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Basic concepts and examples
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Chapter 1

Maps

The general formal definition of a Dynamical System will be given below in terms
of the somewhat intimidating notion of a “semi-group of transformations”, but the
simplest example of such a structure is extremely natural and easy to understand
and therefore we begin by illustrating the basic notions and fundamental examples
in such a simpler setting. Many definitions can be formulated starting from an
arbitrary set X and an arbitrary map

f : X → X

defined on X. This setup can be considered the most basic form of a “model” of a
real-life process where X denotes the phase space, i.e. the set of all possible states
of a given system, and f denotes the “physics” of the process, i.e. the law that
determines the evolution of the system.

1.1 Fundamental definitions

Starting from the framework described above we can make several important ob-
servations and definitions.

1.1.1 Initial conditions and orbits

For each given state or initial condition x0 ∈ X the map f gives us the the new
state of the system

x1 := f(x0)

after one unit of time or one application of the process. Since x1 ∈ X we can apply
the map f again to this new state, and obtain the state x2 = f(x1) which gives
the state of the system starting from x0 after two units of time or applications of
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the process. More generally we can iterate the map any number of times and it is
therefore useful to define formally the n’th iterate of f by

fn := f ◦ · · · ◦ f

where ◦ denotes the composition of maps. Then, given an initial condition x0 ∈ X,
the n’th image of x0 under n iterations of the map is given by

xn := fn(x0).

With this notation we make the following

Definition 1.1. The (forward) orbit of x0 ∈ X is the set

O+(x0) := {xn}n∈N
Recall that if the map f : X → X is bijective, then is is invertible in the sense

that the inverse map
f−1 : X → X

is well defined by the condition f−1◦f = f ◦f−1 =identity. This can be intuitively
thought of as going “backwards” in time, if x1 = f(x0) is the evolution of the initial
condition x0 under one application of f , then applying the inverse map to x1 we
get f−1(x1) = f−1(f(x0)) = f−1 ◦ f(x0) = x0 so that we recover the initial state,
i.e. recover what happened in the past.The inverse f−1 is itself a map to all effects
and thus can itself be iterated, and we let

f−n := f−1 ◦ · · · ◦ f−1

denote the n’th fold composition of f−1. Then, we can define the sequence of
pre-images of some initial condition x0 ∈ X under n iterations of the map f as

x−n := f−n(x0).

Thus if f is invertible we can consider both forward time and backward time
iterates of f and make the following

Definition 1.2. If f is invertible, the full orbit of x0 is the set

O(x0) = {xn}n∈Z
Remark 1.3. If f is not one-to-one because then several initial conditions might
map to the same point x1 and thus x1 may have several possible pasts and f−1

cannot be defined.
If f is not invertible it can still be useful to consider the set

f−n(x0) := {y ∈ X : fn(y) = x0}

of pre-images of x0. In general this may contain lots of points and this we cannot
really talk about the set of such preimages forming an orbit of the point x0.
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The basic goal of the theory if Dynamical Systems is essentially to describe the
orbits associated to the map f , including how they depend on the initial condition
and possibly how they change if the map f is slightly perturbed. The possibility
of achieving this goal often relies on significant additional structure on the set X
and on the map f and the introduction of remarkably complex and sophisticated
ideas. We will introduce these additional structures and ideas as they are required
in the course of our study.

1.1.2 Fixed and periodic points

The simplest orbits are those associated to fixed points.

Definition 1.4. x0 is a fixed point if f(x0) = x0.

If x0 is a fixed point then clearly x1 := f(x0) = x0 and thus xn = x0 for all
n ∈ N. In particular, we have O+(x) = {x0}, i.e. the forward orbit of x0 simply
consists of the point x0 itself. If f is invertible and x0 is a fixed point for f then
it is also a fixed point for f−1 (Exercise ??) and therefore the full forward and
backward orbit reduces to the single point x0 itself: O(x) = {x0}.

A generalization of the concept of a fixed point is that of a periodic point.

Definition 1.5. x0 is a periodic point of period k ≥ 1 if fk(x0) = x0.

Notice that a fixed point is also periodic of every period k ≥ 1. More generally,
if x0 is a periodic point of period k then it is also a periodic orbit of period nk
for any integer n ≥ 1 since fnk can be written as the n’fold composition of fk, i.e.
fnk = fk ◦ · · · ◦ fk. Thus it is useful to define the notion of minimal period of x0.

Definition 1.6. x0 has minimal period k if k = min{k ≥ 1 : fk(x0) = x0}.

If x0 is a periodic point of minimal period k ≥ 1, the forward orbit of x0 is the
finite set O+(x0) = {x0, ..., xk−1}. To conclude this section we remark that a point
may not be periodic but may at some point “land” on a periodic point.

Definition 1.7. x0 is pre-periodic if xj is periodic for some j ≥ 0.

Notice that, formally, periodic points are also pre-periodic but the converse
is of course not true. If x0 is pre-periodic, its orbit is the finite set O+(x0) =
{x0, ..., xj, ..., xj+k−1}. where x0, ..., xj−1 is sometimes referred to as the transient
part of the orbit, and xj, ..., xj+k−1 is the periodic part. It is easy to see that any
point whose orbit O+(x0) is finite must be periodic or pre-periodic (Exercise ??).
Moreover, true pre-periodic points can only occur for non-invertible maps, since if
f is invertible any pre-periodic point must be periodic (Exercise ??).
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1.1.3 Limit sets

Periodic and pre-periodic orbits (including those associated to fixed point) are
pretty much as far as we can go in the description of the orbits of a map f without
adding any additional structure to the set X. Indeed, by Exercise ?? any orbit
which is not periodic or pre-periodic is infinite and there is not much we can say
to “describe” an infinite subset of an arbitrary set X with no additional structure.
There are many kinds of structures that can be considered on a set, e.g. measure-
theoretic structure, topological structure, geometric structure, algebraic structure.
Each of these could be more or less useful depending on the kind of description and
information we are interested in and the kind of map f which we are considering.
The kind of structure that the set X admits gives rise to its own set of questions
and methods and problems and solutions and essentially to a distinct approach
and branch of the theory of Dynamical Systems, although naturally there are also
many situations in which X may admit a multiplicity of structures and these can
all contribute to a deeper understanding of the system.

In these notes we will mainly focus on the topological properties of Dynamical
Systems and thus suppose from now on that X is a topological space. In some situ-
ations, particularly for specific examples, we will often have additional structures,
such as a metric space structure, or even a geometric structure, but the general
point of view will be to concentrate on the topological structure and the properties
of the dynamics that can be described through that. The key, and in some sense
only, feature of a topological structure is to allow us to define the notion of limit
points for sequences and we take full advantage of this in our quest to describe the
structure of non-periodic orbits.

Definition 1.8. Let X be a topological space and f : X → X a map. For x0 ∈ X,
we define the omega-limit set ω(x0) of x0 as

ω(x0) := {y ∈ X : xnj → y for some subsequence nj →∞ as j →∞}.

The omega-limit is thus the set of topological limit points of the forward orbit
O+(x0) considered as an infinite sequence in X. It is easy to see that if x0 is
periodic, then ω(x0) = O+(x0) (Exercise 1.4.1). Moreover, is X is compact then
ω(x0) 6= ∅ for every x0 ∈ X (Exercise 1.4.2 and, if f is continuous, then ω(x0) is
f -invariant in the sense that x ∈ ω(x0) implies f(x) ∈ ω(x0) (Exercise ??) If f is
invertible we can define similarly the alpha-limit set:

α(x0) := {x ∈ X : xnj → x for some subsequence nj → −∞ as j →∞}.

Clearly the same properties apply to the alpha-limit set that apply to the omega-
limit set. The notion of α and ω limit set can be used to formulate two notions
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which we will use below: that of an attractor and of a repeller. The alpha limit
set is simply the omega limit for f−1 and thus all the same properties apply.

The omega and alpha limits sets depend of course on the space X and on the
map f as well as the initial condition x0. A priori they can be anything, from a
single point to the whole space, as we shall see from several of the examples to be
studied below. Indeed, these two cases are the most interesting and we give some
associated definitions and properties which hold in general. First of all, following
standard terminology in topology, we say that the orbit O+(x0) is dense in X if
all points of X are limit points of the sequence O+(x0), i.e. if ω(x0) = X. The
existence of a dense orbit is a non-trivial and very relevant property and we this
formulate the following notion.

Definition 1.9. f : X → X is transitive if there exists x0 ∈ X with ω(x0) = X.

On the other extreme, we have situations where the orbit of some point x0 has
a single point as its omega-limit. In this case we have the following

Lemma 1.10. Let f : X → X be a continuous map on a topological space. Suppose
there exist points x0, p ∈ X such that ω(x0) = {p}. Then p is a fixed point.

Proof. Exercise 1.4.1.

Definition 1.11. The point p ∈ X is an attracting fixed point if there exists a
neighbourhood U of p such that ω(x0) = {p} for all x ∈ U .

If f is invertible we define a repelling fixed point p as an attracting fixed point
for f−1 or, equivalently, as a point for which there exists a neighbourhood U of p
such that α(x0) = {p} for all x ∈ U .

1.2 Fundamental examples

We now give easy and fundamental examples of dynamical systems which help us
to illustrate the notions defined above and also serve as models for more general
systems.

1.2.1 Contracting maps

Let X = [0, 1], λ ∈ (0, 1) and consider the map f : X → X defined by

f(x) = λx.

Then it is very easy to see that for every x0 ∈ X, we have x1 = λx0 and so
x2 = λx1 = λ2x0 and, more generally, for every n ≥ 1 we have

xn = λnx0.
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Since λ ∈ (0, 1) we have that λn → 0 as n→∞ and therefore xn → 0 as n→∞
and therefore the orbit of x0 converges to 0 as n→∞ and thus in particular has
a unique limit point, which is precisely 0. Therefore ω(x0) = 0 for every initial
condition x0 ∈ X. This shows that according to Definition 1.11, p = 0 is an
attracting fixed point. In fact this is a special case of an attracting fixed point
because we can take U = X. In this case we say that the attracting fixed point p
is a globally attracting fixed point. In fact this situation is relatively common and
occurs under some general conditions.

Definition 1.12. Let (X, d) be a metric space.
1. A sequence x1, x2, x3, ... in X is Cauchy if for every ε > 0 there exists an N

such that for all m,n > N , d(xn, xm) < ε.
2. X complete if every Cauchy sequence in X converges to an element of X.
3. f : X → X is a contraction if there exists a constant λ ∈ (0, 1) such that

d(f(x), f(y)) ≤ c d(x, y) (1.1)

for all x, y ∈ X.

The following is a standard and very useful result with many applications.

Theorem 1.13 (Contraction Mapping). Let (X, d) be a complete metric space
and f : X → X a contraction. Then

(i) f has a unique fixed point p ∈ X.
(ii) For any x0 ∈ X the sequence {fn(x)} converges to p.

Proof. Exercises 1.4.7-1.4.9.

1.2.2 Translations and circle rotations

Let X = S1 be the unit circle which we can define as the quotient space S1 = R/Z
where x ∼ y if |x − y| = 1 or equivalently just as the unit interval [0, 1]/ ∼ with
the identification 0 ∼ 1. Then, if x ∈ R is any real number, it’s non-integer part,
x mod 1, belongs to S1.

Definition 1.14. f : S1 → S1 is a rotation or a translation by θ if

f(x) = x+ θ mod 1.

Proposition 1.15. Let f : S1 → S1 be a rotation by θ. Then
1. θ is rational if and only if every orbit is periodic;
2. θ is irrational if and only if every orbit is dense in S1.

Proof. Exercise 1.4.3.

Circle rotations are very special in several respects, not least of which the fact
that, whether θ is rational or irrational, all points have the same behaviour, either
they are all periodic or they are all dense.
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1.2.3 Expanding maps

We start by looking at a relatively simple example of a very concrete map which
however is the archetypal example of a very large class of important systems.
Indeed, consider the map f : S1 → S1 defined by

f(x) = 10x mod 1.

This map is very easy to study directly by considering all numbers in S1 in their
decimal representation. Recall that every real number has an infinite decimal
representation (possibly ending in an infinite number of zeroes) and that mod 1 in
the definition of f means that we only consider the non-integer part of the number
10x. Suppose for example that x0 = 0.2743959.... Then it is easy to see that
x1 = f(x0) = 0.743959..., x2 = f(x1) = 0.43959..., x3 = 0.3959.... From this it is
easy to deduce several elementary properties of the dynamics, such as the number
of fixed points and periodic points of any period, the existence of dense orbits, etc.
(Exercise 1.4.4).

We chose the example f(x) = 10x mod 1 because multiplication by 10 works
particularly nicely with the decimal representation of numbers and allows us to
verify explicitly the properties discussed above. However, we can also let κ ≥ 2 be
an integer and define the map

f(x) = κx mod 1

Then it is (almost) just as easy to see that such a map also has periodic points of
any period, dense orbits, etc (Exercise 1.4.6).

Definition 1.16. Let X be a metric space. A map f : X → X is said to exhibit
sensitive dependence on initial conditions if there exists ε > 0 such that for every
x ∈ X and every δ > 0 there exists y ∈ X and n ≥ 1 with d(x, y) ≤ δ and
d(fn(x), fn(y)) ≥ ε.

The sense of this definition is that no matter any arbitrarily small “mistake”
in your choice of initial condition, i.e. choosing y instead of x, eventually leads
to a macroscopic difference in outcomes. It is easy to check that contractions and
circle rotations do not exhibit this property, whereas maps of the form f(x) = κx
mod 1 do (Exercise 1.4.5).

1.3 Discrete Time Dynamical Systems

Given an arbitrary set X and an arbitrary map f : X → X, we consider the family

{f t}t∈N (1.2)
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of all (forward) iterates of f . By convention we let f 0 = Id denote the identity
map. It is then easy to see that the following properties hold:

Closure: f s ◦ f t = f s+t for all s, t ∈ N;
Identity: f 0 = Id;
Associativity: f r ◦ (f s ◦ f t) = (f r ◦ f s) ◦ f t for all r, s, t ∈ N.

Therefore (1.2) is a semi-group of maps under composition. If f is invertible
then we can consider the family

{f t}t∈Z (1.3)

which satisfies:

Closure: f s ◦ f t = f s+t for all s, t ∈ N;
Identity: f 0 = Id;
Associativity: f r ◦ (f s ◦ f t) = (f r ◦ f s) ◦ f t for all r, s, t ∈ N;
Inverse: For every s ∈ G there exists t ∈ G such that f s ◦ f t = f s ◦ f t = Id.

The family (1.3) is therefore a group of transformations under composition.

Notice moreover that if X has some additional structure and f has some reg-
ularity such as being continuous or differentiable (in the non-invertible case) or
if f is a homeomorphism or a diffeomorphisms (in the invertible case), then the
same is true for the compositions of these maps, In which case the families (1.2)
and (1.3) are groups or semi-groups of transformations all of which have the same
regularity.

1.4 Exercises

1.4.1 Limits sets

Exercise 1.4.1. Suppose that X is a metric space and let f : X → X.
1. Show that if O+(x0) is a finite set, then x0 is periodic or pre-periodic.
2. Show that if f is invertible, then any pre-periodic orbit is periodic.
3. Show that if x0 is a periodic point, then ω(x0) = O+(x0)
4. Suppose x0 is a pre-periodic point. What is ω(x0) ?

Exercise 1.4.2. Suppose that X is a metric space and let f : X → X.
1. Show that if X is compact then ω(x0) 6= ∅ for any initial condition x0 ∈ X.
2. Show that if f : X → X is continuous then for any initial condition x0 ∈ X

the set ω(x0) is forward invariant, i.e. if x ∈ ω(x0) then f(x) ∈ ω(x0).
3. Let f : X → X be a continuous map on a metric space and let x0 ∈ X.

Suppose there exist points x0, p ∈ X such that ω(x0) = {p}. Let x1 = f(x0).
(a) Show that O+(x1) = f(O+(x0)). (b) Deduce that ω(x1) = ω(x0) = {p}.
(c) Using the continuity of f , show that p is a fixed point.
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1.4.2 Circle Rotations

Exercise 1.4.3. Let f : S1 → S1 be a circle rotation by some angle θ.
1. Suppose θ = p/q where p, q ∈ N. Compute explicitly the form of the iterates
fn for n ≥ 1 and deduce that every point is periodic of period q. Conversely,
assume that there exists some periodic point x of some period q. Deduce
that qθ = 0 mod 1 and therefore that θ is rational.

2. Suppose there exists x0 with a dense orbit. Deduce that there cannot be any
periodic orbit and therefore θ must be irrational.

3. Suppose θ is irrational and assume first that θ > 0. Fix an arbitrary ε > 0
and cover S1 with a finite number of arcs of length ≤ ε.
(a) Explain first why it is sufficient to prove that the orbit of every initial

condition x0 intersects each of these arcs, to imply that every orbit is
dense.

(b) To show that the orbit of x0 intersects each of these arcs, show first
that there must be at least one arc that contains at least two points
xm, xn ∈ O(x0).

(c) Deduce that there exist some ` ∈ Z such that f ` is a circle rotation by
some angle ≤ ε.

(d) Conclude that the orbit of x0 intersects every arc.

1.4.3 Expanding maps

Exercise 1.4.4. Let f(x) = 10x mod 1.
1. Give an example of a fixed point and of periodic points of period 2 and 3.

Show how to give examples of periodic points of any given minimal period.
2. Show that the set Per(f) of periodic points of f is dense in S1.
3. Let p = 1/3 = 0.33333..... Show that there exists a point x0 which is not

fixed, periodic, or pre-periodic, such that p ∈ ω(x0).
4. Let q = 2/6 = 0.66666.... Show that there exists a point x0 which is not

fixed, periodic, or pre-periodic, such that p ∈ ω(x0) and q ∈ ω(x0).
5. Show that there exists a point x0 such that ω(x0) = S1.

Exercise 1.4.5. (a) Show that contraction mappings and circle rotations do not
exhibit sensitive dependence on initial conditions. (b) Show that maps of the form
f(x) = κx mod 1, for some integer κ ≥ 2, exhibit sensitive dependence on initial
conditions.

