Z}}$ that codes a bi-infinite linear trajectory of φ_{t}^{θ} consists of the sequence of labels of the sides hit by the trajectory.

Example
The cutting sequence of the trajectory in the example is: $A B B A C D$

The octagon: admissible sequences for $0 \leq \theta<\pi / 8$
Using isometries of the octagon, we can
reduce to consider
$\theta \in\left[0, \frac{\pi}{8}\right]$.

The transitions (pairs of consecutive letters) which can appear are:

Each octagon cutting sequence of a trajectory in direction $0 \leq \theta \leq \pi / 8$ determines a path in the diagram in Figure. For the other $\pi / 8$ sectors, one gets similar diag rams with permuted letters.

The octagon: admissible sequences for $0 \leq \theta<\pi / 8$

Using isometries of the octagon, we can reduce to consider
$\theta \in\left[0, \frac{\pi}{8}\right]$.

The transitions (pairs of consecutive letters) which can appear are:

Each octagon cutting sequence of a trajectory in direction $0 \leq \theta \leq \pi / 8$ determines a path in the diagram in Figure.
For the other $\pi / 8$ sectors, one gets similar diagrams with permuted letters.

The octagon: admissible sequences for $0 \leq \theta<\pi / 8$
Using isometries of the octagon, we can reduce to consider
$\theta \in\left[0, \frac{\pi}{8}\right]$.

The transitions (pairs of consecutive letters) which can appear are:

Each octagon cutting sequence of a trajectory in direction $0 \leq \theta \leq \pi / 8$ determines a path in the diagram in Figure.
For the other $\pi / 8$ sectors, one gets similar diagrams with permuted letters.

The octagon: admissible sequences for $0 \leq \theta<\pi / 8$
Using isometries of the octagon, we can reduce to consider $\theta \in\left[0, \frac{\pi}{8}\right]$.

The transitions (pairs of consecutive letters) which can appear are:

Each octagon cutting sequence of a trajectory in direction $0 \leq \theta \leq \pi / 8$ determines a path in the diagram in Figure.
For the other $\pi / 8$ sectors, one gets similar diagrams with permuted letters.

The octagon: admissible sequences for $0 \leq \theta<\pi / 8$
Using isometries of the octagon, we can reduce to consider $\theta \in\left[0, \frac{\pi}{8}\right]$.

The transitions (pairs of consecutive letters) which can appear are:

Each octagon cutting sequence of a trajectory in direction $0 \leq \theta \leq \pi / 8$ determines a path in the diagram in Figure.
For the other $\pi / 8$ sectors, one gets similar diagrams with permuted letters.

The octagon: admissible sequences for $0 \leq \theta<\pi / 8$

Using isometries of the octagon, we can reduce to consider
$\theta \in\left[0, \frac{\pi}{8}\right]$.

The transitions (pairs of consecutive letters) which can appear are:

Each octagon cutting sequence of a trajectory in direction $0 \leq \theta \leq \pi / 8$ determines a path in the diagram in Figure.
For the other $\pi / 8$ sectors, one gets similar diagrams with permuted

The octagon: admissible sequences for $0 \leq \theta<\pi / 8$

Using isometries of the octagon, we can reduce to consider
$\theta \in\left[0, \frac{\pi}{8}\right]$.

The transitions (pairs of consecutive letters) which can appear are:

Each octagon cutting sequence of a trajectory in direction $0 \leq \theta \leq \pi / 8$ determines a path in the diagram in Figure.
For the other $\pi / 8$ sectors, one gets similar diagrams with permuted letters.

Admissible sequences

Def: A sequence $w \in\{A, B, C, D\}^{\mathbb{Z}}$ is admissible if it gives an infinite path on one of the 8 possible diagrams (8 types):

Lemma
An octagon cutting sequence is admissible.

Admissible sequences

Def: A sequence $w \in\{A, B, C, D\}^{\mathbb{Z}}$ is admissible if it gives an infinite path on one of the 8 possible diagrams (8 types):

Lemma
An octagon cutting sequence is admissible.

Admissible sequences

Def: A sequence $w \in\{A, B, C, D\}^{\mathbb{Z}}$ is admissible if it gives an infinite path on one of the 8 possible diagrams (8 types):

Lemma
An octagon cutting sequence is admissible.

Derived sequences

Definition
A letter in $\{A, B, C, D\}$ is sandwiched if it is preceeded and followed by the same letter.

Example
In D B B C B A A D the letter C is sandwiched between to Bs.
Definition (Derived sequence)
If w is an octagon cutting sequence, the derived sequence w^{\prime} is obtained keeping only letters which are sandwitched.

Example

Derived sequences

Definition
A letter in $\{A, B, C, D\}$ is sandwiched if it is preceeded and followed by the same letter.

Example
In D B B C B A A D the letter C is sandwiched between to Bs.
Definition (Derived sequence)
If w is an octagon cutting sequence, the derived sequence w^{\prime} is obtained keeping only letters which are sandwitched.

Example
If $w=\ldots$ D A D B C C B C C B DADBCBDBDBCBD...,

Definition (Derivable sequences)
A sequence $w \in\{A, B, C, D\}^{\mathbb{Z}}$ is derivable if it is admissible and its
derivative is still admissible. The sequence w is infinitely derivable if each
of its derivatives is derivable.

Derived sequences

Definition
A letter in $\{A, B, C, D\}$ is sandwiched if it is preceeded and followed by the same letter.

