KHADIM WAR EXERCISES

Let $\varepsilon > 0$ sufficiently small and $f_{\varepsilon} : \mathbb{T}^2 \to \mathbb{T}^2$ be a smooth map such that $\|f_{\varepsilon} - f_A\|_{C^1} < \varepsilon$ where f_A is given by the cat map. Prove that the following are equivalent:

- (1) $\exists \lambda, \alpha \in (0, 1)$ and a family of conefields $\{C^s(x, \alpha), C^u(x, \alpha) : x \in \mathbb{T}^2\}$ such that
- $Df_{\varepsilon}^{-1}C^{s}(x,\alpha) \subset C^{s}(f_{\varepsilon}^{-1}(x),\lambda\alpha) \quad \text{ and } \quad DfC^{u}(x,\alpha) \subset C^{u}(f(x),\lambda\alpha)$
- (2) There exists n_0 such that for $x \in \mathbb{T}^2$ we have $T_x \mathbb{T}^2 = E_x^s \oplus E_x^u$, $Df_{\varepsilon}(E_x^{\sigma}) = E_{f_{\varepsilon}(x)}^{\sigma}$, for $\sigma = s, u$ and $\|Df_{\varepsilon}^{n_0}|_{E^s}\| < 1 < \|Df_{\varepsilon}^{n_0}|_{E^u}\|$.