Exercise 1.4.6. Let f(x) = κx mod 1 for some integer κ ≥ 2. Show that
1. the set Per(f) of periodic points of f is dense in S1;
2. there exists a point x0 such that ω(x0) = S1.
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1.4.4 Contraction Mapping Theorem

The final three exercises prove the Contraction Mapping Theorem. We suppose
that (X, d) is a complete metric space and f : X → X is a contraction as per the
assumptions of Theorem 9.6.

Exercise 1.4.7. Suppose a and b are distinct fixed points of f . Show that this
contradicts the contraction property (1.1). This shows that there can be at most
one fixed point, and thus proves uniqueness.

Since X is complete, if we show that the sequences of iterates given in (ii) is
Cauchy, then we know it converges to a point in X.

Exercise 1.4.8. a. From the construction of the sequence we have

d(xn, xn+1) = d(f(xn−1), f(xn)) ≤ c d(xn−1, xn).

Using this, find a bound for d(xn, xn+1) in terms of c, x0, and x1.
b. Using the method in a., for m > n, find a bound for d(xn, xm) in terms of

c, x0, and x1.
c. Prove that the sequence of iterates is a Cauchy sequence. Since X is com-

plete, then the sequence {xn} converges in X.

Exercise 1.4.9. a. Prove that f is continuous.
b. Let a = lim

n→∞
xn. Show that the continuity of f implies

lim
n→∞

f(xn) = f(a).

c. Deduce that a is a fixed point of f .
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Chapter 2

Flows

2.1 Continuous Time Dynamical System

The notion of a Dynamical System as a semi-group or group of transformations of
a set X leads to a natural generalization using continuous time. For this we need
a little more structure on the space X and we therefore assume from now on that
X is a metric space.

2.1.1 Formal definition

Let
{f t}t∈R+ (2.1)

be a family of maps f t : X → X which depends continuously on the parameter
t ∈ R+, and which forms a semi-group of transformations of x under composition,
i.e. satisfies the following properties

Closure: f s ◦ f t = f s+t for all s, t ∈ R+;
Identity: f 0 = Id;
Associativity: f r ◦ (f s ◦ f t) = (f r ◦ f s) ◦ f t for all r, s, t ∈ R+.

Then we say that (2.1) is (non-invertible) dynamical system in continuous time,
or a semi-flow on X. Let

{f t}t∈R (2.2)

be a family of maps f t : X → X which depends continuously on the parameter
t ∈ R, and which forms a group of transformations of x under composition, i.e.
satisfies the following properties

Closure: f s ◦ f t = f s+t for all s, t ∈ R;
Identity: f 0 = Id;
Associativity: f r ◦ (f s ◦ f t) = (f r ◦ f s) ◦ f t for all r, s, t ∈ R;
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Inverse: For every s ∈ R there exists t ∈ R such that f s ◦ f t = f s ◦ f t = Id.

Then we say that (2.2) is an (invertible) Dynamical System in continuous time,
or a flow on X.

2.1.2 Basic concepts

Notice that we can generalize in obvious ways all the basic definitions given above
for discrete time dynamical systems. In particular we can define the forward orbit
of a point x and, in the case of a flow, the full orbit of a point x as the sets

O+(x) := {f t(x)}t∈R+ and O(x) := {f t(x)}t∈R

respectively, with the obvious difference that the orbit is no longer in general a
countable set. Indeed, notice that by the assumption on the continuity of the
family of maps with respect to the parameter it follows that the orbit O+(x) or
O(x) are continuous images of R+ or R respectively in X. In the case of a fixed
point we have f t(x) = x for all t, in which case the orbit reduces to the single
point x, but for a periodic point there exists some T > 0 such that f t(x) 6= x
for all t ∈ (0, T ) and fT (x) = x (in the continuous time case it is convenient to
distinguish a fixed point from a non-trivial periodic orbit since one consists of a
single point whereas the other consists of an uncountable set of points). Similarly
we can also define ω-limit sets and, for flows, α-limit sets, as limit points of the
forward and backwards orbits respectively.

Remark 2.1. Notice that the definition of a flow implies that two distinct orbits
O(x),O(y) are either disjoint or coincide (exercise).

Remark 2.2. Discrete Time Dynamical Systems and Continuous Time Dynamical
Systems seen as (semi-)groups of transformations are just special cases of even
more general Group Actions acting on some space X. In these notes we will
consider only the cases mentioned above but the theory can be extended to more
general groups, e.g. systems with “complex time” parameterized by C.

Unlike discrete time dynamical systems, continuous time systems are generally
not defined very explicitly as they are not obtained by iterating a fixed map. There
are instead basically two main sources of continuous time systems: suspension flows
and ODEs. However there are some cases which we can define explicitly and we
start with those.

2.1.3 Basic examples

Example 1 (Translations on R). Let X = R and α ∈ R. For every t ∈ R define
the map f t : X → X by

f t(x) = x+ αt. (2.3)
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Notice that if α 6= 0 then O(x) = R for any x ∈ R, but the asymptotic behaviour
depends on a. Indeed,

• if a > 0 then x(t)→ +∞ as t→ +∞ and x(t)→ −∞ as t→ −∞;
• if a = 0 then x(t) ≡ 0;
• if a < 0 then x(t)→ +∞ as t→ −∞ and x(t)→ −∞ as t→ +∞.

Example 2 (Translations on R2). Let X = R2 and (α1, α2) ∈ R2. Then for every
t ∈ R define the map f t : R2 → R2 by

f t(x, y) = (x1 + α1t, x2 + α2t).

Then, if (α1, α2) 6= (0, 0), each orbit O(x0, y0) is just a straight line through (x0, y0)
with slope α := α2/α1

Remark 2.3. When working in higher dimensional spaces it will be useful to use the
notation x = (x1, x2, x3, ...xn) to denote the coordinates of the point x. This should
not be confused with the notation used previously where we denoted xn = fn(z0).
We will not use the two notations in the same settings and so this should hopefully
not cause confusion.

Example 3 (Translations on tori). Let X = T2 := R2/Z2 and (α1, α2) ∈ R2. Then
for every t ∈ R define the map f t : T2 → T2 by

f t(x1, x2) = (x1 + α1t, x2 + α2t) mod 1. (2.4)

Then, if (α1, α2) 6= (0, 0), each orbit O(x0, y0) is winds round the torus.

Example 4 (Linear flows on R). Let X = R and a ∈ R. Then for each t ∈ R define
the map f t : R→ R by

f t(x) = x(t) = xeat.

Notice that for any a ∈ R we have x(0) = 1. The range of the function x depends
on the value of a:

• if a > 0 then x(t)→ +∞ as t→ +∞ and x(t)→ 0 as t→ −∞;
• if a = 0 then x(t) ≡ 1;
• if a < 0 then x(t)→ +∞ as t→ −∞ and x(t)→ 0 as t→ +∞.

In particular the range of x is the whole positive real axis if a 6= 0 but is just
a single point if a = 0.

Example 5 (Linear flows on R2). Let X = R2 and (a1, a2) ∈ R2. Then for each
t ∈ R define the map f t : R2 → R2 by

f t(x, y0) = (xea1t, yea2t).
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2.2 Basic constructions

Discrete time and continuous time dynamical systems can be related in a very
concrete sense over and above the formal common terminology with which they
are described. We give here a few examples.

2.2.1 Time-one maps

Let {f t}t∈R be a flow. Consider the map f = f 1 given by f(x0) = x1 which
associates to each point x0 its position after one unit of time under the flow.
This is called the time-one map associated to the flow. We can now consider
the discrete time dynamical systems {fn}n∈Z given by iterating f both forwards
and backwards. It is clear that for each n ∈ Z the map fn exists both in the
discrete time dynamical systems and in the flow, in fact the embedding of Z into
R corresponds to an embedding of {fn}n∈Z into {f t}t∈R so that the discrete time
dynamical system generated by the time-one map is naturally embedded into the
flow. We can of course define, in an exactly analogous way, the time-t map, for
any t.

Example 6. Let X = R and f t(x) = xeax for every t ∈ R be a flow. Then for
t = 1 we have f(x) = λx where λ = ea, and for every n we have the discrete time
dynamical system fn(x) = λnx = (ea)nx = eanx.

Remark 2.4. Notice that we can define the time 1 map for any flow or semiflow.
On the other hand it is not true that every discrete time dynamical systems can
be embedded into a continuous time dynamical system. Consider for example the
map

f(x) = λx for some λ < 0.

Then
xn = fn(x) = λnx

and therefore the sign of xn switches between positive and negative at each itera-
tion. The orbit of x0 can therefore clearly not be embedded into any continuous
time dynamical system.

2.2.2 Poincaré maps

Another imporan t way to relate discrete time and continuous time dynamical
systems is via Poincaré sections and Poincaré maps. Let {f t}t∈R be a flow on a
space X and suppose there exists some subset Σ ⊂ X with the property that for
all x ∈ Σ there exists first return time function

τ(x) := min{t > 0 : f t(x) ∈ Σ}
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such that f t(x) /∈ Σ for all t ∈ (0, τ(x)) and f τ(x)(x) ∈ Σ. Then we call Σ a
Poincaré section for the flow and we define the Poincaré first return time map
F : Σ→ Σ by

F (x) = f τ(x)(x).

In some cases one can recover properties of the flow by studying the discrete time
dynamical systems generated by the map F on Σ. Notice for example that any
periodic point for F defines a periodic orbit for the flow.

Example 7. Recall the translation flow on the torus defined in (2.4) above. Sup-
posing without loss of generality that α1 6= 0 it is easy to see that the set
Σ = {0} × S1 ⊂ T2 is a Poincaré section and every point returns ti Σ in this
case with a constant return time τ(x) = 1/α1. Moreover, it is not difficult to see
that F is nothing else than a circle rotation by an angle α = α1/α2 and therefore
our understanding of circle rotations can help us to understand the dynamics of
translation flows on the torus. In particular, if α is rational then every point is
periodic for the flow whereas if α is irrational then every orbit is dense in T2 for
the flow, see Exercise ??. Indeed, this was one of the motivations for Poincaré’s
interest in circle rotations.

Remark 2.5. While every flow and semi-flow has a corresponding time-1 map, it
is not at all the case that every flow or semi-flow has a Poincaré map. A trivial
example are flows with no recurrence, such as the linear translation flows on R
defined in (2.3) which clearly cannot admit Poincaré map. In many cases it is a
relevant and non-trivial problem whether given flows admit Poincaré sections and
Poincaré maps.

2.2.3 Suspension flows

We can also go in the other direction, and build a flow out of a discrete time
dynamical system defined on some set X. Indeed, let f : X → X be a map and
define an extended phase space

X̂ := X × [0, 1]/ ∼

where the relation ∼ identifies the point (x, 1) with the point (f(x), 0). We can

then define a flow on X̂ by simple vertical translation with constant speed 1. More
precisely, for any point (x0, y0) ∈ X̂ if t > 0 we define f t(x0, y0) by first translating
the point “upwards” by time 1 − y0 until it hits the “roof”, then identifying this
point with the corresponding point f(x0) on the “base”, then translating again
upwards and continuing in this way until we reach time t. Notice that the original
map f is exactly the time-one map of this flow which in this special case also
coinmcides with the first return Poincaré map on the cross section X.
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Example 8. Let X = S1 and f(x) = x + α mod 1 be a circle rotation. Then this
construction yields what is essentially a torus with a translation flow for which f
is the first return Poincaré map.

A further generalization of the constant-time suspension flows above can be
constructed by considering once again a map f : X → X and a “roof” or “return-
time” function r : X → R+ and then defining the extended phase space

X̂r := {(x, t) : x ∈ X, t ∈ [0, r(x)]}/ ∼ (2.5)

where this time the relation ∼ identifies the point (x, r(x)) with the point f(x), 0).
The flow can be defined then in a very similar way to that of the constant-time
suspension flow except that the time it takes to return to the base is variable and
depends on the base point. It is a very general construction and one of the easiest
ways of construting semi-flows.

Example 9. Let X = S1, f(x) = 10x mod 1, and r : S1 → R+ an arbitrary con-
tinuous function. Then we can use the construction described above to construct
a semi-flow which has f as a Pincaré first return map.
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Chapter 3

ODEs

We now come to the most classical and arguably most important source of flows. To
motivate the somewhat abstract definition we first make some general observations
concerning flows.

3.0.1 Vector fields and integral curves

Let {f t}t∈R be a flow on Rn and suppose that the family of maps f t depends
1. differentiably on the parameter t in the sense that the map x : t 7→ f t(x). is

differentiable with respect to t for every t ∈ R, and
2. continuously on the point x in the sense that for each fixed t the map f t :

R→ R is a continuous.
The differentiability with respect to t means in particular that the orbit of each
point is a differentiable curve and that for each t the derivative

ẋ(t) = (ẋ1(t), ..., ẋn(t)).

is a well defined vector in Rn tangent to the curve of the orbit in x(t). Moreover,
recall Remark 2.1, each point of Rn belongs to one and only one orbit and there-
fore the flow defines a vector V (x) at each point of Rn. We make the following
definition. Let U ⊆ Rn be an open set.

Definition 3.1. A vector field on U is a function V : U → Rn.

The discussion above says that every flow on Rn defines a vector field. A
natural but very deep and non-trivial question is the converse question, for which
we have the following answer.

Theorem 3.2. Every Lipschitz vector field on Rn defines a flow.
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Recall that a continuous map V : Rn → Rn is locally Lipschitz at c ∈ Rn if
there exists a neighbourhood U = U(c) and a constant κ = κ(c) > 0 such that for
every x, y ∈ U we have ‖V (x)− V (y)‖ ≤ κ‖x− y‖. V is Lipschitz if there exists
κ > 0 such that for all x, y ∈ Rn we have ‖V (x) − V (y)‖ ≤ κ‖y − z‖ (i.e. if it is
locally Lipschitz at every point c ∈ Rn with a uniform constant κ).

Example 10. Easy examples of Lipschitz functions are functions whose derivative is
uniformly bounded. The function V (x) = x2 is locally Lipschitz but not Lipschitz
since whose derivative is unbounded at infinity and V (x) =

√
x is not locally

Lipschitz at 0 where the derivative is unbounded.

To formulate this question precisely we need to introduce some definitions. Let
I ⊆ R be an open interval. If x : I → U is a C1 function, for t ∈ I we write
x(t) = (x1(t), ..., xn(t)) where xi : I → R are the coordinate functions of x. The
derivative ẋ(t) of x with respect to t is then the vector ẋ(t) = (ẋ1(t), ..., ẋn(t))
where ẋi(t) are the derivatives of the coordinate functions xi wrt t.

Definition 3.3. A function x : I → U is an integral curve of a vector field V if

ẋ(t) = V (x(t)) (3.1)

for every t ∈ I. Equation (3.1) is sometimes written in the form ẋ = V (x)
and referred to as an (autonomous) ordinary differential equation. A function x
satisfying (3.1) is called a (local) solution of the differential equation. A function
x satisfying (3.1) with I = R is called a global solution of the differential equation.

Remark 3.4. The definition of an integral curve implies not only that it is geomet-
rically tangent to the vector field V at every point, but that it’s parametrization
is such that its velocity at every point is exactly the vector given by the vector
field at that point.

Remark 3.5. A non-autonomous ordinary differential equation is an equation of
the form ẋ = V (x, t) where V : Rn × R→ Rn is a one-parameter family of vector
fields. There are many similarities but also many differences between autonomous
and non-autonomous differential equations but we will not explore them here.

This prompts the following set of questions, known as the Cauchy problem:
given a vector field V : U → Rn and a point x0 ∈ U we write{

ẋ = V (x)

x(0) = x0.
(3.2)

We can then ask: i) does there exist an interval I ⊆ R and a C1 function x : I → U
which is a solution of (3.13), i.e. such that ẋ = V (x) and x(0) = x0? ii) is this
solution unique? iii) what is the maximal interval I on which the solution can be
defined?
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Remark 3.6. Notice that if x : I → U is a solution of (3.13) on some interval I
containing 0, then the restriction of x to any subinterval J ⊂ I also containing 0,
is also a solution. We clearly do not consider these distinct solutions and thus say
that a solution x : I → U is unique if any other solution y : J → U coincides with
x on the intersection of their respective domains of definition I ∩ J .

In Section 3.0.2 we give some easy and explicit examples for which this question
can be answered positively. In Section 3.0.3 we give some basic counterexamples
which show that in somecases uniqueness and global existence fails. Finally in
Section 3.1 we give classical conditions for existence and uniqueness of solutions
and for the existence of a flow.

3.0.2 Basic examples

Example 11. Let a ∈ R and let V : R→ R be the constant vector field V (x) = a.
Consider the differential equation ẋ = V (x) or, equivalently,

ẋ = a. (3.3)

Then it is easy to see that, for any c ∈ R, the function x : R→ R given by

x(t) = c+ at (3.4)

satisfies ẋ(t) = a and is therefore a solution.

Remark 3.7. Notice that for many choices of a and c the solution curve, i.e. the
image x(R), is the same. This however does not make them the same solution as
they are distinct functions, i.e. distinct solutions, with the same image.

Example 12. Let a ∈ R and let V : R→ R be the vector field V (x) = ax. Consider
the differential equation ẋ = V (x) or, equivalently,

ẋ = ax. (3.5)

Then it is easy to see that for any c ∈ R the function

x(t) = ceat (3.6)

is an integral curve of V and therefore a solution to the differential equation (3.5).
Indeed, differentiating x with respect to t we get

ẋ(t) = aceat = ax(t)

We have that x(0) = c is the initial condition of the solution, i.e. the position
of the solution at time t = 0, and a very similar analysis as above can be carried
out to study the range of x and its behaviour as t → ±∞. Notice that the three
specific cases above are just special cases of (3.6) with initial conditions c = 1,
c = −1 and c = 0 respectively.
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Example 13. Let a = (a1, a2) ∈ R2 and let V : R2 → R2 be the vector field
V (x) = a or equivalently V (x1, x2) = (a1, a2) where x = (x1, x2). Consider the
differential equation ẋ = V (x) we can write (ẋ1, ẋ2) = (a, b) or even{

ẋ1 = a1

ẋ2 = a2
(3.7)

This corresponds to choosing a constant vector a = (a1, a2) at every point. It is
then easy to see that for any initial condition c = (c1, c2) ∈ R2 function x : R→ R2

given by

x(t) = (x1(t), x2(t)) = (c1, c2) + (a1t, a2t) = (c1 + a1t, c2 + a2t) (3.8)

is a solution of (3.7) since ẋ1 = a1 and ẋ2 = a2. For a = (a1, 0) the solution curves
are just horizontal lines, for a = (0, a2) they are vertical lines, and in the general
case a = (a1, a2) with a1, a2 6= 0 they are straight lines with slope a2/a1.