Example
In D B B C B A A D the letter C is sandwiched between to Bs.
Definition (Derived sequence)
If w is an octagon cutting sequence, the derived sequence w^{\prime} is obtained keeping only letters which are sandwitched.

Example
$\begin{aligned} \text { If } w & =\ldots \text { D } \frac{A}{A} \text { D B C C B C C B D A D B C B D B D B C B D } \ldots, \\ w^{\prime} & =\ldots\end{aligned}$
Definition (Derivable sequences)
A sequence $w \in\{A, B, C, D\}^{\mathbb{Z}}$ is derivable if it is admissible and its
derivative is still admissible. The sequence w is infinitely derivable if each
of its derivatives is derivable.

Derived sequences

Definition
A letter in $\{A, B, C, D\}$ is sandwiched if it is preceeded and followed by the same letter.

Example
In D B B C B A A D the letter C is sandwiched between to Bs.
Definition (Derived sequence)
If w is an octagon cutting sequence, the derived sequence w^{\prime} is obtained keeping only letters which are sandwitched.

Example
$\begin{aligned} \text { If } w & =\ldots \text { D } \frac{A}{A} \text { D B C C } \frac{B}{B} C C B D A D B C B D B D B C B D \ldots,\end{aligned}$
Definition (Derivable sequences)
A sequence $w \in\{A, B, C, D\}^{\mathbb{Z}}$ is derivable if it is admissible and its
derivative is still admissible. The sequence w is infinitely derivable if each
of its derivatives is derivable.

Derived sequences

Definition
A letter in $\{A, B, C, D\}$ is sandwiched if it is preceeded and followed by the same letter.

Example
In D B B C B A A D the letter C is sandwiched between to Bs.
Definition (Derived sequence)
If w is an octagon cutting sequence, the derived sequence w^{\prime} is obtained keeping only letters which are sandwitched.

Example
$\begin{aligned} \text { If } w & =\ldots D \frac{A}{A} D B C C \frac{B}{B} C C B D \\ w^{\prime} & =\ldots\end{aligned}$
Definition (Derivable sequences)
A sequence $w \in\{A, B, C, D\}^{\mathbb{Z}}$ is derivable if it is admissible and its
derivative is still admissible. The sequence w is infinitely derivable if each
of its derivatives is derivable.

Derived sequences

Definition
A letter in $\{A, B, C, D\}$ is sandwiched if it is preceeded and followed by the same letter.

Example
In D B B C B A A D the letter C is sandwiched between to Bs.
Definition (Derived sequence)
If w is an octagon cutting sequence, the derived sequence w^{\prime} is obtained keeping only letters which are sandwitched.

Example
$\begin{aligned} \text { If } w & =\ldots D \frac{A}{A} D B C C \frac{B}{B} C C B D \\ w^{\prime} & =\ldots\end{aligned}$
Definition (Derivable sequences)
A sequence $w \in\{A, B, C, D\}^{\mathbb{Z}}$ is derivable if it is admissible and its
derivative is still admissible. The sequence w is infinitely derivable if each
of its derivatives is derivable.

Derived sequences

Definition
A letter in $\{A, B, C, D\}$ is sandwiched if it is preceeded and followed by the same letter.

Example
In D B B C B A A D the letter C is sandwiched between to Bs.

Definition (Derived sequence)

If w is an octagon cutting sequence, the derived sequence w^{\prime} is obtained keeping only letters which are sandwitched.

Example

$$
\begin{aligned}
\text { f } w & =\ldots D \frac{A}{A} D B C C \frac{B}{B} C C B D \\
w^{\prime} & =\ldots
\end{aligned}
$$

Definition (Derivable sequences)
A sequence $w \in\{A, B, C, D\}^{\mathbb{Z}}$ is derivable if it is admissible and its derivative is still admissible. The sequence w is infinitely derivable if each of its derivatives is derivable.

Characterization of octagon cutting sequences

Theorem (Smillie-Ulcigrai)
An octagon cutting sequence is infinitely derivable.

- Remark 1: we prove a similar characterization for every regular $2 n$-gon. It also holds for double n-gon (n odd), see Diana Davis.
$>$ Remark 2: It is not a sufficient condition for the closure (differently than the square). But:

Theorem (Smillie-Ulcigrai)
One can write substitutions σ_{i}, where $1 \leq i \leq 7$
s.t. w is in the closure of octagon cutting seauences iff

$$
\exists\left(i_{k}\right)_{i},\left(L_{k}\right)_{k} \quad \text { s.t. } \quad w=\lim _{n \rightarrow \infty} \sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{k}} \overline{L_{k}}
$$

Characterization of octagon cutting sequences

Theorem (Smillie-Ulcigrai)
An octagon cutting sequence is infinitely derivable.

- Remark 1: we prove a similar characterization for every regular $2 n$-gon.

It also holds for double n-gon (n odd), see Diana Davis.

- Remark 2: It is not a sufficient condition for the closure (differently than the square). But:

Theorem (Smillie-Ulcigrai)
One can write substitutions σ_{i}, where $1 \leq i \leq 7$
s.t. w is in the closure of octagon cutting sequences iff

$$
\exists\left(i_{k}\right)_{i},\left(L_{k}\right)_{k} \quad \text { s.t. } \quad w=\lim _{n \rightarrow \infty} \sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{k}} \overline{L_{k}} .
$$

Characterization of octagon cutting sequences

Theorem (Smillie-Ulcigrai)
An octagon cutting sequence is infinitely derivable.