Example 14. Let a = (a1, a2) ∈ R2 and let V : R2 → R2 be the vector field
V (x) = ax or equivalently V (x1, x2) = (a1x1, a2x2) where x = (x1, x2). Consider
the differential equation ẋ = V (x) or ẋ = ax, which is the exact analogue of (3.5)
with the scalars a, x replaced by vectors, and which, for clarity, we can write{

ẋ1 = a1x1

ẋ2 = a2x2
(3.9)

This corresponds to choosing a constant vector ax = (a1x1, a2x2) at every point.
It is a useful exercise to try this for various values of a = (a1, a2). It is then easy
to see that for any initial condition c = (c1, c2) ∈ R2 function x : R→ R2 given by

x(t) = (x1(t), x2(t)) = (c1e
a1t, c2e

a2t) (3.10)

is a solution of (3.9), this can be checked just as in the one-dimensional case.
Notice however that the geometry of the solution curves depends very much on
the signs of a1, a2.

3.0.3 Basic counterexamples

Example 15 (Non-uniqueness). Consider the differential equation

ẋ = 3x2/3 (3.11)

The two functions
x(t) ≡ 0 and y(t) = t3
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satisfy x(0) = y(0) = 0 and are both solutions to (3.11). Indeed, since x is con-
stant, its derivative is zero and therefore for any t ∈ R we have ẋ(t) = 0 = V (0) =
V (x(t)). On the other hand we also have ẏ(t) = 3t2 = 3(t3)2/3 = 3(y(t))2/3 =
V (y(t)). Thus both x and y solve the Cauchy problem and we do not have unique-
ness of solutions. Notice that this does not contradict the fundamental theorem
of ODEs. The vector field here is given by the function V (x) = 3x2/3 which is
continuous and differentiable outside the origin with V ′(x) = 2x−1/3. Notice that
V ′(x) → ∞ as x → 0 so that V is not locally Lipschitz at 0. Notice that in this
case the two solutions are geometrically distinct. One is just a fixed point at the
origin, whereas the other maps to the entire real line.

Example 16 (Non-global solutions). Consider the differential equation

ẋ = 1 + x2 (3.12)

For any initial condition x0 the function

x(t) = tan(t+ c) where c = tan−1(x0)

is solution of (3.12). Indeed, x(0) = tan(c) = tan(tan−1(x0)) = x0 and ẋ = ẋ(t) =
1+tan2(t+ c) = 1+(tan(t+ c))2 = 1+(x(t))2 = 1+x2. Notice however that these
solutions are not globally defined. Indeed, the function tan is only well defined
in the interval (−π/2, π/2) and so the solution x is defined only on the interval
I = (−c−π/2,−c+π/2). Notice however that geometrically the solution maps to
the whole real line since x(t) → ±∞ as t → −c ± π/2. Thus the trajectory goes
to infinity in finite time.

3.1 Existence and uniqueness of solutions

The following is the so-called fundamental theorem of ordinary differential equa-
tions. To simplify the statement we consider the case where U = Rn so that the
vector field is defined on all of Rn.

Theorem 3.8. Let V : Rn → Rn be a continuous vector field. For every x0 ∈ Rn:
i) there exists a local solution x : I → Rn for the Cauchy problem (3.13);
ii) if V is locally Lipschitz then this solution is unique;
iii) if V is Lipschitz this solution is a global solution.
In case iii) the solutions depends continuously on the initial condition.

Remark 3.9. If V is Lipschitz and x : R → Rn and y : R → Rn are two global
solutions with initial conditions c, d ∈ Rn respectively, then continuous dependence
means that for any given t ∈ R and any ε > 0 there exists δ = δ(ε, t) > 0 such
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that |c − d| < δ guarantees |x(t) − y(t)| < ε. We emphasize that δ depends on t
as well as ε; in general two global solutions with arbitrarily close initial conditions
may eventually diverge, but this does not contradict the continuous dependence
of solutions.

3.2 Exercises

3.2.1 Vector Fields

Exercise 3.2.1. For a, b ∈ R consider the vector field V (x1, x2) = (ax1, bx2) on
R2.

(a) Sketch the vector field for the following two cases:
(i) a = −1, b = 3

(ii) a = −1, b = −2
(b) Add to the sketches the flow lines which pass through the point (1, 1).
(c) Verify that x(t) = (eat, ebt) is a solution to the Cauchy problem{

ẋ = V (x)
x(0) = (1, 1)

(d) Is this solution unique? If so, why? If not, can you find another solution?

Exercise 3.2.2. Consider the vector field V (x1, x2) = (1,
√
|x2|) on R2.

(a) Sketch the vector field.
(b) Add to the sketch the flow line which passes through (0, 1).
(c) Verify that1 x(t) = (t, sgn(t)1

4
t2) is a solution to the Cauchy problem ẋ =

V (x) with x(0) = (0, 1).
(d) Is this solution unique? If so, why? If not, can you find another solution?

Exercise 3.2.3. Consider the vector field V (x1, x2) = (2, x2
2) on R2.

(a) Sketch the vector field.
(b) Add to the sketch the flow line which passes through (0, 1).
(c) Verify that x(t) = (2t, 1

1−t) is a solution to the Cauchy problem ẋ = V (x)
with x(0) = (0, 1).

(d) Is the solution in (c) unique? If so, why? If not, can you find another
solution? Is the solution valid for all t ∈ R?

3.2.2 Existence and Uniqueness

Theorem 3.10 (Existence and Uniqueness). Let y0 ∈ Rn, b > 0. Suppose that
V is a Lipschitz vector field on D = [y0 − b, y0 + b]n ⊂ Rn. Then there exists a

1The function sgn(t) is equal to 1 if t ≥ 0 and equal to −1 otherwise.
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unique solution to the Cauchy problem{
ẏ(t) = V (y(t))
y(0) = y0

(3.13)

on the interval [−a, a], for some a > 0.

In a series of exercises we will prove Theorem 3.10. Since V is Lipschitz there
exists L > 0 such that |V (x) − V (y)| ≤ L|x − y| for all x, y ∈ D. Let M =
sup{|V (x)| : x ∈ D}. Choose

a < min

{
1

L
,
b

M

}
.

Denote by Y the space of all functions y : [−a, a]→ D which are continuous. For
y1, y2 ∈ Y , define

d(y1, y2) = max
t∈[−a,a]

|y1(t)− y2(t)|.

Exercise 3.2.4. Show that (Y , d) is a complete metric space using the following
steps.

1. Show that d, as defined above, is a metric.
2. Show that the limit of any Cauchy sequence is a function which takes values

in D.
3. Observe that any Cauchy sequence converges uniformly. Show that the uni-

form limit of continuous functions is continuous using the following steps.
(a) Suppose that the sequence of continuous {yn} converges uniformly to

y. Then for ε > 0, there exists an N such that for n ≥ N , |yn− y| ≤ ε
3
.

(b) Since each yn is continuous, then there exists a δ such that for |t1−t2| <
δ, |yn(t1)− yn(t2)| < ε

3
.

(c) Consider |y(t1) − y(t2)|. By adding and subtracting both yn(t1) and
yn(t2) and using the triangle inequality, show that y is continuous.

We define the operator T : Y → Y ,

(Ty)(t) = y0 +

∫ t

0

V (y(s)) ds.

Exercise 3.2.5. Show that T is well-defined. Hint: Is t 7→ (Ty)(t) continuous? Is
(Ty)(t) ∈ D for all t ∈ [−a, a]?

Exercise 3.2.6.
1. Show that if y is a solution to (3.13) then y is a fixed point of T .
2. Show that if y is a fixed point of T , then y is a solution to (3.13).
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Exercise 3.2.7.
1. Show that there exists c ∈ (0, 1) such that d(Ty1, T y2) ≤ c d(y1, y2) for all
y1, y2 ∈ Y .

2. Use the Contraction Mapping Theorem to conclude the proof of the existence
and uniqueness of a local solution.
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Chapter 4

Conjugacy and Structural
Stability

We are now ready to begin to formulate the basic problem of Dynamical Systems,
that of the classification and of structural stability of dynamical systems.

4.1 Classification of Dynamical Systems

We start by introducing some fundamental notions used to describe a dynamical
system and then discuss when two systems can be considered equivalent and for-
mulate the problem of the stability. For simplicity we will mainly focus on discrete
time dynamical systems, but most ideas can easily be translated to the continuous
time setting.

4.1.1 Conjugacy

The first and most fundamental concept in any problem of classification is to
formulate a notion of equivalence. As we shall see there are various notions which
can be useful and which define equivalence with various degrees of strength. The
most basic form is the following.

Let X, Y be two sets, f : X → X and g : Y → Y two maps.

Definition 4.1. f, g are conjugate if there exists a bijection h : X → Y such that

h ◦ f = g ◦ h.

The conjugacy condition says that h maps orbits to orbits in a consistent way.
Indeed, if f, g are conjugate, we have f = h−1 ◦ g ◦ h and therefore for any n for
which fn and gn are both defined, we have

fn = (h−1 ◦ g ◦ h)n = h−1 ◦ g ◦ h ◦ · · · ◦ h−1 ◦ g ◦ h = h−1 ◦ gn ◦ h.
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Thus all iterates of f, g are also conjugate. Thus the conjugacy is really a rela-
tionship between the dynamical systems induced by f, g respectively. Is it easy
to check that conjugacy defines an equivalence relation in the space of all discrete
time dynamical systems (Exercise 4.3.1, Item 1) and thus is an acceptable notion
of equivalence. It is however a very weak notion: it guarantees that two conjugate
systems have corresponding sets of periodic points (Exercise 4.3.2, Item 1) but in
fact not much else. As we shall see from examples below it is possible to conju-
gate systems which we do not really want to consider equivalent. We thus need a
stronger form of conjugacy and this requires also some additional structure on the
maps f, g.

4.1.2 Topological conjugacy

We now assume that X, Y are topological spaces. This will allow us to formulate
a much stronger and more meaningful notion of equivalence, by imposing an extra
condition on the conjugacy condition introduced above. Let f : X → X and
g : Y → Y be two maps. In the context of maps on topological spaces it is
natural to consider continuous maps, and many of the maps we will consider will
be continuous, but this is not strictly required by the definition.

Definition 4.2. f, g are topologically conjugate if they are conjugate and the
conjugacy h is a homeomorphism.

It is again easy to see that this is an equivalence relation (Exercise 4.3.1, Item
2). The crucial difference is that topological conjugacies also preserve limit sets
(Exercise 4.3.2, Item 2), in the sense that if f, g are topologically conjugate, for
every x ∈ X we have

h(ω(x)) = ω(h(x)).

As we shall see, this is a much stronger form of conjugacy than simple conjugacy.
If two maps are topologically conjugate then they are conjugate but the converse
is false. Thus topological conjugacy classes are a refinement of standard conjugacy
classes.

4.1.3 Differentiable conjugacy

If the spaces X, Y are differentiable manifolds such as Rn we can take the notion
of conjugacy even further. Suppose f : X → X and g : Y → Y are two maps C1

maps.

Definition 4.3. f, g are C1 conjugate if they are conjugate and the conjugacy h
is a C1diffeomorphism.
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Also in this case it is easy to check that C1 conjugacy is an equivalence relation.
Any C1 diffeomorphism is of course also in particular a homeomorphism and so
C1 conjugacies preserve limit sets, but they also preserve even more structure, in
particular the value of the derivative at fixed points (Exercise 4.3.2, Item 3)

Remark 4.4. There are advantages and disadvantages of using weaker or strong
forms of conjugacies and the correct level may depend on the specific question.
Weaker forms mean that it is easier for two systems to be equivalent but that may
include cases which really we feel should be distinct, on the other hand stronger
forms may distinguish too much including between systems which for certain pur-
poses In each case more and more structure is preserved. The correct notion of
conjugacy will depend on the specific setting and the questions of interest. In
general however differentiable conjugacies preserve so much structure that even
systems which seems very similar may not be conjugate, and in many situations
topological conjugacies seem like the appropriate compromise between preserving
a sufficient amount of structure and sufficiently large equivalence classes.

4.2 Structural stability and bifurcations

The notions of conjugacy or equivalence between two dynamical systems are par-
ticularly significant in conjunction with the concept of a perturbation, i.e. a “small”
change in the system. What happens if we change the system a very little bit?
Is the perturbed system conjugate to the original system? The answer to this
question depends on the kind of conjugacy we require but also on the kind of
perturbation we allow, some perturbations can create more damage than others.
This is formalized by a choice of metric or topology on the space of dynamical
systems. In the coming chapters we will consider several examples and give pre-
cise definitions of the kinds of perturbations and the conjugacies appropriate to
various settings. At the moment we give a somewhat “conceptual” definition.

Definition 4.5. A dynamical system is structurally stable (with respect to a given
notion of conjugacy and with respect to a given topology on the appropriate space
of dynamical systems) if it lies in the interior (with respect to the topology) of its
equivalence class (with respect to the given notion of conjugacy).

Thus, structural stability means that a sufficiently small perturbation (in the
chosen topology) does not modify the features of the system (in the chosen level of
conjugacy). If the system is not structurally stable then there exist other dynam-
ical systems “arbitrarily close” to the original one which are not conjugate and
thus “different”. In this case we say that the system is undergoing a bifurcation.

Example 17. Consider the map f : R → R given by f(x) = x2 + 1/4. It is easy
to check that f has exactly one fixed point p = 1/2 and that the graph of f is
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tangent to the diagonal at the point (1/2, 1/2). Then it is clear that there any
arbitrarily small perturbations can push the graph of f fully above the diagonal,
thus destroying the fixed point or, conversely, push it a little bit downwards so
that it intersects the diagonal twice and so has 2 fixed points. In both cases the
number of fixed points has changed and so the new system cannot be conjugate
the the original one. We will see form the arguments below that the perturbed
systems on the other hand are structurally stable.

4.3 Exercises

Exercise 4.3.1. Prove the following statements:
1. Conjugacy is an equivalence relation.
2. Topological conjugacy is an equivalence relation
3. C1 conjugacy is an equivalence relation.

Exercise 4.3.2. Show that
1. Conjugacy preserves periodic points, i.e. if f, g are conjugate, the conjugacy

maps periodic points to periodic points.
2. Topological conjugacy preserves limits sets, i.e. if f, g are topologically con-

jugate, for every x ∈ X we have h(ω(x)) = ω(h(x)).
3. C1 conjugacy preserves the derivative at fixed points, i.e. if f(p) = p, g(q) =
q and h(p) = q then f ′(p) = q′(q).
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Part II

One-dimensional diffeomorphisms
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Chapter 5

One-Dimensional Linear Maps

As a first example of applications of the concepts introduced above we consider
one-dimensional linear maps. The situation in this setting is particularly simple
but precisely for that reason it is a good class of maps through which to highlight
some fundamental ideas and techniques.

5.1 Dynamics of one-dimensional linear maps

The only linear maps in one-dimension are the scalar maps A : R→ R given by

A(x) = ax

for some a ∈ R. Iterates of A clearly have the form

An(x) = anx

and this allows us to easily and systematically study the dynamics and the alpha
and omega limits for various values of the parameter a.

Definition 5.1. A one dimensional linear map A(x) = ax is
1. invertible if a 6= 0
2. hyperbolic if a 6= ±1;
3. orientation preserving if a > 0;
4. orientation reversing if a < 0;
5. contracting if |a| ∈ (0, 1)
6. expanding if |a| > 1

The dynamical features of the map (e.g. fixed and periodic points, limit sets)
depend essentially on which of the above classes it belongs to (Exercise 5.4.1).
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5.2 Conjugacy classes

The main purpose of this chapter is to prove the following

Theorem 5.2. Let A(x) = ax,B(x) = bx with a, b 6= 0 and a 6= b. A and B are:
1. conjugate if and only if they are both hyperbolic and have the same orien-

tation;
2. topologically conjugate if and only if they are conjugate and are either

both contracting or both expanding;
3. not C1 conjugate.

Remark 5.3. Notice that the case a = 0 is a degenerate case where all points map
to the original after one iterate. Clearly in this case A cannot be conjugate to any
other linear map B with b 6= 0. Also, every map is always automatically conjugate
to itself via the identity map, so we exclude this case from the above.

Remark 5.4. This result illustrates particularly clearly the difference between the
three levels of conjugacy. In particular it shows that simple conjugacy is quite
a weak notion of equivalence, since for example A(x) = 2x and B(x) = x/2 are
conjugate even though one is expanding and all orbits go to infinity in forward
time whereas the other ic onctracting and all orbits go to 0 in forward time. On
the other hand C1 conjugacy is extremely strong and no two distinct linear maps
are conjugate in this way. Topological conjugacy is on the whole a reasonable
intermediate notion which conjugates maps which it seems reasonable to consider
equivalent, and distinguishes maps which it seems reasonable to consider distinct.
As we shall see below, this will also apply to more general situations, and topo-
logical conjugacy turns out to be the most convenient notion of equivalence to use
in most situations.

To prove Theorem 5.2 we shall use a powerful method for the construction of
conjugacies, called the method of fundamental domains. We explain it first in an
abstract setting.

Definition 5.5. Let X be a set and f : X → X be an invertible map. A subset
X ′ ⊆ X is invariant if f(X ′) = X ′.

Example 18. Any fixed point is clearly invariant, as is the orbit of a periodic point.
In fact any full orbit θ(x0) = {fn(x0)}n∈Z is invariant and therefore also any union
of orbits. In some cases there are entire regions that are invariant in a natural
way, for example for the linear map A(x) = 2x both strictly positive and strictly
negative semi-axes are invariant.