- Remark 1: we prove a similar characterization for every regular $2 n$-gon. It also holds for double n-gon (n odd), see Diana Davis.
- Remark 2: It is not a sufficient condition for the closure (differently than the square). But:

Theorem (Smillie-Ulicigrai)
One can write substitutions σ_{i}, where $1 \leq i \leq 7$
s.t. w is in the closure of octagon cutting sequences iff

$$
\exists\left(i_{k}\right)_{i},\left(L_{k}\right)_{k} \quad \text { s.t. } \quad w=\lim _{n \rightarrow \infty} \sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{k}} \overline{L_{k}} .
$$

Characterization of octagon cutting sequences

Theorem (Smillie-Ulcigrai)
An octagon cutting sequence is infinitely derivable.

- Remark 1: we prove a similar characterization for every regular $2 n$-gon. It also holds for double n-gon (n odd), see Diana Davis.
- Remark 2: It is not a sufficient condition for the closure (differently than the square). But:

Theorem (Smillie-Ulcigrai)
One can write substitutions σ_{i}, where $1 \leq i \leq 7$
s.t. w is in the closure of octagon cutting sequences iff

$$
\exists\left(i_{k}\right)_{i},\left(L_{k}\right)_{k} \text { s.t. } \quad w=\lim _{n \rightarrow \infty} \sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{k}} \overline{L_{k}} .
$$

Characterization of octagon cutting sequences

Theorem (Smillie-Ulcigrai)
An octagon cutting sequence is infinitely derivable.

- Remark 1: we prove a similar characterization for every regular $2 n$-gon. It also holds for double n-gon (n odd), see Diana Davis.
- Remark 2: It is not a sufficient condition for the closure (differently than the square). But:

Theorem (Smillie-Ulcigrai)
One can write substitutions σ_{i}, where $1 \leq i \leq 7$
s.t. w is in the closure of octagon cutting sequences iff

$$
\exists\left(i_{k}\right)_{i},\left(L_{k}\right)_{k} \quad \text { s.t. } \quad w=\lim _{n \rightarrow \infty} \sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{k}} \overline{L_{k}} .
$$

Characterization of octagon cutting sequences

Theorem (Smillie-Ulcigrai)
An octagon cutting sequence is infinitely derivable.

- Remark 1: we prove a similar characterization for every regular $2 n$-gon. It also holds for double n-gon (n odd), see Diana Davis.
- Remark 2: It is not a sufficient condition for the closure (differently than the square). But:

Theorem (Smillie-Ulcigrai)

One can write substitutions σ_{i}, where $1 \leq i \leq 7$ s.t. w is in the closure of octagon cutting sequences iff

$$
\exists\left(i_{k}\right)_{i},\left(L_{k}\right)_{k} \quad \text { s.t. } \quad w=\lim _{n \rightarrow \infty} \sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{k}} \overline{L_{k}}
$$

Remark: This is called an \mathscr{S}-adic presentation.

Characterization of octagon cutting sequences

Theorem (Smillie-Ulcigrai)
An octagon cutting sequence is infinitely derivable.

- Remark 1: we prove a similar characterization for every regular $2 n$-gon. It also holds for double n-gon (n odd), see Diana Davis.
- Remark 2: It is not a sufficient condition for the closure (differently than the square). But:

Theorem (Smillie-Ulcigrai)

One can write substitutions σ_{i}, where $1 \leq i \leq 7$
s.t. w is in the closure of octagon cutting sequences iff

$$
\exists\left(i_{k}\right)_{i},\left(L_{k}\right)_{k} \quad \text { s.t. } \quad w=\lim _{n \rightarrow \infty} \sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{k}} \overline{L_{k}}
$$

Remark: This is called an \mathscr{S}-adic presentation.

Characterization of octagon cutting sequences

Theorem (Smillie-Ulcigrai)
An octagon cutting sequence is infinitely derivable.

- Remark 1: we prove a similar characterization for every regular $2 n$-gon. It also holds for double n-gon (n odd), see Diana Davis.
- Remark 2: It is not a sufficient condition for the closure (differently than the square). But:

Theorem (Smillie-Ulcigrai)

One can write substitutions σ_{i}, where $1 \leq i \leq 7$ on an alphabet \mathcal{A}^{\prime} s.t. w is in the closure of octagon cutting sequences iff

$$
\exists\left(i_{k}\right)_{i},\left(L_{k}\right)_{k} \quad \text { s.t. } \quad w=\lim _{n \rightarrow \infty} \sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{k}} \overline{L_{k}}
$$

Remark: This is called an \mathscr{S}-adic presentation.

Characterization of octagon cutting sequences

Theorem (Smillie-Ulcigrai)

An octagon cutting sequence is infinitely derivable.

- Remark 1: we prove a similar characterization for every regular $2 n$-gon. It also holds for double n-gon (n odd), see Diana Davis.
- Remark 2: It is not a sufficient condition for the closure (differently than the square). But:

Theorem (Smillie-Ulcigrai)

One can write substitutions σ_{i}, where $1 \leq i \leq 7$ on an alphabet \mathcal{A}^{\prime} s.t. w is in the closure of octagon cutting sequences iff

$$
\exists\left(i_{k}\right)_{i},\left(L_{k}\right)_{k} \quad \text { s.t. } \quad w=\mathcal{T}_{i_{0}} \lim _{n \rightarrow \infty} \sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{k}} \overline{L_{k}}
$$

[where $\mathcal{T}_{i_{0}}$ converts sequences in \mathcal{A}^{\prime} to sequences in \mathcal{A} admissible in sector io.] Remark: This is called an \mathscr{S}-adic presentation.