If X ′ is an invariant subset then we can consider the dynamics of the map f
restricted to X ′, since any point in X ′ maps to X ′ both in forward and backward
iterates. We denote by f |X′ the restriction of f to X ′.
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Definition 5.6. A subset U ⊆ X ′ is a fundamental domain for f |X′ if for every
x ∈ X ′ there exists a unique time τ = τ(x) ∈ Z such that f τ (x) ∈ U .

Example 19. If X ′ = θ(x0) is the full orbit of a single non-periodic point, then
any point in this orbit is a fundamental domain for X ′ (notice that if x0 is fixed
or periodic then X ′ = θ(x0) is invariant but has no fundamental domains since
each point returns to every other point infinitely many times). If A(x) = ax is a
linear map with a ∈ (0, 1), then for any x0 > 0 the half-open, half closed interval
(ax0, x0] is a fundamental domain for the positive semi-axis (Exercise 5.4.2).

It turns out that the problem of establishing a conjugacy between two systems
can be essentially reduced to that of finding fundamental domains. Suppose f :
X → X and g : Y → Y are two invertible maps, X ′ ⊆ X,Y ′ ⊆ Y invariant sets,
and U ,V fundamental domains for f |X′ , g|Y ′ respectively.

Lemma 5.7. Let h̃ : U → V be a bijection, then f |X′ and g|Y ′ are conjugate.

Proof. Exercise 5.4.4

Proof of Theorem 5.2. From Lemma 5.7 we get the first item in Theorem 5.2 (Ex-
ercise 5.4.5). To prove the second item we need to show that if h̃ can be chosen to
be a homeomorphism then the conclusions of Lemma 5.7 can be strenghtened to
give a topological conjugacy. This is not so easy to show in the full generailty of
abstract topological spaces, but can be shown in the setting of linear maps which
is what we need here, giving the second item in Theorem 5.2 (Exercise 5.4.7).
Finally, for the third item, notice that the origin is a fixed point for every linear
map A(x) = ax and the derivative of A at every point (and thus in particular
at the fixed point) is A′(x) ≡ a. By Exercise 4.3.2 a C1 conjugacy preserves the
derivative at fixed points and therefore any two distinct linear maps cannot be
C1 conjugate.

5.3 Structural stability

Theorem 5.2 also helps to illustrate the notion of structural stability in this very
simple setting. Letting L(R1) denote the space all one-dimensional linear maps.
For two maps A(x) = ax and B(x) = bx we define a metric d(A,B) := |a− b|.

Theorem 5.8. Let A ∈ L(R1). Then
1. A is not structurally stable with respect to C1 conjugacy;
2. A is structurally stable with respect to conjugacy (and topological conjugacy)

if and only if it is invertible and hyperbolic.

Proof. Exercise 5.4.8
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5.4 Exercises

Exercise 5.4.1. Let A : R → R be a linear map A(x) = ax for some a ∈ R.
Describe the dynamics (fixed points, periodic points, omega and alpha limits sets)
in the following cases: i) a = 0; ii) a = ±1; iii) |a| < 1; iv) |a| > 1. In cases iii)
and iv) explain the difference in the dynamics in the orientation preserving and
orientation reversing cases.

Exercise 5.4.2. Let A(x) = ax be a linear map with a ∈ (0, 1).
1. Show that each of the positive and the negative semi-axes are invariant;
2. Show that for any x0 > 0 the interval (ax0, x0] is a fundamental domain for

the positive semi-axis; [Hint: notice that the images An(ax0, x0] are pairwise
disjoint and their union is the positive semi-axis]

3. Show that for any y0 < 0 the interval [y0, ay0) is a fundamental domain for
the negative semi-axis;

4. Show that (ax0, x0] ∪ [y0, ay0) is a fundamental domain for R \ {0};
5. Find analogous fundamental domains for a > 1.

Exercise 5.4.3. Let A(x) = ax be a linear map with a ∈ (−1, 0).
1. Show that each of the positive and the negative semi-axis is not an invariant

set, but their union R \ {0} is an invariant set;
2. Find a fundamental domain for R \ {0};
3. Answer both items above in the case a < −1.

Exercise 5.4.4. Suppose f : X → X, g : Y → Y are invertible maps, X ′ ⊆
X,Y ′ ⊆ Y invariant sets, and U ⊂ X ′,V ⊂ Y ′ fundamental domains for f |X′ , g|Y ′
respectively. For every x ∈ X ′, let τ(x) denote the unique time for which f τ (x) ∈
U . Let h̃ : U → V be a bijection and for every x ∈ X ′ let

h(x) := g−τ(x) ◦ h̃ ◦ f τ(x)(x). (5.1)

1. Show that h : X ′ → Y ′ is a bijection, i.e. that it is injective and surjective;
2. Show that h is a conjugacy between f |X′ , g|Y ′ ; [Hint: Compute h ◦ f(x) =
h(f(x)) using the formula above and the observation that τ(f(x)) = τ(x)−1]

Exercise 5.4.5. Let A(x) = ax,B(x) = bx with a, b 6= 0 and a 6= b.
1. Suppose A,B are conjugate.

(a) Show that a, b 6= ±1 and therefore A,B are both hyperbolic.
(b) Show that A,B have the same orientation. [Hint: Exercise 5.4.6]

2. Suppose A,B are hyperbolic and have the same orientation.
(a) Show that R \ {0} is invariant for both A and B.
(b) Use Exercises 5.4.2 and 5.4.4 to construct a conjugacy h between A|R\{0}

and B|R\{0}.
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(c) Extend h to R by letting h(0) = 0 and show that h is a conjugacy
between A and B.

Exercise 5.4.6. Show that conjugacy preserves invariant sets, i.e. if f : X →
X, g : Y → Y are invertible maps and h : X → Y is a conjugacy between f and
g, then X ′ ⊆ X is invariant for f if and only if Y ′ := h(X ′) is invariant for g.

Exercise 5.4.7. Consider the setting of Exercise 5.4.4 in the special case where
X = Y = R, f, g are linear maps A(x) = ax,B(x) = bx with a, b /∈ {0,±1} and
with the same orientation, X ′ = Y ′ = R \ {0}, and U ,V are the fundamental
domains given by Exercises 5.4.2 and 5.4.3.

1. Show that the there exists a homeomorphism h̃ : U → V ;
2. Show that h : R \ {0} → R \ {0}, defined as in (5.1), is a homeomorphism.

[Hint: consider first the order-preserving case for simplicity and show that
h is continuous, the continuity of h−1 is proved in the same way. A function
of one variable is continuous if it is continuous at every point x and it is
continuous at x if it is continuous from the left and from the right. Now
distinguish two cases: i) if x ∈ R \ {0} is such that Aτ(x)(x) lies in the
interior of U then both are easy; ii) if x is such that Aτ(x)(x) lies on the
boundary of U then continuity either from the left or from the right is easy,
for the not easy case, you will need to use the ε, δ definition of continuity

3. Extend h to all of R by letting h(0) = 0. Show that this defines a global
homeomorphism h : R → R if and only if A, B are either both contracting
or both expanding. [Hint: show that h is continuous at 0]

Exercise 5.4.8. Prove Theorem 5.8 assuming Theorem 5.2.
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Chapter 6

Interval Diffeomorphisms

In this chapter we begin the study of nonlinear maps. While linear maps have
the characteristic that they essentially look the same at every scale, the global
dynamics of non linear maps can be very complicated, partly because nonlinear
maps can have many fixed and periodic points which interact in subtle ways. We
will therefore begin our study of non-linear maps with some simple situations,
starting with diffeomorphisms of an interval.

Throughout this chapter we suppose that I = [a, b] ⊂ R is a compact interval
and f : I → I is a C1 diffeomorphism of I. In particular this means that f ′(x) 6= 0
for all x ∈ I. Thus either f ′(x) > 0 for all x ∈ I or f ′(x) < 0 for all x ∈ I.

Definition 6.1. Let f : I → I is a C1 diffeomorphism. If f ′(x) > 0 for all x ∈ I we
say that f is orientation preserving and otherwise that it is orientation reversing.

Remark 6.2. If f is orientation reversing, then f 2 is orientation preserving, and so
are all forward and backward iterates of f 2. Thus we can always (almost) reduce
the situation to the orientation preserving case.

6.1 Fixed points and limit sets

Lemma 6.3. Let f : I → I be a C1 diffeomorphism of a compact interval. Then
f maps endpoints to endpoints. In particular, f has at least one fixed point and if
f is orientation preserving then it has at least two fixed points and these are the
endpoints of the interval.

Proof. Exercise 6.5.1.

Lemma 6.4. Let f : I → I be a C1 orientation preserving diffeomorphism of a
compact interval. Then for any x0 ∈ I the limit sets α(x0), ω(x0) are fixed points.

Proof. Exercise 6.5.2
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Definition 6.5. A fixed point p ∈ I is attracting if there exists a neighbourhood
U of p such that ω(x0) = {p} for all x0 ∈ U ; the neighbourhood U is called the
local basin of attraction of p. A fixed point p ∈ I is repelling if there exists a
neighbourhood U of p such that α(x0) = {p} for all x0 ∈ U , i.e. it is attracting for
f−1 with local basin of attraction U .

Remark 6.6. Notice that points may be neither attracting nor repelling, e.g. the
identity map.

6.2 Hyperbolic fixed points

Let f : I → I be a C1 interval diffeomorphism.

Definition 6.7. A fixed point p ∈ I is hyperbolic if |f ′(p)| 6= 1.

Lemma 6.8. Let p be a hyperbolic fixed point. Show that if |f ′(p)| < 1 then p is
attracting and if |f ′(p)| > 1 then p is repelling.

Proof. Exercise 6.5.6.

Non-hyperbolic fixed points can have a variety of behaviours as can be easily
seen by sketching a few graphs. Indeed the attracting or repelling nature of a fixed
points can easily be interpreted geometrically by the shape of the graph of f in
a neighbourhood of the fixed point, see Exercise 6.5.8, and this in turn can be
expressed in terms of higher order derivatives of f at p, see Exercise 6.5.9.

Definition 6.9. f is hyperbolic if every fixed point of f is hyperbolic.

Lemma 6.10. If f is hyperbolic then it has a finite number of fixed points

Proof. Exercise 6.5.10.

Remark 6.11. Although we will not define this notion precisely here, hyperbolic
fixed points are “generic” in the sense that they remain hyperbolic under small per-
turbations and non-hyperbolic fixed points can be made hyperbolic by arbitrarily
small perturbations.

6.3 Conjugacy classes

We start by considering the case in which f has only two fixed points.

Proposition 6.12. Let f, g be C1 orientation preserving interval diffeomorphisms,
each with exactly two fixed points . Then f, g are topologically conjugate.

40



Proof. Exercise 6.5.11

This shows that all C1 diffeomorphisms with two fixed points belong to the
same topological conjugacy class. They cannot be C1 conjugate unless the deriva-
tives at the fixed points are the same. We can now state perhaps the most impor-
tant result of this section.

Theorem 6.13. Two orientation-preserving hyperbolic interval diffeomorphisms
f, g are topologically conjugate if and only if they have the same number of attract-
ing and the same number of repelling fixed points.

Proof. One direction is clear. Since topological conjugacies preserve fixed points
and limit sets, if two interval diffeomorphisms have different numbers of attracting
and/or repelling fixed points they cannot be topologically conjugate. For the other
direction, notice first that attracting and repelling fixed points must alternate on
the interval. Each closed subinterval between one attracting and one repelling
fixed point is invariant and can itself be considered an interval diffeomorphism with
exactly two fixed points, and therefore we can apply Lemma 6.12 to get a conjugacy
restricted to the corresponding intervals. Gluing together these conjugacies we get
a global conjugacy.

It is easy to see that the result fails without the hyperbolicity assumption, the
number of fixed points does not in general characterise completely the topological
conjugacy class, see Exercise 6.5.12. Clearly it continues to hold that f, g cannot
be C1 conjugate if they do not have the same derivatives at corresponding fixed
points.

6.4 Structural stability

To study the bifurcations and structural stability of interval diffeomorphisms we
need to introduce a topology on the space of all C1 diffeomorphisms of the interval
I. We shall in fact introduce two natural metrics on the spaces C0(I) of all
continuous maps f : I → I and on the space C1(I) of all C1 maps f : I → I. For
f, g ∈ C0(I) we let

d0(f, g) = sup
x∈I
{|f(x)− g(x)|}.

For f, g ∈ C1(I) we let

d1(f, g) := sup
x∈I
{|f(x)− g(x)|+ |f ′(x)− g′(x)|}.

Remark 6.14. Notice that the definitions do not require f, g to be invertible.
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Notice that d1(f, g) ≥ d0(f, g). Indeed we can have two maps which are arbi-
trarily close in the C0 metric and far in the C1 metric.

Example 20. Suppose I = [0, 1] and let f : [0, 1]→ [0, 1] and g : [0, 1]→ [0, 1] be

f(x) ≡ 1

2
and g(x) =

1

2
+ ε sin

x

ε

Notice that the graph of g is contained in an ε-neighbourhood of the graph of f
and therefore d0(f, g) = ε However we have Df(x) ≡ 0 and Dg(x) = cosx and
therefore d1(f, g) = 1. Thus the maps f and g are very close in the C0 metric for
ε small, but always far in the C1 metric.

This means that the two metrics induce different topologies: you can have
a sequence of functions fn converging to f in the C0 metric but not in the C1

metric and therefore a “small” perturbation in the C0 metric may be “large” in
the C1 metric. We thus have two different equivalence relations and two different
topologies and we want to study the problem of structural stability with respect
to the different combinations of topologies and equivalence classes. We fix each of
the topologies in turn and consider the two possible equivalence classes.

Proposition 6.15. Let f be a hyperbolic C1 interval diffeomorphism. Then
1) f is C1 structurally stable with respect to topological conjugacy;
2) f is C0 structurally unstable with respect topological conjugacy;
3) f is C1 structurally unstable with respect to C1 conjugacy;
4) f is C0 structurally unstable with respect to C1 conjugacy.

Proof. 1) It is sufficient to show that for some sufficiently small ε > 0, all g with
d1(f, g) < ε are hyperbolic and have the same number of fixed points as f , since
this implies that f, g are topologically conjugate. We argue as follows.

Since f is hyperbolic all its fixed points are isolated and there exist constants
δ, δ′ > 0 such that, letting Up = [p− δ, p+ δ] denote a neighbourhood of each fixed
point p, we have:

(i) Up ∩ Uq = ∅ if p 6= q ;
(ii) |f(p)− f(p± δ)| ≥ δ′ for every fixed point p;
(iii) |f ′(x)| 6= 1 for all x ∈ Up for every fixed point p.
Condition (2) implies that as long as g is sufficiently C0 close to f , it has no

fixed point outside the union of the neighbourhoods Up. Thus we just need to show
that as long as g is sufficiently C1 close to f then there exists a unique hyperbolic
fixed point inside each neighbourhood Up.

It is clear that there must be at least one fixed point since the images of
f(p ± δ) lie on opposite sides of the diagonal and so the same must be true of g.
To see that it is unique, suppose by contradiction that there exist two fixed points
q, q′ ∈ Up. Then we would have |f(q) − f(q′)| = |q − q′| and thus by the mean
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value theorem there would exist some point x ∈ [q, q′] ⊆ Up such that f ′(x) = 1,
contradicting (iii).

2) The second part of the argument above does not hold if the perturbation is
small only in the C0 metric, Clearly we can perturb f inside the neighbourhood
Up to obtain g with g(Up) ⊆ (p− ε, p+ ε) but so that g has two fixed points in Up.
Thus g cannot be topologically conjugate to f .

3) It is clear that it is always possible to find another diffeomorphism g such
that the derivatives at the fixed point of g do not coincide with the derivatives at
the corresponding fixed points of f . Thus, even if f, g have the same number of
fixed points, they are not C1 conjugate.

4) Is a a trivial consequence of 2).

6.5 Exercises

Exercise 6.5.1. Prove that a C1 interval diffeomorphism must send endpoints
to endpoints. Conclude that every interval diffeomorphism has at least one fixed
point and if f is orientation preserving it has at least two fixed points and these
are the endpoints of the interval.

Exercise 6.5.2. Let f : I → I be a C1 orientation preserving diffeomorphism
of a compact interval. Show that any orbit O+(x0) is a monotone sequence in
I. Conclude that ω(x0) is a fixed point. Deduce also that α(x0) is a fixed point.
[Hint: use the Mean Value Theorem]

Exercise 6.5.3. Let f : I → I be a C1 orientation-reversing diffeomorphism of a
compact interval. Show that, for any x0 ∈ I, the sets α(x0) and ω(x0) are fixed
points or points of period two. Hint: Consider f 2.

Exercise 6.5.4. (1) Find the fixed points of the interval map

f : [0, 1]→ [0, 1]; x 7→ x+ x2

2
.

(2) Are these fixed points repelling or attracting? (3) What can you say about
ω(x0) and α(x0) for any x0 ∈ [0, 1]?

Exercise 6.5.5. Find an explicit formula for a C1 interval diffeomorphism f : I →
I which has exactly three fixed points.

Exercise 6.5.6. Let p be a hyperbolic fixed point. Show that i) if |f ′(p)| < 1
then p is attracting; ii) if |f ′(p)| > 1 then p is repelling.
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Exercise 6.5.7. Sketch the graph of an interval diffeomorphism with an attract-
ing fixed point p with f ′(p) ∈ (−1, 0). Sketch the first few iterates of an initial
condition x0 in its immediate basin of attraction.

Exercise 6.5.8. Sketch the graph of interval diffeomorphisms with a fixed point
p with f ′(p) = 1 and such that p is: i) attracting; ii) repelling; iii) attracting on
one side and repelling on the other.

Exercise 6.5.9. Let f : I → I be a C3 orientation preserving diffeomorphism of
a compact interval and p ∈ (0, 1) a fixed point with f ′(p) = 1. Give conditions
on the higher order derivatives of f at p to guarantee that p is i) attracting; ii)
repelling.

Exercise 6.5.10. Show that every hyperbolic interval diffeomorphism has a finite
number of fixed points. [Hint: show that any accumulation point of the set of fixed
points is a fixed point. Then argue by contradiction. ]

Exercise 6.5.11. Let f, g be C1 orientation preserving interval diffeomorphisms,
each with exactly two fixed points.

1. Show that both maps have one attracting and one repelling fixed point;
2. find fundamental domains for the interior of the intervals;
3. use these to construct conjugacies between f and g.

Exercise 6.5.12. Sketch the graphs of two orientation-preserving C1 interval dif-
feomorphisms with the same number of fixed points, but which are not topologi-
cally conjugate, and explain why they are not topologically conjugate.

Exercise 6.5.13. For f, g ∈ C0(I, I) let d0(f, g) = supx∈I{|f(x) − g(x)|}. For
f, g ∈ C1(I, I) let d1(f, g) = supx∈I{|f(x)− g(x)|+ |f ′(x)− g′(x)|}. Show that d0

d1 are metrics on C0(I, I) and C1(I, I) respectively.
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Part III

Local Dynamics
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Chapter 7

Two-Dimensional Linear Maps:
Real Eigenvalues

We recall that a map A : Rn → Rn is linear if

A(αv + βw) = αA(v) + βA(w)

for any vectors v, w ∈ Rn and any scalars α, β ∈ R. Any such map can be
represented by an n× n matrix which for convenience we identify with A. We say
that λ is an eigenvalue of A if it is a solution to the equation det(A − λI) = 0.
Eigenvalues can be real or complex. The set of eigenvalues of A is called the
spectrum of A. We introduce the following terminology.

Definition 7.1. (1) A is invertible if detA 6= 0;
(2) A is orientation-peserving if detA > 0 and orientation-reversing if detA < 0.
(3) A is hyperbolic if |λ| 6= 1 for all eigenvalues λ of A.

For simplicity, in these notes we will restrict our attention to the case of two-
dimensional linear maps, since such class of maps is already sufficiently rich to in-
troduce many new ideas, and the higher dimensional results can often be obtained
by technical but rather straightforward generalizations of the two-dimensional case.
A two-dimensional linear map can be represented by a matrix

A =

(
a b
c d

)
A has two eigenvalues (counted with multiplicity) given by solutions of the char-
acteristic equation which in this case gives λ2 − (a + d)λ + (ad − bc) = 0 and
therefore

λ1,2 =
a+ d±

√
(a+ d)2 − 4(ad− bc)

2
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It follows immediately that the eigenvalues are either both real or a pair of complex
conjugate eigenvalues. In this section we discuss the case in which the eigenvalues
are real, in the next we will consider the case of complex eigenvalues.

7.1 Real eigenvalues

In this chapter we focus on the case in which the eigenvalues of A are real. We
start by studying the special case in which the matrix representing A is diagonal,
and then consider the general case.

7.1.1 Diagonal matrices

We say that the matrix A is diagonal if it has the form

A =

(
λ1 0
0 λ2

)
Then, for every n ∈ Z we have

An =

(
λn1 0
0 λn2

)
Therefore, for any vector v0 = (v

(1)
0 , v

(2)
0 ) ∈ R2 which we think of as an initial

condition we have(
v

(1)
n

v
(2)
n

)
= An

(
v

(1)
0

v
(2)
0

)
=

(
λn1 0
0 λn2

)(
v

(1)
0

v
(2)
0

)
=

(
λn1v

(1)
0

λn2v
(2)
0

)
From this, it is very straightforward to analyse the possible cases. We leave this
is an exercise.

Definition 7.2. A linear map with real distinct eigenvalues λ1,2 is hyperbolic if
|λ1,2| 6= 1. A hyperbolic linear map A has a unique fixed point at the origin. This
fixed point is called

1. a sink if |λ1| < 1 and |λ2| < 1
2. a source if |λ1| > 1 and |λ2| > 1
3. a saddle if |λ1| < 1 < |λ2| or |λ2| < 1 < |λ1|.

7.1.2 General matrices

For a general matrix A (not necessarily in diagonal form) with real eigenvalues
λ1, λ2 we can define the corresponding eigenspaces E(1), E(2) which are charac-
terised by the property that

Av(1) = λ1v
(1) and Av(2) = λ2v

(2)
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for any vectors v(1) ∈ E(1), v(2) ∈ E(2). In particular, this means that the eigenspaces
are invariant under the action of A and of A−1:

A(E(1)) = A−1(E(1)) = (E(1)) and A(E(2)) = A−1(E(2)) = (E(2))

and that the action of A on these eigenspaces is simply that of the one-dimensional
linear maps v(1) 7→ λ1v

(1) and v(2) 7→ λ2v
(2) respectively. The dynamics of A

restricted to each of these eigenspaces can therefore be classified according to the
values of λ1, λ2 exactly as in the one-dimensional case. Notice moreover, that this
is also the same as in the diagonal case which is just a special case in which the
eigenspaces correspond to the horizontal and vertical axes.

Notice that this implies in particular that if λ1 6= λ2 then also E(1) 6= E(2). If
λ1 = λ2 then it may happen that E(1) 6= E(2) or it may happen that E(1) = E(2).
The case in which E(1) = E(2) is more complicated to analyze and therefore for
simplicity we shall often assume that A has two distinct eigenspaces, or the stronger
condition that it has distinct eigenvalues. In this case, since E(1), E(2) are linearly
independent and span R2, any vector v0 can be written in a unique way as

v0 = v
(1)
0 + v

(2)
0

for some vectors v
(1)
0 ∈ E(1) and v2

0 ∈ E(2). By linearity we then have

vn = Anv0 = A(v
(1)
0 + v

(2)
0 ) = Av

(1)
0 + Av

(2)
0 = λn1v

(1)
0 + λn2v

(2)
0

Once again, therefore, it is easy to analyse the possible dynamical configurations
depending on the values of λ1 and λ2.

7.2 Linear conjugacy

We can formalise these observations by saying that the matrix A is equivalent to
a matrix B in diagonal form through a linear change of coordinates.

Definition 7.3. Two invertible matrices A, B are linearly conjugate if there exists
an invertible matrix P such that

AP = PB.

Notice that if A,B are linearly conjugate, then for any n ∈ Z we have

An = (PBP−1)n = PBP−1PBP−1 · · ·PBP−1PBP−1 = PBnP−1.

Therefore, the conjugacy is actually a conjugacy of the dynamical systems given
by the iterates of the matrices A,B.
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Proposition 7.4. Suppose A, B are 2 × 2 matrices, both having the same pair
of distinct real eigenvalues λ1, λ2. Then A, B are linearly conjugate. Conversely,
suppose A,B are linearly conjugate, then they have the same eigenvalues.

Proof. Suppose first that A,B have the same eigenvalues. It is sufficient to show
that they are both conjugate to the same matrix in diagonal form. We show it
for A, obviously the same argument applies to B. Let e(1) = (v(1), v(2)), e(2) =
(w(1), w(2)) be eigenvectors of A corresponding to λ1, λ2 respectively. Let

P =

(
v(1) w(1)

v(2) w(2)

)
We leave it as an exercise to show that

Az = P

(
λ1 0
0 λ2

)
P−1z

proving that P is a linear conjugacy (Exercise 7.4.1).

7.3 Topological Conjugacy

We are now ready to classify all two dimensional invertible and hyperbolic linear
maps in two dimensions with real distinct eigenvalues. In this case there are three
possibilities for the fixed point: it can be attracting, repelling, or it can be a
saddle point, corresponding to the various possibilities depending on whether the
eigenvalues have modulus less than 1 or greater than 1. Moreover, the linear map
can be orientation preserving if detA > 0 or orientation reversing if detA < 0.

Theorem 7.5. Let A,B be two hyperbolic invertible two-dimensional linear maps
with real distinct eigenvalues λA1 < λA2 and λB1 < λB2 respectively. Suppose that
(1) A and B have the same kind of fixed point (attracting, repelling, saddle-type);
(2) A and B are either both orientation preserving or orientation reversing;
(3) if the fixed points are of saddle type, suppose that the sign of the corrresponding
(contracting/repelling) eigenvalues of A and B are the same.

Then A and B are topologically conjugate.

Proof. It is sufficient to consider the case in which both A and B are in diagonal
form. Indeed by Lemma 7.4, A and B are both linearly (and thus in particular,
topologically) conjugate to linear maps Ã, B̃ in diagonal form with the same eigen-
values as A and B respectively. Thus, A, B are toplogically conjugate if and only
if Ã, B̃ are topologically conjugate. We assume therefore that both A and B are
in diagonal form

A =

(
λA1 0
0 λA2

)
and B =

(
λB1 0
0 λB2 .

)
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In particular in both cases the coordinate axes are invariant and the dynamics on
the axes are just given by the one-dimensional linear maps x1 7→ λA1 x1, x2 7→ λA2 x2,
y1 7→ λB1 y1 and y2 7→ λB2 y2. Then we can apply the results for the conjugacy of one-
dimensional maps to show that the corresponding axes are topologically conjugate,
i.e. there exist homeomorphisms h1 : R→ R and h2 : R→ R such that

h1(λA1 (x1)) = λB1 (h1(x1)) and h2(λB1 (x2)) = λB2 (h2(x2)) (7.1)

for every (x1, x2) ∈ R2. We then define h : R2 → R2 by

h(x1, x2) = (h1(x1), h2(x2)) (7.2)

for any x = (x1, x2) ∈ R2. Then clearly h is a homeomorphism. We leave it as
Exercise 7.4.2 to show that this is a conjugacy between the linear maps A,B.

Finally we show that linear maps are not generally C1 conjugate unless they
are linearly conjugate.

Proposition 7.6. Suppose that f, g : Rn → Rn C1 maps with fixed point p, q
respectively. Suppose f, g are conjugate by a C1 diffeomorphism h and h(p) = q.
Then Dfp and Dgq have the same eigenvalues.

Proof. By the definition of conjugacy we have f = h−1 ◦g ◦h. Differentiating both
sides, by the chain rule, for any x we have Dfx = Dh−1

g(h(x)) ◦Dgh(x) ◦Dhx. Letting

x = p and using the fact that h(x) = q is a fixed point for g this gives

Dfp = Dh−1
g(h(p)) ◦Dgh(p) ◦Dhp = Dh−1

q ◦Dgq ◦Dhp

Since q = h(p), we have Dh−1
q = (Dhp)

−1 and therefore Dfp = Dh−1
p ◦ Dgq ◦

Dhp. Thus Dfp and Dgq are linearly conjugate by the linear map Dhp and so in
particular have the same eigenvalues.

7.4 Exercises

Exercise 7.4.1. A,B have the same eigenvalues real distinct eigenvalues λ1, λ2

with eigenvactors e(1) = (v(1), v(2)), e(2) = (w(1), w(2)). Let

P =

(
v(1) w(1)

v(2) w(2)

)
Show that P maps the eigenvectors e(1), e(2) to unit horizontal and vertical vectors.
Now let z = z(1)e(1) + z(2)e(2) ∈ R2 be an arbitrary vector. Show that Az =

P

(
λ1 0
0 λ2

)
P−1z.

Exercise 7.4.2. Show that h, as defined in (7.2) is a conjugacy between A,B.
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Chapter 8

Two-Dimensional Linear Maps:
Complex Eigenvalues

We now turn to the study of linear systems with complex eigenvalues. Once again
we start with a matrix in a “normal form” which corresponds to the diagonal
matrices for the case of real eigenvalues.

8.1 Complex Eigenvalues

8.1.1 Normal form for complex eigenvalues

We start with the special case of maps of the form

A =

(
α β
−β α

)
Identify R2 with the complex plane C by the identification (x, y)↔ x+ iy. Then
the action of A corresponds exactly to multiplication by the complex number
α− iβ. Indeed:

A(x, y) = (αx+βy,−βx+αy) and (x+iy)(α−iβ) = (αx+βy)+i(−βx+αy).

Writing the complex number α + iβ in polar coordinates we get

α− iβ = reiθ where r = |α− iβ| and θ = cos−1(α/r).

Then, writing an initial condition in polar form as r0e
iθ0 we then get the iterate

A(r0e
iθ0) = reiθr0e

iθ0 = rr0e
i(θ0+θ)

and more generally
An(r0e

iθ0) = r0r
nei(θ0+nθ).
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From this we can easily classify all the possibilities in the hyperbolic case: if r < 1
then all trajectories spiral in towards the origin, if r > 1 then they spiral out
towards infinity. Notice moreover that the direction of the spiral depends on the
sign of θ which in turn depends on the sign of α, i.e. whether the eigenvalues have
positive or negative real part.

8.1.2 Linear conjugacy

The matrix we studied above was of a very special form but it is representative of
all matrices with complex eigenvalues in a similar way to the way diagonal matrices
are representative of all matrices with real aigenvalues.

Proposition 8.1. Any matrix B with complex conjugate eigenvalues α± iβ, β 6= 0
is linearly conjugate to the matrix

A =

(
α β
−β α

)
Proof. Even though the entries of B are real, we can think of it as a complex
matrix, defining a mapB : C2 → C2 and, exactly as in the real case, the eigenvalues
α± iβ define eigenvectors e(1)± ie(2) where e(1), e(2) ∈ R2. Let us write the vectors
e(1) = (v(1), v(2)), e(2) = (w(1), w(2)) in standard Euclidean coordinates. Then just
as we did before, we can define the matrix

P =

(
v(1) w(1)

v(2) w(2)

)
We claim that B = PAP−1. Indeed, as above we have that

P

(
1
0

)
=

(
v(1)

v(2)

)
; P−1

(
v(1)

v(2)

)
=

(
1
0

)
; P

(
0
1

)
=

(
w(1)

w(2)

)
; P−1

(
w(1)

w(2)

)
=

(
0
1

)
Now let z = z1e

(1) +z2e
(2) be an arbitrary vector which we choose, for convenience,

to write as a linear combination of eigenvectors. Then

P−1(z) = P−1(z1e
(1) + z2e

(2)) = P−1(z1e
(1)) +P−1(z2e

(2)) =

(
z1

0

)
+

(
0
z2

)
=

(
z1

z2

)
Therefore

AP−1(z) =

(
α β
−β α

)(
z1

z2

)
=

(
αz1 + βz2

−βz1 + αz2

)
and thus

PAP−1(z) =

(
v(1) w(1)

v(2) w(2)

)(
αz1 + βz2

−βz1 + αz2

)
=

(
v(1)αz1 + v(1)βz2 − w(1)βz1 + w(1)αz2

v(2)αz1 + v(2)βz2 − w(2)βz1 + w(2)αz2

)
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On the other hand, by the definition of eigenvector, we have

B(e(1) + ie(2)) = (α + iβ)(e(1) + ie(2)) = αe(1) − βe(2) + i(βe(1) + αe(2))

and therefore, equating real and immaginary parts, we get

Be(1) = αe(1) − βe(2) and Be(2) = βe(1) + αe(2).

From this we have

Bz = B(z1e
(1) + z2e

(2)) = z1αe
(1) − z1βe

(2) + z2βe
(1) + z2αe

(2).

Since e(1) = (v(1), v(2)) and e(2) = (w(1), w(2)) we get Bz = PAP−1z and thus
completes the proof.

8.2 Topological conjugacy II

In Section 7.3 we studied the equivalence relation of topological conjugacy amongst
hyperbolic linear maps with real distinct eigenvalues. Here we carry out a similar
study for maps with complex conjugate eigenvalues. We show that not only are
many of such maps topologically conjugate to each other, but that many maps with
complex conjugate eigenvalues are also conjugate to corresponding maps with real
distinct eigenvalues.

Proposition 8.2.

More specifically we recall that all hyperbolic linear maps with distinct eigen-
values fall into one of three categories depending on the nature of the fixed point
at the origin. The fixed point is attracting if both eigenvalues have real part with
modulus < 1, repelling if both eigenvalues have real part with modulus > 1 and a
saddle point if one eigenvalue has real part with modulus < 1 and the other eigen-
value has real part with modulus > 1 (in which case of course both eigenvalues
have to be real).

Theorem 8.3. Two hyperbolic invertible linear maps with distinct (real or com-
plex) eigenvalues are topologically conjugate if and only their fixed points are both
attracting, or both repelling or both saddle points, and if they have the same num-
ber of eigenvalues with positive real part.

Proof. Let

A =

(
a b
c d

)
and A′ =

(
a′ b′

c′ d′

)
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be two invertible hyperbolic matrices with distinct eigenvalues λ1, λ2 and λ′1, λ
′
2

respectively. If they are both saddle points then all eigenvalues must be real and
the result has already been proved above. Thus we can assume the fixed points are
either both attracting, corresponding to the case max{|λ1|, |λ2|, |λ′1|, |λ′2|} < 1 or
repelling, corresponding to the case min{|λ1|, |λ2|, |λ′1|, |λ′2|} > 1. For definiteness.
let us suppose that both fixed points are attracting, the repelling case follows
by the same arguments. Let us suppose moreover that the eigenvalues of A are
real and the eigenvalues of A′ are complex. The other cases follow by essentially
identical arguments. We remark first of all that, as we have seen, A,A′ are both
linearly conjugate to corresponding matrices in “normal form”, so we can assume
without loss of generality that

A =

(
λ1 0
0 λ2

)
and B =

(
α β
−β α

)
with 0 < λ1 < λ2 < 1 and |λ′1,2| = |α ± iβ| < 1. We will construct fundamental
domains for the maps A,B. Let S denote the unit circle, then its image A(S) is a
smooth curve strictly contained inside the unit circle. Similarly B(S) is a smooth
curve strictly contained inside S. Let D denote the annular region bounded by S
and A(S) and D′ denote the annular region bounded by S and B(S) (in each case
we include S in D,D′ but not its images A(S) and B(S). We start by showing
that D and D′ are fundamental domains for the corresponding maps.

Lemma 8.4. ∀ x ∈ R2\{0} there exists a unique τ(x) ∈ Z such that Aτ(x)(x) ∈ D.
∀ y ∈ R2 \ {0} there exists a unique τ ′(y) ∈ Z such that Bτ ′(y)(y) ∈ D′.