Ideas from proofs

As in the case of the square, the theorems follow if we prove that:
Theorem
If w is an octagon cutting sequence, also the derived sequence w^{\prime} is an octagon cutting sequence.
To prove it, one uses an argument in the same spirit of:

Ideas from proofs

As in the case of the square, the theorems follow if we prove that:
Theorem
If w is an octagon cutting sequence, also the derived sequence w^{\prime} is an octagon cutting sequence.
To prove it, one uses an argument in the same spirit of:
i.e. one uses renormalization.

We need: a map to renormalize the octagon!

Ideas from proofs

As in the case of the square, the theorems follow if we prove that:
Theorem
If w is an octagon cutting sequence, also the derived sequence w^{\prime} is an octagon cutting sequence.
To prove it, one uses an argument in the same spirit of:

i.e. one uses renormalization.

We need: a map to renormalize the octagon!

Ideas from proofs

As in the case of the square, the theorems follow if we prove that:
Theorem
If w is an octagon cutting sequence, also the derived sequence w^{\prime} is an octagon cutting sequence.
To prove it, one uses an argument in the same spirit of:

i.e. one uses renormalization.

We need: a map to renormalize the octagon!

Geometric renormalization for the octagon

Let w be the cutting sequence of a trajectory in direction $0 \leq \theta \leq \pi / 8$.

The magic of the octagon: Veech showed that O^{\prime} can be mapped back to O by cutting and pasting by translations.
1

Lemma

The derived sequence w' coincides with the cutting sequence of the same trajectory in direction θ with respect to the sides of O^{\prime}

Geometric renormalization for the octagon

Let w be the cutting sequence of a trajectory in direction $0 \leq \theta \leq \pi / 8$.
Let $O^{\prime}=\left(\begin{array}{cc}-1 & 2(1+\sqrt{2}) \\ 0 & 1\end{array}\right)$.

The magic of the octagon: Veech showed that O^{\prime} can be mapped back to O by cutting and pasting by translations.
1

Lemma

The derived sequence w' coincides with the cutting sequence of the same trajectory in direction θ with respect to the sides of O^{\prime}

Geometric renormalization for the octagon

Let w be the cutting sequence of a trajectory in direction $0 \leq \theta \leq \pi / 8$.
Let $O^{\prime}=\left(\begin{array}{cc}-1 & 2(1+\sqrt{2}) \\ 0 & 1\end{array}\right) O$.

The magic of the octagon: Veech showed that O^{\prime} can be mapped back to O by cutting and pasting by translations. 1

Lemma

The derived sequence w' coincides with the cutting sequence of the same trajectory in direction θ with respect to the sides of O^{\prime}

Geometric renormalization for the octagon

Let w be the cutting sequence of a trajectory in direction $0 \leq \theta \leq \pi / 8$.
Let $O^{\prime}=\left(\begin{array}{cc}-1 & 2(1+\sqrt{2}) \\ 0 & 1\end{array}\right) O$.

The magic of the octagon: Veech showed that O^{\prime} can be mapped back to O by cutting and pasting by translations.

Lemma

The derived sequence w' coincides with the cutting sequence of the same trajectory in direction θ with respect to the sides of O^{\prime}

Geometric renormalization for the octagon

Let w be the cutting sequence of a trajectory in direction $0 \leq \theta \leq \pi / 8$.
Let $O^{\prime}=\left(\begin{array}{cc}-1 & 2(1+\sqrt{2}) \\ 0 & 1\end{array}\right) O$.

The magic of the octagon: Veech showed that O^{\prime} can be mapped back to O by cutting and pasting by translations.

Lemma

The derived sequence w^{\prime} coincides with the cutting sequence of the same trajectory in direction θ with respect to the sides of O^{\prime}.

Geometric renormalization for the octagon

Let w be the cutting sequence of a trajectory in direction $0 \leq \theta \leq \pi / 8$.
Let $O^{\prime}=\left(\begin{array}{cc}-1 & 2(1+\sqrt{2}) \\ 0 & 1\end{array}\right) O$.

The magic of the octagon: Veech showed that O^{\prime} can be mapped back to O by cutting and pasting by translations.

Lemma

The derived sequence w^{\prime} coincides with the cutting sequence of the same trajectory in direction θ with respect to the sides of O^{\prime}.

Let us renormalize by applying the inverse:

Geometric renormalization for the octagon

Let w be the cutting sequence of a trajectory in direction $0 \leq \theta \leq \pi / 8$.
Let $O^{\prime}=\left(\begin{array}{cc}-1 & 2(1+\sqrt{2}) \\ 0 & 1\end{array}\right) O$.

The magic of the octagon: Veech showed that O^{\prime} can be mapped back to O by cutting and pasting by translations.
1

Lemma

The derived sequence w^{\prime} coincides with the cutting sequence of the same trajectory in direction θ with respect to the sides of O^{\prime}.

Let us renormalize by applying the inverse: $\quad O^{\prime} \mapsto O \quad, \theta \mapsto \theta^{\prime}$.

Geometric renormalization for the octagon

Let w be the cutting sequence of a trajectory in direction $0 \leq \theta \leq \pi / 8$.
Let $O^{\prime}=\left(\begin{array}{cc}-1 & 2(1+\sqrt{2}) \\ 0 & 1\end{array}\right) O$.