Proof. The argument is essentially the same as that used above in the one di-
mensional case. The same argument works for A and B so for simplicity we just
consider A. Each point x ∈ R2 lies on a smooth curve γ(x) which is invariant
under A and which is monotone in the sense that for each constant c > 0 the in-
tersection of γ with the circle {|x| = c} of radius c centred at the origin is a unique
point. Moreover, the orbit of every point x is also monotone along γ(x) in the
sense that |An(x)| → 0 monotonically as n→∞ and |An(x)| → ∞ monotonically
as n → −∞. It is therefore sufficient to show that for each x ∈ R2 \ {0} there
exists a unique τ(x) such that Aτ(x)(x) ∈ γ(x) ∩ D. Suppose now for simplicity
that |x| > 1, the case |x| ≤ 1 is analogous. Let τ(x) ≥ 1 be the smallest positive
integer such that |Aτ(x)−1(x)| > 1 ≥ |Aτ(x)(x)| Then, by the monotonicity of the
orbits under A we have |Aτ(x)(x)| > |A(1)| ≥ |Aτ(x)+1(x)| and all these points lie
on the same curve γ(x). This shows that τ(x) is the unique time in which the
orbit of x lands in D.

We now let D,D′ be the closures of D,D′.
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Lemma 8.5. There exists a homeomorphism h̃ : D → D′ such that for all x ∈ S

h̃(x) = B−1 ◦ h̃ ◦ A(x)

Proof. The key observation here is to recall that all orbits of the linear maps A,B
lie on one of a family of invariant curves whose distance from the origin is mono-
tonically decreasing. The intersection of these curves with the domains D,D′ gives
a family of smooth curves with endpoints on the boundaries of D,D′, i.e. on S and
A(S), B(S) respectively. To construct h̃ therefore we just need a homeomorphism
which maps such a family of curves to each other. We start by defining h̃ : S → S
by an arbitrary homeomorphism and then map the corresponding curves to each
other. This is clearly a bijection and a homeomoprhism since the curves are a
continuous family, and gives the required conjugacy because A(x) lies on the same
curve as x and therefore h̃ maps h̃(x) to B(h̃(x)) by construction.

We then define a map h : R2 → R2 by letting h(0) = 0 and, for ever x ∈ R2\{0}
letting

h(x) := B−τ(x) ◦ h̃ ◦ Aτ(x)(x). (8.1)

Lemma 8.6. h is a homeomorphism.

Proof. The proof that h is a bijection follows exactly as in the one-dimensional
case and we omit the details. The proof that h and h−1 are continuous also follows
by an almost identical argument as in the one-dimensional case. However we give
some of the details in order also to clarify the role of Lemma 8.5 in the proof. We
prove the continuity of h as that of h−1 follows by the same arguments.

Suppose that x is such that Aτ(x)(x) lies in the interior of D. Then, continuity
at x follows simply by the composition of locally continuous maps. The continuity
at the origin also follows by exactly the same arguments as in the one-dimensional
case. On the other hand, if Aτ(x)(x) ∈ S then we need to take a little bit of
care and to use the ε, δ definition of continuity. We suppose ε > 0 is fixed and
seek δ > 0 such that |z − x| < δ implies |h(x) − h(z)| < ε. Notice that in
this case the neighbourhood |z − x| < δ of x is two-dimensional. For points
within this neighbourhood we distinguish two possibilities: either τ(z) = τ(x) or
τ(z) > τ(x). If τ(z) = τ(x) then we can again use the continuity of A, h̃, B to get
the result. If τ(z) > τ(x) then, supposing that δ > 0 is sufficiently small, we have
τ(z) = τ(x) + 1. Now consider the set

A := {z : |z − x| < δ and τ(z) = τ(x) + 1}.

The set A is open, A(A) ⊂ D and, for every z ∈ A

h(z) = B−τ(z) ◦ h̃ ◦ Aτ(z)(z) = B−(τ(x)+1) ◦ h̃ ◦ Aτ(x)+1(z). (8.2)
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For any ε0 there exists δ > 0 such that for all z ∈ A we have

z ∈ A =⇒ |Aτ(x)+1(z)− Aτ(x)+1)(x)| < ε0

Since A(A) ⊂ D and h̃ is a homeomorphism, for any ε1 > 0 there exists ε0 > 0
such that

|Aτ(x)+1(z)− Aτ(x)+1(x)| < ε0 =⇒ |h̃ ◦ Aτ(x)+1(z)− h̃ ◦ Aτ(x)+1)(x)| < ε1

Then, by the continuity of B, for any ε > 0 there exists ε1 such that

|h̃ ◦ Aτ(x+1)(z)− h̃ ◦ Aτ(x)+1)(x)| < ε1

implies

|B−(τ(x)+1) ◦ h̃ ◦ Aτ(x+1)(z)−B−(τ(x)+1) ◦ h̃ ◦ Aτ(x)+1)(x)| < ε (8.3)

Now notice that

B−(τ(x)+1) ◦ h̃ ◦ Aτ(x)+1)(x) = B−τ(x) ◦B−1 ◦ h̃ ◦ A ◦ Aτ(x)(x)

= B−τ(x) ◦ h̃ ◦ Aτ(x)(x) = h(x)

by Lemma 8.5 and the fact that Aτ(x)(x) ∈ S. Thus, using this and (8.2) and
substituting into (8.3) we get |h(z)−h(x)| < ε and thus prove continuity at x.

8.3 Structural stability

We let L(Rn) denote the space of all linear maps on Rn. We have already seen
two possible equivalence relations, linear conjugacy and topological conjugacy. We
now define a topology on L(Rn) and study the structurally stable maps and the
bifurcations for both of these equivalence relations.

8.3.1 Structural stability for Two-dimensional maps

In the more general setting with n ≥ 2 there is anyway a natural identification
L(Rn) ≈ R2n given by the 2n entries of a matrix A ∈ L(Rn). Thus, in this case
also there is a natural norm induced by the Euclidean norm on Rn. In the two
dimensional case, given a matrix

B =

(
a1 a2

a3 a4

)
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we can therefore define a norm

‖A‖ :=
√
a2

1 + a2
2 + a2

3 + a2
4

and from this, given another matrix B we have

d(A,B) = ‖A−B‖ :=
√

(a1 − b1)2 + (a2 − b2)2 + (a3 − b3)2 + (a4 − b4)2

Lemma 8.7. Every two-dimensional linear map is structurally unstable w.r.t. lin-
ear conjugacy.

Proof. For any linear map A and any ε > 0 we can always find a “perturbation”
Aε with d(A,Aε) < ε such that A and Aε do not have the same eigenvalues, for
example by changing just one of the entries of the matrix. Since A,Aε do not have
the same eigenvalues they cannot be linearly conjugate and thus do not belong
to the same linear conjugacy class. Thus we have shown that A does not belong
to the interior of its conjugacy class. In fact, since A is arbitrary this shows that
none of the conjugacy classes have interiors.

Theorem 8.8. Let A be a two-dimensional, invertible, hyperbolic linear map A
with distinct eigenvalues. Then A is structurally stable w.r.t. topological conjugacy.

Proof. Exercise.
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Chapter 9

Local linearization

Dynamical systems in higher dimensions can have extremely complex behaviour
and we are still very far from any kind of classifications of all the possible dynamics.
However in some cases we can describe the local dynamics in certain regions. First
of all we need to define what we mean by a local topological conjugacy.

Definition 9.1. Let X, Y be metric spaces, f : X → X and g : Y → Y continuous
maps, and p ∈ X and g ∈ Y fixed points. We say that f, g are locally topologically
conjugate at p and q if there exists neighbourhoods Np,Nq of p, q respectively, and
a homeomorphism h : Np → Nq such that h ◦ f = g ◦ h whenever both sides are
defined.

The definition does not assume that Np and Nq are forward invariant by f
and g respectively. Thus the conjugacy equation is not strictly well defined in all
of Np. However, since p, q are fixed, it is clearly defined in some neighbourhood
of p inside Np. Now let f : Rn → Rn be a C1 diffeomorphism. Then, letting
x = (x1, ..., xn) ∈ Rn, the map f is given by n coordinate functions

f(x) = (f1(x), ..., fn(x))

and the derivative Df(x) is a matrix

Df(x) =


∂f1
∂x1

(x) · · · ∂f1
∂xn

(x)
...

. . .
...

∂fn
∂x1

(x) · · · ∂fn
∂xn

(x)


The derivative matrix itself can therefore be considered as a linear map

Df(x) : Rn → Rn.

A natural question is whether this linear map is somehow related or approximates
the dynamics of the map f around the point x. This question makes sense partic-
ularly if x = p is a fixed point for f .
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Definition 9.2. Let f : Rn → Rn be a C1 map with a fixed point p. We say that
f is locally linearizable at p if f and Dfp are locally topologically conjugate at p
and 0 respectively.

The fundamental result in this direction is the following. We first make the
following definitions which generalizes naturally the definitions given above.

Definition 9.3. A linear map A : Rn → Rn is hyperbolic if none of its eigenvalues
lies on the unit circle. A fixed point p if a C1 diffeomorphism f : Rn → Rn is
hyperbolic if the derivative map Dfp is hyperbolic.

Theorem 9.4 (Grobman-Hartman Theorem, 1960). Let f : Rn → Rn be a C1

map with a hyperbolic fixed point p. Then f is locally linearizable at p.

We shall not give a complete proof of this result but restrict our attention to
the special case where all the eigenvalues of Dfp are inside the unit circle, so that
Dfp is “contracting” in a sense to be made precise below. We first introduce the
general notion of contractions and then prove a global version of thsi linearization
in a very general infinite dimensional setting. Finally we explain how this implies
the Grobman-Hartman Theorem for contracting fixed points.

9.1 The Contraction Mapping Theorem

Let (X, d) be a metric space.

Definition 9.5. f : X → X is a contraction if there exists a constant λ ∈ (0, 1)
such that for all x, y ∈ X

d(f(x), f(y)) ≤ λd(x, y).

Theorem 9.6. [Contraction Mapping Theorem] Suppose X is a complete metric
space and f : X → X is a contraction. Then there exists a unique, globally
attracting, fixed point p ∈ X. Moreover, if fω : X → X is a family of contractions
with a uniform contraction constant λ ∈ (0, 1) and depending continuously on the
parameter ω. Then the globally attracting fixed point p depends continuously on
the parameter ω.

To prove this result we first state and prove two simple lemmas.

Lemma 9.7. Suppose X is a metric space and f : X → X is a contraction. Then,
for any x ∈ X the sequence O+(x) = {xn}∞n=0 is a Cauchy sequence.
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Proof. Recall that a sequence {xn}∞n=0 is Cauchy is for every ε > 0 there exists Nε

such that d(xn, xm) ≤ ε for every n,m ≥ Nε. For the sequence {xn}∞n=0 given by
iterates of x = x0 we have, for every n ≥ 0,

d(xn+1, xn) = d(f(xn), f(xn−1)) ≤ λd(xn, xn−1) ≤ λ2d(xn−1, xn−2) ≤ · · · ≤ λnd(x1, x0).

Therefore, supposing without loss of generality that n > m ≥ N , we have

d(xn, xm) ≤ d(xn, xn−1) + d(xn−1, xn−2) + · · · d(xm+1, xm)

≤ λn−1d(x1, x0) + λn−2d(x1, x0) + · · ·λmd(x1, x0)

≤ d(x1, x0)
n−1∑
j=m

λj ≤ d(x1, x0)
∞∑
j=N

λj

Since
∑∞

j=N λ
j → 0 as N → ∞, choosing N = Nε sufficiently large we get

d(xn, xm) ≤ ε for all n,m ≥ Nε. This shows that the sequence is Cauchy.

By the definition of complete metric space, every Cauchy sequence converges.
Thus, for every initial condition x there exists a point p ∈ X such that xn → p.

Lemma 9.8. Let X be a metric space and f : X → X continuous. Suppose that
there exists x ∈ X and p ∈ X such that xn → p as n→∞. Then f(p) = p.

Proof. Let yn := f(xn) = xn+1. Then clearly yn → p. By continuity of f we have

f(p) = f( lim
n→∞

xn) = lim
n→∞

f(xn) = lim
n→∞

yn = p.

Lemma 9.9. The fixed point given by the previous lemma does not depend on x,
and thus is unique and globally attracting.

Proof. If p, p̃ were distinct fixed points, we would have d(f(p), f(p̃)) = d(p, p̃)
which contradicts the assumption that f is a contraction. Therefore the fixed point
p is unique and thus every orbit converges to p and so p is globally attracting.

To complete the proof of the Theorem, for each parameter ω, let pω = p(ω)
denote the unique globally attracting fixed point for fω.

Lemma 9.10. pω depends continuously on the parameter ω.

Proof. By the contraction and the triangle inequality, for any x ∈ X, we have

d(x, pω) ≤ d(x, fω(x)) + d(fω(x), pω) ≤ d(x, fω(x)) + λd(pω, x)
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which immediately gives

d(x, pω) ≤ 1

1− λ
d(x, fω(x)).

In particular, choosing x = pω̃ for some arbitrary ω̃ ∈ Ω, we have

d(pω̃, pω) ≤ 1

1− λ
d(pω̃, fω(pω̃))

Since f is continuous in ω, then as ω → ω̃ we have fω(pω̃) → fω̃(pω̃) = pω̃ and
therefore d(pω̃, fω(pω̃))→ 0 and d(pω̃, pω)→ 0.

As a first application of the contraction mapping theorem, we prove the fol-
lowing.

Proposition 9.11. Let f : Rn → Rn be a C1 diffeomoprhism and suppose ‖Df(x)‖ <
λ < 1 for all x ∈ Rn. Then there exists a unique globally attracting fixed point p.

Proof. For simplicity let us consider the one-dimensional case n = 1 first. Then for
any x, y ∈ R, by the Mean Value Theorem, there exists z such that |f(x)−f(y)| =
|f ′(x)| |x− y| ≤ λ|x− y|. This implies that f is a contraction on R. In the general
case, for any x, y ∈ Rn, let τ = |x − y| and let γ : [0, τ ] → Rn be the straight
segment with γ(0) = x, γ(τ) = y and parametrized by arc length so that |γ′(t)| = 1
for all t ∈ [0, τ ].Then we have

|f(x)− f(y)| ≤ |f(γ)| =
∫ τ

0

Dfγ(t)(γ
′(t))dt ≤

∫ τ

0

‖Dfγ(t)‖dt ≤ λτ = λ|x− y|.

Again this implies that f is a contraction on Rn.
1

9.2 Perturbations of linear contractions

Any two contractions are to some extent “similar” since they both have a unique
fixed point and all other orbits converge to this fixed point. However we cannot in

1there is an alternative proof: Consider the segment γ(t) = (1− t)x+ ty, t ∈ [0, 1] joining x
and y. Now, f(γ(t)) is a function of one variable and we can apply the mean value theorem.

|f(x)− f(y)| = |f(γ(0))− f(γ(1))| = | d
dt
f(γ(t))|t=τ |

= |Df(γ(τ))(y − x)| ≤ ‖Df(γ(τ))‖|x− y| < λ|x− y|.
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general formalize this statement using the notion of conjugacy to show that any
two contractions are topologically conjugate. We can do it in a special but very
important case in which one of the contractions is a linear map and the other is
a small perturbation of this linear map. We will state and prove this result in a
very general setting of linear maps on (possibly infinite-dimensional) linear spaces.
The proof will give a new strategy for constructing topological conjugacies.

Let E be a Banach space with norm ‖ · ‖ and T : E → E an invertible linear
map. We say that T is a linear contraction if ‖T‖ := sup{‖Tv‖/‖v‖ : v 6= 0} < 1.

Theorem 9.12. Let E be a Banach space and T : E → E an invertible linear
contraction. Suppose f : E → E is of the form f = T + ∆f with

∆f bounded and Lip(∆f) ≤ min{‖T−1‖−1, 1− ‖T‖}.

Then T and f are topologically conjugate. More precisely, there exists a unique
homeomorphism h = IdE + ∆h with ∆h bounded and h ◦ T = f ◦ h.

Before starting the proof of the Theorem we state and prove two propositions
which will be applied in the proof.

Proposition 9.13. Let E be a Banach space and T : E → E an invertible linear
contraction. Suppose f : E → E is of the form f = T + ∆f with Lip(∆f) ≤
‖T−1‖−1. Then f : E → E is a homeomorphism.

Proof. Since f = T + ∆f where T is linear and ∆f is Lipschitz continuous, it
follows immediately that f is continuous. It only remains therefore to show that
f is invertible and that f−1 is continuous. To show that f is surjective we need
to show that for every y ∈ E there exists some x ∈ E such that f(x) = y. By
additionally showing that such an x is unique we get that f is also injective and
thus invertible, and by showing that x depends continuously on y we will conclude
that x = f−1(y) is continuous. For any y ∈ E we have

f(x) = y ⇔ T (x) + ∆f(x) = y ⇔ y −∆f(x) = T (x)⇔ T−1y − T−1 ◦∆f(x) = x

and so, defining the map θy : E → E by

θy(x) := T−1y − T−1 ◦∆f(x),

the problem is reduced to showing θy has a unique fixed point and that this fixed
point depends continuously on y. For x, x′ ∈ E we have

‖θy(x)− θy(x)‖ = ‖T−1 ◦∆f(x) + T−1 ◦∆f(x′)‖
= ‖T−1 ◦ (∆f(x) + ∆f(x′))‖
≤ ‖T−1‖ ‖∆f(x) + ∆f(x′)‖
≤ ‖T−1‖Lip(∆f)‖x− x′‖.
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By assumption Lip(∆f) ≤ ‖T−1‖−1 and therefore ‖T−1‖Lip(∆f) < 1 and so θy is
contracting uniformly in y and therefore has a unique fixed point which depends
continuously on y as required.

Proposition 9.14. Let E be a Banach space, T : E → E an invertible linear
contraction. Suppose f : E → E is of the form f = T + ∆f with Lip(∆f) ≤
1− ‖T‖. Then f has a unique fixed point.

Proof. For any x, y ∈ E we have

‖f(x)− f(y)‖ ≤ ‖f(x)− T (x) + T (x) + T (y)− T (y)− f(y)‖
≤ ‖f(x)− T (x)− (f(y)− T (y)‖+ ‖T (x)− T (y)‖
= ‖(f − T )(x)− (f − T )(y)‖+ ‖T (x− y)‖
≤ ‖∆f(x)−∆f(y)‖+ ‖T‖‖x− y‖
≤ Lip(∆f)‖x− y‖+ ‖T‖‖x− y‖
= (Lip(∆f) + ‖T‖)‖x− y‖

By assumption we have Lip(∆f) + ‖T‖ < 1 and therefore f is a contraction and
therefore has a unique fixed point.