The magic of the octagon: Veech showed that O^{\prime} can be mapped back to O by cutting and pasting by translations.
1

Lemma

The derived sequence w^{\prime} coincides with the cutting sequence of the same trajectory in direction θ with respect to the sides of O^{\prime}.

Let us renormalize by applying the inverse: $\quad O^{\prime} \mapsto O, \theta \mapsto \theta^{\prime}$.

Geometric renormalization for the octagon

Let w be the cutting sequence of a trajectory in direction $0 \leq \theta \leq \pi / 8$.
Let $O^{\prime}=\left(\begin{array}{cc}-1 & 2(1+\sqrt{2}) \\ 0 & 1\end{array}\right) O$.

The magic of the octagon: Veech showed that O^{\prime} can be mapped back to O by cutting and pasting by translations.
1

Lemma

The derived sequence w^{\prime} coincides with the cutting sequence of the same trajectory in direction θ with respect to the sides of O^{\prime}.

Let us renormalize by applying the inverse: $\quad O^{\prime} \mapsto O, \theta \mapsto \theta^{\prime}$.

Geometric renormalization for the octagon

Let w be the cutting sequence of a trajectory in direction $0 \leq \theta \leq \pi / 8$.
Let $O^{\prime}=\left(\begin{array}{cc}-1 & 2(1+\sqrt{2}) \\ 0 & 1\end{array}\right) O$.

The magic of the octagon: Veech showed that O^{\prime} can be mapped back to O by cutting and pasting by translations.

1

Lemma

The derived sequence w^{\prime} coincides with the cutting sequence of the same trajectory in direction θ with respect to the sides of O^{\prime}.

Let us renormalize by applying the inverse: $\quad O^{\prime} \mapsto O \quad, \theta \mapsto \theta^{\prime}$.
Cor.: The derived sequence is an octagon cutt. sequence (in direction θ^{\prime}).

Geometric renormalization for the octagon

Let w be the cutting sequence of a trajectory in direction $0 \leq \theta \leq \pi / 8$.
Let $O^{\prime}=\left(\begin{array}{cc}-1 & 2(1+\sqrt{2}) \\ 0 & 1\end{array}\right) O$.

The magic of the octagon: Veech showed that O^{\prime} can be mapped back to O by cutting and pasting by translations.

1

Lemma

The derived sequence w^{\prime} coincides with the cutting sequence of the same trajectory in direction θ with respect to the sides of O^{\prime}.

Let us renormalize by applying the inverse: $\quad O^{\prime} \mapsto O \quad, \theta \mapsto \theta^{\prime}$.
Cor.: The derived sequence is an octagon cutt. sequence (in direction θ^{\prime}).
Repeat: get that cutting sequences are infinitely derivable.

The octagon surface

Take a regular octagon O. Idenfity opposite sides (with same label) by translations:

- We get a surface of genus 2 (pretzel)
- It is a flat surface (locally Euclidean)
> Biinfinite trajectories of the linear flow are geodesics for the flat metric.

The octagon surface

Take a regular octagon O. Identity opposite sides (with same label) by translations:

- We get a surface of genus 2 (pretzel).
- It is a flat surface (locally Euclidean)
\rightarrow Biinfinite trajectories of the linear flow are geodesics for the flat metric.

The octagon surface

Take a regular octagon O. Idenfity opposite sides (with same label) by translations:

- We get a surface of genus 2 (pretzel).
\rightarrow It is a flat surface (locally Euclidean)
- Biinfinite trajectories of the linear flow are geodesics for the flat

The octagon surface

Take a regular octagon O. Idenfity opposite sides (with same label) by translations:

- We get a surface of genus 2 (pretzel).
\rightarrow It is a flat surface (locally Euclidean)
- Biinfinite trajectories of the linear flow are geodesics for the flat

The octagon surface

Take a regular octagon O. Idenfity opposite sides (with same label) by translations:

- We get a surface of genus 2 (pretzel).
\rightarrow It is a flat surface (locally Euclidean)
- Biinfinite trajectories of the linear flow are geodesics for the flat

The octagon surface

Take a regular octagon O. Idenfity opposite sides (with same label) by translations:

- We get a surface of genus 2 (pretzel).
- It is a flat surface (locally Euclidean)
- Biinfinite trajectories of the linear flow are geodesics for the flat

The octagon surface

Take a regular octagon O. Idenfity opposite sides (with same label) by translations:

- We get a surface of genus 2 (pretzel).
- It is a flat surface (locally Euclidean)
- Biinfinite trajectories of the linear flow are geodesics for the flat metric.

Cut and paste for the octagon

$$
\text { Let } O^{\prime}=\left(\begin{array}{cc}
-1 & 2(1+\sqrt{2}) \\
0 & 1
\end{array}\right) O
$$

O and O^{\prime} can be cut and pasted into each other by translations: Hence O and O^{\prime} give the same translation surface.

Cut and paste for the octagon

$$
\text { Let } O^{\prime}=\left(\begin{array}{cc}
-1 & 2(1+\sqrt{2}) \\
0 & 1
\end{array}\right) O
$$

O and O^{\prime} can be cut and pasted into each other by translations:

Cut and paste for the octagon

$$
\text { Let } O^{\prime}=\left(\begin{array}{cc}
-1 & 2(1+\sqrt{2}) \\
0 & 1
\end{array}\right) O
$$

O and O^{\prime} can be cut and pasted into each other by translations: Hence O and O^{\prime} give the same translation surface.

Translation surfaces

Glueing polygons by translations we get translation surfaces:
Definition
A translation surface S is a closed dimension two manifold with a locally Euclidean structure, apart from finitely many points $\Sigma \subset S$, called singularities: each point outside Σ has a neighbourbood isomorphic to \mathbb{R}^{2}; changes of coordinates between neighbourhoods are translations; points in Σ are conical singularities of cone angle $2 \pi k, k \in \mathbb{N}$.

\rightarrow The linear flow φ_{t}^{θ} in direction θ is well defined outside singularities;

- At conical singularities, θ_{t}^{θ} has saddle noints.

Translation surfaces

Glueing polygons by translations we get translation surfaces:
Definition
A translation surface S is a closed dimension two manifold with a locally Euclidean structure, apart from finitely many points $\Sigma \subset S$, called singularities:
each point outside Σ has a neighbourbood isomorphic to \mathbb{R}^{2}; changes of
coordinates between neighbourhoods are translations; points in Σ are conical
singularities of cone angle $2 \pi k, k \in \mathbb{N}$.

\rightarrow The linear flow φ_{t}^{θ} in direction θ is well defined outside singularities;

- At conical singularities, θ_{t}^{θ} has saddle noints.

Translation surfaces

Glueing polygons by translations we get translation surfaces:
Definition
A translation surface S is a closed dimension two manifold with a locally Euclidean structure, apart from finitely many points $\Sigma \subset S$, called singularities: each point outside Σ has a neighbourbood isomorphic to \mathbb{R}^{2}; changes of coordinates between neighbourhoods are translations;

\rightarrow The linear flow φ_{t}^{θ} in direction θ is well defined outside singularities;

- At conical singularities, φ_{t}^{θ} has saddle points.

Translation surfaces

Glueing polygons by translations we get translation surfaces:
Definition
A translation surface S is a closed dimension two manifold with a locally Euclidean structure, apart from finitely many points $\Sigma \subset S$, called singularities: each point outside Σ has a neighbourbood isomorphic to \mathbb{R}^{2}; changes of coordinates between neighbourhoods are translations;

\rightarrow The linear flow φ_{t}^{θ} in direction θ is well defined outside singularities;

- At conical singularities, φ_{t}^{θ} has saddle points.

Translation surfaces

Glueing polygons by translations we get translation surfaces:

Definition

A translation surface S is a closed dimension two manifold with a locally Euclidean structure, apart from finitely many points $\Sigma \subset S$, called singularities: each point outside Σ has a neighbourbood isomorphic to \mathbb{R}^{2}; changes of coordinates between neighbourhoods are translations; points in Σ are conical singularities of cone angle $2 \pi k, k \in \mathbb{N}$.

\rightarrow The linear flow φ_{t}^{θ} in direction θ is well defined outside singularities;
\rightarrow At conical singularities, φ_{t}^{θ} has saddle points.

Translation surfaces

Glueing polygons by translations we get translation surfaces:
Definition
A translation surface S is a closed dimension two manifold with a locally Euclidean structure, apart from finitely many points $\Sigma \subset S$, called singularities: each point outside Σ has a neighbourbood isomorphic to \mathbb{R}^{2}; changes of coordinates between neighbourhoods are translations; points in Σ are conical singularities of cone angle $2 \pi k, k \in \mathbb{N}$.

\rightarrow The linear flow φ_{t}^{θ} in direction θ is well defined outside singularities;

- At conical singularities, θ_{t}^{θ} has saddle noints.

Translation surfaces

Glueing polygons by translations we get translation surfaces:
Definition
A translation surface S is a closed dimension two manifold with a locally Euclidean structure, apart from finitely many points $\Sigma \subset S$, called singularities: each point outside Σ has a neighbourbood isomorphic to \mathbb{R}^{2}; changes of coordinates between neighbourhoods are translations; points in Σ are conical singularities of cone angle $2 \pi k, k \in \mathbb{N}$.

\rightarrow The linear flow φ_{t}^{θ} in direction θ is well defined outside singularities;

- At conical singularities, θ_{t}^{θ} has saddle noints.

Translation surfaces

Glueing polygons by translations we get translation surfaces:
Definition
A translation surface S is a closed dimension two manifold with a locally Euclidean structure, apart from finitely many points $\Sigma \subset S$, called singularities: each point outside Σ has a neighbourbood isomorphic to \mathbb{R}^{2}; changes of coordinates between neighbourhoods are translations; points in Σ are conical singularities of cone angle $2 \pi k, k \in \mathbb{N}$.

- The linear flow φ_{t}^{θ} in direction θ is well defined outside singularities;
\square
\rightarrow At conical singularities, has saddle points.

Translation surfaces

Glueing polygons by translations we get translation surfaces:
Definition
A translation surface S is a closed dimension two manifold with a locally Euclidean structure, apart from finitely many points $\Sigma \subset S$, called singularities: each point outside Σ has a neighbourbood isomorphic to \mathbb{R}^{2}; changes of coordinates between neighbourhoods are translations; points in Σ are conical singularities of cone angle $2 \pi k, k \in \mathbb{N}$.

- The linear flow φ_{t}^{θ} in direction θ is well defined outside singularities;
- At conical singularities, φ_{t}^{θ} has saddle points.