Proof of Theorem 9.12. Let g : E → E be a map satisfying the same conditions
as f , i.e. g = T + ∆g with ∆g bounded and Lip(∆g) ≤ min{‖T−1‖−1, 1 − ‖T‖}.
We will show that f, g are topologically conjugate, more specifically there exists a
unique homeomorphism h of the form h = IdE + ∆h with ∆h bounded such that

f ◦ (IdE + ∆h) = (IdE + ∆h) ◦ g. (9.1)

This implies the result by taking g = T . Notice first of all that since g is invertible
by Lemma 9.13, equation (9.1) is equivalent to

(T + ∆f) ◦ (IdE + ∆h) ◦ g−1 = IdE + ∆h

which in turn is equivalent to

T ◦∆h ◦ g−1 + ∆f ◦ (idE + ∆h) ◦ g−1 + T ◦ g−1 − idE = ∆h (9.2)

Thus it is sufficient to prove that there exists a unique bounded continuous function
∆h : E → E such that (9.2) holds and such that idE + ∆h is a homeomorphism.
To prove the existence of ∆h satisfying (9.2), we formulate the question as a fixed
point problem. Let E := C0

b (E,E) denote the space of bounded continuous maps
on E. For ϕ ∈ E we let

F(ϕ) := T ◦ ϕ ◦ g−1 + ∆f ◦ (idE + ϕ) ◦ g−1 + T ◦ g−1 − idE.
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Lemma 9.15. For every ϕ ∈ E we have F(ϕ) ∈ E.

Proof. The first two terms are clearly bounded and because both ϕ and ∆f are
bounded. Thus we just need to show that T ◦g−1− idE is bounded and this is true
because T ◦g−1− IdE = (T −g)◦g−1 and T −g = −∆g is bounded. Finally, F(ϕ)
is just a sum and composition of continuous functions and thus is continuous.

Lemma 9.15 implies that F : E → E is a well defined map and that the existence
of a bounded continuous function ∆h satisfying (9.2) is equivalent to the existence
of a fixed point for F in E . Notice moreover that E is a linear space and a Banach
space with the supremum norm ‖ϕ‖ := supx∈E ‖ϕ(x)‖. We can therefore try to
apply Proposition 9.14 to F : E → E . Indeed, we can write

F = T + ∆F

where
T (ϕ) := T ◦ ϕ ◦ g−1

and
∆F(ϕ) := ∆f ◦ (IdE + ϕ) ◦ g−1 + T ◦ g−1 − IdE.

We then just need to verify that T ,∆F satisfy the assumptions of Proposition
9.14.

Lemma 9.16. T is linear with ‖T ‖E ≤ ‖T‖E < 1.

Proof. For ϕ, ψ ∈ E and α, β ∈ R, directly from the definition of T we have
T (αϕ+ βψ) = T ◦ (αϕ+ βψ) ◦ g−1 = T ◦ (αϕ ◦ g−1 + βψ ◦ g−1) = αT ◦ ϕ ◦ g−1 +
βT ◦ ψ ◦ g−1 = αT (ϕ) + βT (ψ). Thus T is linear. Then

‖T ‖E = sup
‖ϕ‖E=1

‖T (ϕ)‖E = sup
‖ϕ‖E=1

‖T ◦ ϕ ◦ g−1‖E

From the definition of the norm ‖ · ‖E , for any ϕ with ‖ϕ‖E = 1 we have

‖T ◦ ϕ ◦ g−1‖E ≤ ‖T‖E‖ϕ ◦ g−1‖E ≤ ‖T‖E < 1.

Therefore T is a linear contraction.

Lemma 9.17. ∆F is Lipschitz with Lip(∆F) ≤ Lip(∆f) ≤ 1− ‖T‖.

Recall that by definition

Lip(∆F) := sup
ϕ,ψ∈E

‖∆F(ϕ)−∆F(ψ)‖E
‖ϕ− ψ‖E

and Lip(∆f) := sup
x,y∈E

‖∆f(x)−∆f(y)‖E
‖x− y‖E

.
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Proof. First of all that for any ϕ, ψ ∈ E , by the definition of ∆F we have

‖∆F(ϕ)−∆F(ψ)‖E = sup
x∈E
‖∆f ◦ (Id+ ϕ) ◦ g−1(x)−∆f ◦ (Id+ ψ) ◦ g−1(x)‖E

= sup
y∈E
‖∆f ◦ (Id+ ϕ)(y)−∆f ◦ (Id+ ψ)(y)‖E,

where y = g−1(x), which is well defined. Since ∆f is Lipschitz we have

‖∆F(ϕ)−∆F(ψ)‖E ≤ Lip(∆f)‖(Id+ϕ)(y)− (Id+ψ)(y)‖E = Lip(∆f)‖ϕ−ψ‖E.
(9.3)

This shows that Lip(∆F) ≤ Lip(∆f).

We have shown therefore that F = T +∆F satisfies the assumptions of Propo-
sition 9.14 and thus has a unique fixed point ∆h ∈ E . For such a function ∆h we
have the following.

Lemma 9.18. Id+ ∆h : E → E is a homeomorphism.

Proof. Notice that by swapping f, g in (9.1) and applying exactly the same argu-
ments there exists another function ∆h ∈ E such that

g ◦ (IdE + ∆h) = (IdE + ∆h) ◦ f. (9.4)

Composing both sides on the right by Id+ ∆h and using (9.1) we have

g◦(IdE+∆h)◦(Id+∆h) = (IdE+∆h)◦f ◦(Id+∆h) = (IdE+∆h)◦(Id+∆h)◦g

Similarly, using (9.1) and composing both sides of (9.4) on the left by IdE + ∆h,

f ◦(Id+∆h)◦(IdE+∆h) = (Id+∆h)◦g◦(IdE+∆h) = (Id+∆h)◦(IdE+∆h)◦f

Notice that for any two function ϕ, ψ ∈ E we have (Id+ϕ) ◦ (Id+ψ) = Id ◦ (Id+
ψ) +ϕ ◦ (Id+ψ) = Id+ψ+ϕ+ϕ ◦ψ with ψ+ϕ+ϕ ◦ψ ∈ E . Thus the equations
above are of the same form as (9.1) and therefore, by the uniqueness of solutions
we must have

(IdE + ∆h) ◦ (Id+ ∆h) = Id = (Id+ ∆h) ◦ (IdE + ∆h).

Thus Id+ ∆h is a continuous bijection with continuous inverse IdE + ∆h and so
is a homeomorphism.

Combining the above results completes the proof.
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9.3 Adapted norms

The result above holds of course in particular for finite-dimensional contracting
linear maps A : Rn → Rn. Recall however, from the two-dimensional situation,
that there are many linear maps which are not contracting but for which the con-
clusions of the contraction mapping theorem still holds, i.e. every initial condition
converges to the unique fixed point at the origin. The perturbation theorem above
cannot be immediately applied to these maps since they are not contractions, at
least not in the given norm. However, using the fact that in many cases they are
linearly conjugate to linear contractions (we proved above that this is the case for
example for two-dimensional linear maps with distinct eigenvalues λ1, λ2 satisfying
λ := min{|λ1|, |λ2|} < 1, but it is in fact true in much greater generality) we can
find equivalent adapted norms in which they are indeed contractions.

Proposition 9.19. Suppose A : Rn → Rn is an invertible linear map which is
linearly conjugate to a linear map B : Rn → Rn with ‖B‖ = λ < 1. Then there
exists a norm ‖ · ‖∗ such that ‖A‖∗ < 1.

Proof. Let P be the linear conjugacy between A and B. Then, for every n we
have An = PBnP−1 and therefore ‖An‖ = ‖PBnP−1‖ ≤ ‖P‖‖Bn‖‖P−1‖ ≤
‖P‖‖P−1‖λn. Thus, taking C = ‖P‖‖P−1‖, for all n ≥ 1 we have

‖An‖ ≤ Cλn.

This shows that A is “eventually contracting”. Now choose λ < λ̃ < 1 and N ≥ 1
sufficiently large so that C(λ/λ̃)N−1 < 1 and define a new norm by

‖v‖∗ :=
N−1∑
i=0

λ̃−i‖Ai(v)‖

It is easy to check that this is indeed a norm. Then we have

‖Av‖∗ : =
N−1∑
i=0

λ̃−i‖Ai(Av)‖ =
N−1∑
i=0

λ̃−i‖Ai+1v‖ = λ̃
N−1∑
i=0

λ̃−(i+1)‖Ai+1v‖

= λ̃

N−1∑
i=0

λ̃−i‖Aiv‖ − λ̃‖v‖+ λ̃−(N−1)‖ANv‖

= λ̃‖v‖∗ − λ̃‖v‖+ λ̃−(N−1)‖ANv‖

By the assumptions on λ̃ and N we have

λ̃−(N−1)‖ANv‖ ≤ Cλ̃−(N−1)λN‖v‖ ≤ C(λ/λ̃)−N λ̃‖v‖ < λ̃‖v‖.

Therefore ‖Av‖∗ < λ̃‖v‖∗ for every v and so A is a contraction.
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9.4 Local linearization and structural stability

We are now ready to prove the Grobman-Hartman Theorem in the case for a
hyperbolic fixed point with derivative Dfp for which all eigenvalues are inside the
unit circle. We have proved above (for two two dimensional case and with the
additional assumption that the eigenvalues are distinct, but the result is true in
general) that such a linear maps is linearly conjugate to a map in “canonical form”
which is contracting, and therefore by Proposition 9.19 above, there is a norm for
which Dfp is contracting. We can therefore assume that we are in this norm and
state the result as follows.

Theorem 9.20. Let f : Rn → Rn be C1 with a fixed point p with Dfp contracting.
Then f is locally linearizable at p.

This will follows easily from a local version of the conjugacy result given above.

Proposition 9.21. Suppose A : Rn → Rn satisfies ‖A‖ < 1. Suppose f : Rn → Rn

is of the form f = A + ∆f where ∆f(0) = 0 and there exists a neighbourhood N
of 0 such that

Lip(∆f |N ) ≤ min{‖A−1‖−1, 1− ‖A‖}.

Then f and A are locally topologically conjugate in a neighbourhood of 0.

Proof. We can define a map f̂ : Rn → Rn such that f |N = f̂ |N and such that
f̂ = A+ ∆f̂ with ∆f̂ bounded and Lip(∆f̂) ≤ min{‖A−1‖−1, 1−‖A‖}. Applying
Theorem 9.12 we get a topological conjugacy between f̂ and A. Restricting to N
this gives a local topological conjugacy between f and A at the origin.

Proof of Theorem 9.20. We can assume without loss of generality that the fixed
point p is at the origin, otherwise we can just define the map f̂ = f − p which
does indeed have a fixed point at the origin and satisfies the same conditions as f .
Let ∆f := f −Df0. Since f is C1, ∆f is also C1 and D0∆f = Df0 −Df0 = 0 at
0. Therefore for any ε > 0 there exists a neighbourhood N of the origin in which
‖Dx∆f‖ < ε and therefore Lip(∆f |N ) < ε. In particular, for ε > 0 sufficiently
small we have Lip(∆f |N ) ≤ min{‖Df−1

0 ‖−1, 1−‖Df0‖}. We are therefore exactly
in the setting of Proposition 9.21 which gives a local topological conjugacy between
f and Df0 in a neighbourhood of 0.

As a final corollary we get a local version of structural stability.

Definition 9.22. Let f : Rn → Rn be a C1 map and p a fixed point. We say that
f is C1 locally structurally stable at p if there exists ε > 0 and a neighbourhood
N of p such that for any g : Rn → Rn with d1(f, g) < ε there exists a fixed point
q for g in N such that f, g are locally topologically conjugate at p, q respectively.
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Theorem 9.23. Let f : Rn → Rn be a C1 map and p a fixed point with Dfp
contracting in some adapted norm. Suppose moreover that Dfp is structurally
stable in the space of linear maps. Then f is locally structurally stable at p.

Remark 9.24. We have shown above that a linear map A : R2 → R2 is structurally
stable in the space of linear maps if it is hyperbolic and has distinct eigenvalues
λ1, λ2, thus the result applies in particular in this case. However it is in fact true
more generally that any hyperbolic linear map in arbitrary dimension is struc-
turally stable in the space of linear maps and thus we have preferred to state the
result above in this more general setting.

Proof. Since Dfp is contracting we have ‖Dfp‖ < λ < 1 in some adapted norm.
Then there exists a neighbourhood N of p such that ‖Dfx‖ < λ < 1 for all x ∈ N
and for sufficiently small ε > 0 we have λ̃ := λ+ ε < 1 and ‖Dgx‖ < λ̃ < 1 for any
x ∈ N and g with d1(f, g) < ε. Thus g is a contraction on N and has a unique
fixed point q ∈ N which depends continuously on g. Thus Theorem 9.20 applies
to both f and g which are locally topologically conjugate at p, q respectively to
their linear parts Dfp, Dgq respectively. Thus it is sufficient to show that Dfp, Dgq
are topologically conjugate. But by assumption Dfp is structurally stable in the
space of linear maps and so, for ε sufficiently small, Dfp, Dgq are topologically
conjugate.
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Part IV

Chaotic Dynamics
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Chapter 10

Symbolic Dynamics

So far we have studied systems which have a unique or a finite number of fixed
points and for which the dynamics of essentially all remaining points is associated
in some way to these fixed points. In this part of the notes we introduce systems
which have a much richer orbit structure. This necessitates the introduction of a
very important technique called symbolic coding, in order to study the problems
of topological conjugacy and classification.

10.1 Symbolic coding

Let X be a set, P = {I0, ..., Is−1} a finite partition of X, and f : X → X a map.
Then any initial condition x0 ∈ X belongs to some element of the partition P
and also every iterate xn = fn(x0) belongs to some element of P . Thus we can
associate to x0 an infinite sequence

x0 7→ a = a0a1a2

where
ai = ` if xi = f i(x) ∈ I`

with ` ∈ {0, ..., s − 1}. This “coding” of the orbit is naturally related to the
dynamics in the sense that the sequence associated to every forward iterate of x0

is automatically contained in the sequence associated to x0. Indeed, it is clear
that if a0a1a2... is the sequence associated to x0 then the sequence associated to
x1 = f(x0) is a1a2a3.... and more generally, the sequence associated to xk for k ≥ 0
is the sequence akak+1ak+2..... To formalize this idea it is useful to introduce the
space of sequences or symbolic space

Σ+
s := {a = a0a1a2..., ai ∈ {0, .., s− 1}}.
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This is a set whose elements are sequences and we can define a natural map
σ : Σ+

s → Σ+
s as follows: for any a ∈ Σ we define

σ(a0a1a2a3....) = a1a2a3....

Thus the map σ drops the first element of the sequence. For reasons which will
become clear later it is useful to think that it “shifts” the sequence to the left, and
for this reason it is sometimes called the shift map. The coding mentioned above
can be thought of as a map

π̃ : X → Σ+
s

where
π̃(x0) = a0a1a2... ai = ` if xi = f i(x) ∈ I`.

Then it is easy to see that

π̃(f(x0)) = π̃(x1) = a1a2a3.... = σ(a0a1a2...) = σπ̃(x0)

Therefore we conclude that
π̃ ◦ f = σ ◦ π̃. (10.1)

Notice that in general π̃ is not a bijection and therefore π̃ is not necessarily a
conjugacy. Still, we call any function satisfying (10.1), a semiconjugacy.

The question on whether this construction can yield any useful information
depends essentially on two things: i) is π̃ a bijection? In which case certain features
of the map f will be reflected in features of the map σ, and ii) can we understand
the dynamics of the map σ? In this chapter we will focus on the abstract setting of
the shift map and its dynamical properties, then consider some systems for which
we can show that h̃ is a conjugacy. First we give some very simple examples of
the coding procedure to get an initial feeling for what the procedure can give.

Example 21. A most trivial example is if the partition P is trivial and is made up
of a single elements corresponding to the whole space X. In that case the symbolic
space Σ+

1 is trivial, corresponds to a single point, and even though the conjugacy
still holds, it does not provide any useful information.

Example 22. Another useful example is given by a contraction with a unique fixed
point. If one of the partition elements, say It, contains a neighbourhood of the fixed
point, then after some every initial condition x will fall into this neighbourhood and
never leave. This means that the symbolic sequence of every point will terminate
with an infinite number of consecutive occurrences of the symbol t. Once again
the semi-conjugacy holds but in some sense is not very useful. There will be only
a countable number of distinct sequences and this there will be infinitely many
points which map to the same sequence, i.e. π̃ will be infinite to 1.
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10.2 The symbolic space

We begin by taking a closer look at the symbolic space. To study additional
properties of the dynamics we introduce a metric on Σ+

s , for a, b ∈ Σ+
s we let

d(a, b) :=
∞∑
i=0

|ai − bi|
2i

. (10.2)

Lemma 10.1. The function d(·, ·) is a metric on Σ+
s .

Proof. Exercise 10.4.1.

Remark 10.2. The topology induced by this metric is the so-called product topology
given by considering the discrete topology on the finite set {0, ..., s−1} and noting
that Σ+

s can be written as an Cartesian product of this set as Σ+
s = {0, ..., s− 1}N.

There are other equivalent metrics which are sometimes used in the literature and
which induce the same topology: for example we can define d̃(a, b) by 2−κ where
κ is the largest integer such that ai = bi for all i ≤ κ, see Exercise 10.4.2.

A key property of any metric which induces the product topology is that two
sequences are close if and only their terms coincide for a sufficiently large initial
block. We will use this property repeatedly below and therefore, for convenience,
formalize it as follows.

Lemma 10.3. For every ε > 0 there exists nε > 0, with nε →∞ when ε→ 0, such
that if a, b ∈ Σ+

2 satisfy ai = bi for all i = 0, ..., nε then d(a, b) < ε. Conversely, for
every n > 0 there exists εn > 0, with εn → 0 when n→∞, such that if d(a, b) < εn
then ai = bi for all i = 0, ..., n.

Proof. Exercise 10.4.3.