Translation surfaces

Glueing polygons by translations we get translation surfaces:
Definition
A translation surface S is a closed dimension two manifold with a locally Euclidean structure, apart from finitely many points $\Sigma \subset S$, called singularities: each point outside Σ has a neighbourbood isomorphic to \mathbb{R}^{2}; changes of coordinates between neighbourhoods are translations; points in Σ are conical singularities of cone angle $2 \pi k, k \in \mathbb{N}$.

- The linear flow φ_{t}^{θ} in direction θ is well defined outside singularities;
- At conical singularities, φ_{t}^{θ} has saddle points.
[Further Refs: Zorich, Flat Surfaces; Masur, Ergodic Theory of Flat Surfaces.]

Affine diffeomorphisms of translation surfaces

Examples of translation surfaces S which have non trivial affine diffeomorphisms:

The torus and the octagon surfaces are examples of Veech surfaces, i.e. surfaces which are rich of affine diffeos.
[Def. A translation surface is a Veech (or lattice) surface if the linear parts of
affine diffeos give a lattice in $S L(2, \mathbb{R})$.]

Affine diffeomorphisms of translation surfaces

Examples of translation surfaces S which have non trivial affine diffeomorphisms:

Ex 1 The torus \mathbb{T}^{2} :

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Ex 2 The regular octagon surface S_{0} :

The torus and the octagon surfaces are examples of Veech surfaces, i.e. surfaces which are rich of affine diffeos.
[Def. A translation surface is a Veech (or lattice) surface if the linear parts of affine diffeos give a lattice in $S L(2, \mathbb{R})$.]

Affine diffeomorphisms of translation surfaces

Examples of translation surfaces S which have non trivial affine diffeomorphisms:

Ex 1 The torus \mathbb{T}^{2} :

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Ex 2 The regular octagon surface S_{O} :

$$
\begin{aligned}
& A= \\
& \left(\begin{array}{cc}
1 & 2(1+\sqrt{2}) \\
0 & 1
\end{array}\right)
\end{aligned}
$$

The torus and the octagon surfaces are examples of Veech surfaces, i.e. surfaces which are rich of affine diffeos.
[Def. A translation surface is a Veech (or lattice) surface if the linear parts of affine diffeos give a lattice in $S L(2, \mathbb{R})$.]

Affine diffeomorphisms of translation surfaces

Examples of translation surfaces S which have non trivial affine diffeomorphisms:

Ex 1 The torus \mathbb{T}^{2} :

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Ex 2 The regular octagon surface S_{O} :

$$
\begin{aligned}
& A= \\
& \left(\begin{array}{cc}
1 & 2(1+\sqrt{2}) \\
0 & 1
\end{array}\right)
\end{aligned}
$$

The torus and the octagon surfaces are examples of Veech surfaces, i.e. surfaces which are rich of affine diffeos.

Affine diffeomorphisms of translation surfaces

Examples of translation surfaces S which have non trivial affine diffeomorphisms:

Ex 1 The torus \mathbb{T}^{2} :

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Ex 2 The regular octagon surface S_{O} :

$$
\begin{aligned}
& A= \\
& \left(\begin{array}{cc}
1 & 2(1+\sqrt{2}) \\
0 & 1
\end{array}\right)
\end{aligned}
$$

The torus and the octagon surfaces are examples of Veech surfaces, i.e. surfaces which are rich of affine diffeos.
[Def: A translation surface is a Veech (or lattice) surface if the linear parts of affine diffeos give a lattice in $S L(2, \mathbb{R})$.]

Veech surfaces

- Veech surfaces (rich of affine diffeos) are actively researched in Teichmüller dynamics, since:
- Veech surfaces are dynamically optimal, i.e. they satisfy Veech dichotomy:
biinfinite linear trajectories are either periodic or dense and uniformely distributed;

Known (primitive) Veech surfaces:

- The square (and square-tiled surfaces),
- Regular polygon surfaces ($2 n$-gon and double n-gons) (Veech)
- Ward surfaces (special case of Bouw Moeller surfaces)
- Bouw Moeller surfaces (Bouw-Moeller, Hooper)
- L-shaped family of $g=2$ surfaces discovered by Calta and McMullen
- NEW: Cathedral surfaces in the gothic locus (McMullen, Mukamel, Wright)
- Finitess results... (Aulicio, Bainbridge, Eskin, Filip, Nguyen, Lanneau, Moeller, Wright...)

Veech surfaces

- Veech surfaces (rich of affine diffeos) are actively researched in Teichmüller dynamics, since:
- Veech surfaces are dynamically optimal, i.e. they satisfy Veech dichotomy:
biinfinite linear trajectories are either periodic or dense and uniformely distributed;

Known (primitive) Veech surfaces:

- The square (and square-tiled surfaces),
- Regular polygon surfaces ($2 n$-gon and double n-gons) (Veech)
- Ward surfaces (special case of Bouw Moeller surfaces)
- Bouw Moeller surfaces (Bouw-Moeller, Hooper)
- L-shaped family of $g=2$ surfaces discovered by Calta and McMullen
- NEW: Cathedral surfaces in the gothic locus (McMullen, Mukamel
- Finitess results... (Aulicio, Bainbridge, Eskin, Filip, Nguyen, Lanneau,

Veech surfaces

- Veech surfaces (rich of affine diffeos) are actively researched in Teichmüller dynamics, since:
- Veech surfaces are dynamically optimal, i.e. they satisfy Veech dichotomy:
biinfinite linear trajectories are either periodic or dense and uniformely distributed;

Known (primitive) Veech surfaces:

- The square (and square-tiled surfaces),
- Regular polygon surfaces ($2 n$-gon and double n-gons) (Veech)
- Ward surfaces (special case of Bouw Moeller surfaces)
- Bouw Moeller surfaces (Bouw-Moeller, Hooper)
- L-shaped family of $g=2$ surfaces discovered by Calta and McMullen
- NEW: Cathedral surfaces in the gothic locus (McMullen, Mukamel, Wright)
- Finitess results... (Aulicio, Bainbridge, Eskin, Filip, Nguyen, Lanneau, Moeller, Wright...)

Bouw-Moeller surfaces $S_{m, n}$

$S_{m, n}$ has m semi-regular polygons with rotational symmetry $2 \pi / n$.

[Polygonal presentation by Pat Hooper (in some cases by A. Wright)]

Bouw-Moeller surfaces $S_{m, n}$

$S_{m, n}$ has m semi-regular polygons with rotational symmetry $2 \pi / n$.

[Polygonal presentation by Pat Hooper (in some cases by A. Wright)]

Bouw-Moeller surfaces $S_{m, n}$

$S_{m, n}$ has m semi-regular polygons with rotational symmetry $2 \pi / n$.

E.g. $S_{4,3}$ has 4 polygons: 2 semi-regular hexagons, 2 triangles)

[Polygonal presentation by Pat Hooper (in some cases by A. Wright)]

Bouw-Moeller surfaces $S_{m, n}$

$S_{m, n}$ has m semi-regular polygons with rotational symmetry $2 \pi / n$.

E.g. $S_{4,3}$ has 4 polygons: 2 semi-regular hexagons, 2 triangles)

[Polygonal presentation by Pat Hooper (in some cases by A. Wright)]

Bouw-Moeller surfaces $S_{m, n}$

$S_{m, n}$ has m semi-regular polygons with rotational symmetry $2 \pi / n$.

E.g. $S_{4,3}$ has 4 polygons: 2 semi-regular hexagons, 2 triangles)

[Polygonal presentation by Pat Hooper (in some cases by A. Wright)]

Bouw-Moeller surfaces $S_{m, n}$

$S_{m, n}$ has m semi-regular polygons with rotational symmetry $2 \pi / n$.

E.g. $S_{4,3}$ has 4 polygons: 2 semi-regular hexagons, 2 triangles)
E.g. $S_{3,4}$ has 3 polygons: 2 octagons, 2 squares)

[Polygonal presentation by Pat Hooper (in some cases by A. Wright)]

Characterization of Bouw-Moeller cutting sequences

Consider linear trajectories on the Bouw-Moeller surface $S_{m, n}$.

Labels pairs of sides by an alphabet A.

Theorem (Diana Davis- Irene Pasquinelli-U')
One can write substitutions $\sigma_{i}, 1 \leq i \leq(m-1)(n-1)$, s.t. w is in the closure of cutting sequences for $S_{m, n}$ iff
$\exists\left(i_{k}\right)_{i \in \mathbb{N}}$, s.t.
$w \in \bigcap \sigma_{1} \sigma_{k_{2}}$
n

Characterization of Bouw-Moeller cutting sequences

Consider linear trajectories on the Bouw-Moeller surface $S_{m, n}$.

Labels pairs of sides by an alphabet A.

Theorem (Diana Davis- Irene Pasquinelli-U')
One can write substitutions $\sigma_{i}, 1 \leq i \leq(m-1)(n-1)$, s.t. w is in the closure of cutting sequences for $S_{m, n}$ iff
$\exists\left(i_{k}\right)_{i \in \mathbb{N}}$, s.t.
$w \in \bigcap \sigma_{1} \sigma_{k_{2}}$
n

Characterization of Bouw-Moeller cutting sequences

Consider linear trajectories on the Bouw-Moeller surface $S_{m, n}$.

Labels pairs of sides by an alphabet A.

Theorem (Diana Davis- Irene Pasquinelli-U')
One can write substitutions $\sigma_{i}, 1 \leq i \leq(m-1)(n-1)$, s.t. w is in the closure of cutting sequences for $S_{m, n}$ iff

$$
\exists\left(i_{k}\right)_{i \in \mathbb{N}}, \text { s.t. } \quad w \in \bigcap_{n} \sigma_{i_{1}} \sigma_{i_{2}} \cdots \sigma_{i_{k}} \mathscr{A}^{\mathbb{Z}} .
$$

- This gives an \mathcal{S}-adic characterization and a recognition algorithm;

IETs as Poincaré sections

Consider a linear flow on a translation surface. Take a transverse section.

The Poincaré first return map on a section is an interval exchange transformation (IET).
[Remark: Linear flows on translation surfaces and IETs have entropy zero. Cutting sequences of linear trajectories and itineraries of IETs have linear complexity.]

IETs as Poincaré sections

Consider a linear flow on a translation surface. Take a transverse section.

The Poincaré first return map on a section is an interval exchange transformation (IET).
[Remark: Linear flows on translation surfaces and IETs have entropy zero. Cutting sequences of linear trajectories and itineraries of IETs have linear complexity.]

IETs as Poincaré sections

Consider a linear flow on a translation surface. Take a transverse section.

The Poincaré first return map on a section is an interval exchange transformation (IET).
[Remark: Linear flows on translation surfaces and IETs have entropy zero. Cutting sequences of linear trajectories and itineraries of IETs have linear complexity.]