Having a metric space structure allows us to describe the dynamics of both the
space Σ+

2 and the map σ in much more detail. First of all we have

Lemma 10.4. Σ+
s is a Cantor set

Proof. A Cantor set is by definition a set which is compact, perfect, totally dis-
connected and uncountable). Compactness follows by the observation that Σ+

s is
a product of compact sets and therefore, by Tychonoff’s theorem is itself com-
pact. Uncountability follows by the standard Cantor’s diagonal argument. Perfect
means there are no isolated points and totally disconnected means that connected
components are points. We leave these two properties as exercise 10.4.4.

Lemma 10.5. The shift map σ : Σ+
2 → Σ+

2 is continuous.
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Proof. Exercise 10.4.5.

All the definitions and properties mentioned above can easily be extended to
the space

Σs := {0, ..., s− 1}Z = {.....a−2a−1a0a1a2....}

of bi-infinite sequences equipped with the metric

d(a, b) :=
∞∑

i=−∞

|ai − bi|
2|i|

(10.3)

and the shift map defined by

σ(....a−2a−1a0a1a2....) = (....b−2b−1b0b1b2....) where bi = ai+1 ∀ i ∈ Z.

10.3 The shift map

It is now fairly straightforward to prove two basic properties of the dynamics of
the shift map. It is quite easy to see that both in the invertible and non-invertible
cases

Lemma 10.6. The set Per(σ) of periodic points of σ is dense in Σ+
s .

Proof. Exercise 10.4.6.

Lemma 10.7. The map Per(σ) is transitive on Σ+
s .

Proof. Exercise 10.4.7.

10.4 Exercises

Exercise 10.4.1. Show that

d(a, b) :=
∞∑
i=0

|ai − bi|
2i

.

is a metric1 on Σ+
s .

1Recall that for an arbitrary set X, d(x, y) is a metric on X if it satisfies the following
conditions: i) d(x, y) ≥ 0 ∀ x, y ∈ X and d(x, y) = 0 ⇔ x = y; ii) d(x, y) = d(y, x) for all
x, y ∈ X; iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
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Exercise 10.4.2. Show that

d̃(a, b) := 2−κ where κ is the largest integer such that ai = bi for all i ≤ κ

is also a metric on Σ+
s . Show that d, d̃ are equivalent.

Exercise 10.4.3. Show that for every ε > 0 there exists nε > 0, with nε → ∞
when ε→ 0, such that if a, b ∈ Σ+

2 satisfy ai = bi for all i = 0, ..., nε then d(a, b) < ε.
Show, conversely, for every n > 0 there exists εn > 0, with εn → 0 when n → ∞,
such that if d(a, b) < εn then ai = bi for all i = 0, ..., n.

Exercise 10.4.4. Show that Σ+
s is perfect and totally disconnected.

[A topological space X is perfect if it has no isolated points, and totally discon-
nected if its connected components are single points, i.e. for any x, y ∈ X there
exist disjoint open sets A,B with x ∈ A, y ∈ B,A ∪B = X. ]

Exercise 10.4.5. Show that the shift map σ : Σ+
s → Σ+

s is continuous.

Exercise 10.4.6. Show that the set Per(σ) of periodic points of σ is dense in Σ+
s .

Exercise 10.4.7. Show that σ is transitive on Σ+
s .
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Chapter 11

Dynamically defined Cantor sets

11.1 The Tent map family

We will apply the coding method to a relatively simple class of maps. Consider
the family of maps fλ : R→ R, for λ > 0, defined by

fλ(x) =

{
λx if x ≤ 0.5

−λx+ λ if x ≥ 0.5
(11.1)

This is sometimes called the family of tent maps. The dynamical properties of
tent maps depends on the parameter λ. It is easy to see that the orbit of every
x /∈ [0, 1] satisfies fn(x)→ −∞ as n→∞. Letting I := [0, 1] we write

I = I0 ∪∆ ∪ I1

where
I0 = [0, 1/λ], ∆ = (1/λ, (λ− 1)/λ), I1 = [(λ− 1)/λ, 1].

Now let
Λ = {x : fn(x) ∈ I0 ∪ I1 for all n ≥ 0}.

A priori we do not know whether Λ contains any other points besides the fixed
points but by definition it is invariant in the sense that f(Λ) ⊆ Λ and therefore
we can define the map f restricted to Λ. We will denote this by f |Λ.

Theorem 11.1. Λ is a Cantor set, Per(f) is dense in Λ, and f |Λ is transitive.

We will prove this Theorem by using the technique of symbolic coding and
showing that f |Λ is topologically conjugate to σ|Σ+

2
.

Notice first of all that by definition Λ ⊆ I0∪ I1 and therefore, since I0∩ I1 = ∅,
the restrictions Λ0 := I0∩Λ and Λ1 := I1∩Λ form a partition of Λ. A point x ∈ Λ
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satisfies x ∈ Λ0 ⇔ x ∈ I0 and x ∈ Λ1 ⇔ x ∈ I1. Thus we can define the symbolic
coding of every point x ∈ Λ by

π(x) = a(x) := a0a1a2a3... where ai ∈ {0, 1} and f i(x) ∈ Iai ∀ i ∈ N.

Thus the sequence a describes the “combinatorics” of the forward orbit of the
point x in terms of the two intervals I0, I1. We need to show that π̃ is a bijection.
For any a = (a0a1a2...) ∈ Σ+

2 and any n ≥ 0 let Let

Ia0a1...an := {x ∈ I : f i(x) ∈ Iai , i = 0, . . . , n}.

denote the set of points who share the same combinatorics, as defined by the initial
terms of a, up to time n.

Lemma 11.2. For all a ∈ Σ+
2 and n ≥ 0, Ia0a1...an is a non-empty closed interval.

Proof. We will show that for each n ≥ 0 there exist exactly 2n+1 pairwise disjoint
closed intervals corresponding exactly to all possible finite sequences a0a1...an. We
will prove this by induction.

First step of the induction: We have the two disjoint closed intervals I0, I1 and
the maps f : I0 → I and f : I1 → I are bijections.

Inductive assumption: Suppose that for some n ≥ 0 there exist 2n+1 disjoint
non-empty closed intervals Ia0...an corresponding to all possible finite sequences
a0...an, such that for each finite sequence a0...an and that the map

fn : Ia0...an → I is a bijection . (11.2)

General step of the induction: By (11.2), the interval Ia0...an contains two
disjoint closed subintervals Ia0...an−10 and Ia0...an−11 such that

fn : Ia0...an−10 → I0 and fn : Ia0...an−11 → I1

are bijections and therefore, since f : I0 → I and f : I1 → I are also bijections,
their compositions

fn+1 : Ia0...an−10 → I and fn+1 : Ia0...an−11 → I

are bijections.

Now let
Ia :=

⋂
n∈N

Ia0a1...an = {x ∈ I : f i(x) ∈ Iai , i ∈ N}

denote the set of points whose orbits have exactly the combinatorics described by
the full sequence a.
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Corollary 11.3. For all a ∈ Σ+
2 , Ia 6= ∅.

Proof. By definition Ia0a1...an−1an ⊆ Ia0a1...an−1 ⊆ · · · ⊆ Ia0 ⊆ I where, by Lemma
11.2, each interval in the nested sequence is a non-epty closed interval. The state-
ment then follows from the general topological result that the countable intersec-
tion of non-empty nested closed sets is always non-empty.

Lemma 11.4. For all a ∈ Σ+
2 , Ia is a single point.

Remark 11.5. Notice that it does not follow automatically from the nested property
of the intervals Ia0...an that their intersection is a single point, see Exercise ??.

Proof. By the inductive construction above we have that for each n, the map (11.2)
is affine and |(fn)′(x)| = λn for all x ∈ Ia0...an and so, by the Mean Value Theorem,
we have |Ia0...an| = λ−(n+1). Thus |Ia0...an| → 0 as n→∞ and so |Ia| = 0 and so Ia
is a single point.

Remark 11.6. For future reference we observe that the map (11.2) also implies that
the two “new intervals” Ia0...an−10 and Ia0...an−11, each of whose length is λ−(n+1), are
separated by a a component of the pre image of ∆ which also has length exactly
(1 − 2λ−1)−(n+1). In particular we have that two points x, y ∈ Λ with |x − y| <
3−(n+1) necessarily belong to the same interval of the form Ia0...an. Conversely, if
two points x, y ∈ Λ satisfy |x− y| > (1− 2λ−1)−(n+1) then they necessarily belong
to two distinct intervals of the form Ia0...an.

Proposition 11.7. The map π : Λ→ Σ+
2 is a bijection.

Proof. Exercise ??.

Proposition 11.7 immediately implies the followinfg

Lemma 11.8. The maps σ on Σ+
2 and f on Λ are conjugate. Threfeore f |Λ has

exactly 2n periodic points of period n for every n ≥ 1 and in particular it has an
infinite number of periodic points.

Proof. Follows by theProposition 11.7 and the properties of the dynamics of σ.

Proposition 11.9. f |Λ is topologically conjugate to σ|Σ+
2

.

Proof. Exercise ??.

Corollary 11.10. Λ is a Cantor set, the set Per(f |Λ) of periodic points of f |Λ is
dense in Λ, and f |Λ is transitive.

Proof. Follows by the topological conjugacy and the properties of σ.
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11.2 Nonlinear maps

The construction above can be easily extended to much more general situations.
Let f : I → R and I0, ..., Is−1 be closed disjoint subintervals of I and suppose there
exists λ > 1 such that for each i = 0, .., s− 1:

1) f : Ii → I is a C1 diffeomorphism;
2) |f ′(x)| ≥ λ > 1 for all x ∈ Ii.

Then we define the “maximal invariant” set in the union of intervals Ii by

Λ := {x : fn(x) ∈ I0 ∪ · · · Is−1 for all n ≥ 0} .

By definition Λ is a forward invariant set and we can define f |Λ.

Theorem 11.11. f |Λ is topologically conjugate to σ|Σ+
s

. In particular Λ is a
Cantor set, Per(f) is dense in Λ and f |Λ is transitive.

Proof. Exercise ??.

Remark 11.12. We assume for simplicity that f is defined on all of I but this is
not necessary as we only ever consider the dynamics in I0 ∪ · · · ∪ Is−1.

Remark 11.13. Notice that the specific way in which the symbolic space is “em-
bedded” in the interval I depends on the sign of the derivative on each branch.

Remark 11.14. Notice that the assumption 2) in the above results can be further
weaked as follows:

2’) that there exists constants C, λ > 1 such that for every x and every n ≥ 1,

x, f(x), f 2(x), ..., fn−1(x) ∈ I0 ∪ · · · ∪ Is−1 =⇒ |(fn)′(x)| > Cλn. (11.3)

Symbolic dynamics this gives a dynamical model of the dynamics of some quite
complicated invariant sets. However perhaps the most interesting application of
this result is to show that two such maps are topologically conjugate to each
other. Indeed, suppose that f : I → I is as above and g : I → R is another map
satisfying similar conditions: there exist closed disjoint subintervals I ′0, ..., I

′
`−1 be

closed disjoint subintervals of I and λ′ > 1 such that for each i = 0, .., `− 1:
1) g : Ii → I is a C1 diffeomorphism;
2) |g′(x)| ≥ λ for all x ∈ I ′i.

Then we let
Λ′ :=

{
x : gn(x) ∈ I ′0 ∪ · · · I ′`−1 for all n ≥ 0

}
.

Corollary 11.15. f |Λ and g|Λ′ are topologically conjugate.
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11.3 Sensitive dependence on initial conditions

To conclude this chapter we also prove that both f |Λ and σ|Σ+
2

satisfy another
property which is more metric than topological and has been one of the first
properties to be used in attempts to formalise the notion of chaotic dynamical
systems.

Definition 11.16. Let X be a metric space and f : X → X a map. We say that
f exhibits sensitive dependence on initial conditions if there exist ε > 0 such that
for all initial conditions x0 and every δ > 0 there exists y0 ∈ X with d(x0, y0) < δ
and n > 0 such that d(xn, yn) ≥ ε.

Lemma 11.17. The shift map σ|Σ+
s

and the conjugate map f |Λ both exhibit sen-
sitive dependence on initial conditions.

Proof.

11.4 Exercises

Exercise 11.4.1. Let {Jn} be a collection of nested intervals of the form Jn =
[an, bn]. Show that J =

⋂∞
n=0 Jn = [a, b] is nonempty and connected.

Exercise 11.4.2. Find a sequence Jn of nested intervals such that
⋂
n Jn = ∅.

Exercise 11.4.3. Find a sequence Jn of closed nested intervals such that
⋂
n Jn

is a non-trivial interval.

Exercise 11.4.4. Let f : I → R and I0, ..., Is−1 be closed disjoint subintervals of
I and suppose there exists λ > 1 such that for each i = 0, .., s− 1:

1. f : Ii → I is a C1 diffeomorphism;
2. |f ′(x)| ≥ λ > 1 for all x ∈ Ii.

Let
Λ := {x : fn(x) ∈ I0 ∪ · · · Is−1 for all n ≥ 0}

and π : Λ→ Σ+
s be given by

π(x) = a(x) := a0a1a2a3... where ai ∈ {0, ...s− 1} and f i(x) ∈ Iai ∀ i ∈ N.

Show that
1. π is a bijection;
2. π is continuous;
3. π−1 is continuous.

79



Conclude that f |Λ is topologically conjugate to σ|Σ+
s

. Hint: to prove continuity,
you can use the ε − δ definition and the following observations: i) Let η denote
the minimum distance between any two intervals Ii, Ij for i, j ∈ {0, ..., s − 1}.
Then if x, y ∈ Λ with d(x, y) < η it follows that x, y belong to the same interval
Ii. ii) Let λmax = maxx∈I0∪···∪Is−1{|f ′(x)|}, then for any two points x, y ∈ Λ,
|fn(x), fn(y)| ≤ λnmax|x− y|. iii) Exercise (3) in Problem Sheet 4A.
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Chapter 12

Full branch maps

For the family of tent maps, defined above, for λ > 2 we get the dynamically
defined Cantor sets from the previous section. However for λ = 2 the situation
is a bit different. Even though we still have two closed intervals I0, I1 such that
fλ : I0 → I and fλ : I1 → I are C1 diffeomorphisms (indeed, affine), these intervals
are no longer disjoint. This has an effect on the coding procedure because the
coding is no longer uniquely defined for any orbit which falls in the intersection
I0 ∩ I1. Fortunately, this intersection is very small (a single point) and so it turns
out that the problem can be overcome. Rather than studying this particular case
in detail, we formulate the general class of maps of this kind which we will study.

Definition 12.1. f : I → I is a full branch piecewise expanding if there exist
disjoint open intervals I0, ..., I`−1 and a constant λ > 1 s.t. for i = 0, .., `− 1:

1) f(Ii) = I.
2) |f ′(x)| ≥ λ for all x ∈ Ii.
3) I = I0 ∪ · · · ∪ I`−1

If a full branch piecewise expanding map has ` intervals satisfying the definition
then we say that f has ` branches. Notice that the key difference between these
maps and those studied in the previous chapter is contained in item 3) which
implies that there are no gaps. In this case we can in principle still define the set
Λ as the set of points which remain in I for all n ≥ 0, but since we now have
f(I) = I we have Λ = I.

12.1 Expansions of real numbers

A particularly interesting example of a class of full branch piecewise expsnding
maps are maps of the form f(x) = λx mod 1 for λ ∈ N, λ ≥ 2. Notice that the
map is still perfectly well defined even if λ > 0 is not an integer but in that case

81



if is not full branch. If λ is an integer then it is full branch and it has exactly
` = λ branches. In these examples the symbolic coding of points coincides exactly
with the so-called base λ expansion. Consider for example the special case λ = 10.
Then the map f is given by

f(x) = 10x mod 1.

Using the formalism introduced above, f is a piecewise expanding map with the
branches defined on the collection of open intervals

I0 = (0, 0.1), I1 = (0.1, 0.2),........., I8 = (0.8, 0.9), I9 = (0.9, 1).

Then, if we were to construct the symbolic coding of any point whose forward
orbit remained forever in the union of these open intervals we would get exactly
the decimal expansion of the initial condition. This leaves open the question of
how to deal with the boundary points, and a related issue is about deciding the
action of the map on the boundary points. We have two options:

Option 1: We could take all subintervals half-open and half-closed:

I0 = [0, 0.1), I1 = [0.1, 0.2),........., I8 = [0.8, 0.9), I9 = [0.9, 1)

and define f(0.1) = f(0.2) = · · · = f(0.9) = 0. This would then allow us to
include these boundary points as points with a well defined combinatorics. We
could even include the point 1 simply be defining f(1) = 1 and adjoing it to the
extreme interval which we could take closed:

I0 = [0, 0.1), I1 = [0.1, 0.2),........., I8 = [0.8, 0.9), I9 = [0.9, 1].

We would then have a partition of the interval and a well defined unique symbolic
coding for each point. The “problem” here of course is that not every symbol
appears, so that map π : Λ → Σ+

10 which associates to each point its symbolic
coding is not surjective. In fact, except for the symbolic coding of the fixed point
1, which would be the sequence 99999...., no other point would have a sequence
ending in 9’s. If we defined these as decimal expansions of points then they would
be uniquely defined but not all sequences would correspond to a decimal expansion.

Option 2: If we try to code using the closure of the intervals:

I0 = [0, 0.1[, I1 = [0.1, 0.2],........., I8 = [0.8, 0.9], I9 = [0.9, 1].

then we have the problem of deciding the value of the map on the boundaries: is
f(0.1) = 0 or f(0.1) = 1? One way to resolve this problem is to identify 0 and
1, which is fact natural in the setting of studying a map where we take points
“mod 1”. In terms of the partition into closed intervals, the symbolic codings of
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0 and 1 would be 0000... and 9999.... respectively. Thus identifying these two
points, means that there is an ambiguity in the its symbolic coding. Modulo this
ambiguity we no longer have a problem about the image of the end points since
they map a well defined unique point. However of course these boundary points
now also have two possible symbolic codings: for example the coding of the point
0.4 can be either 39999.... or 400000..... The same is true of course for all preimages
of the boundary points. For example if fk(x) = 0.4, then the coding of x will be
either a0a1, .., ak−1399999 or a0a1, .., ak−1400000..... Using this approach it is then
more natural to define the map

π : Σ+
10 → Λ

which assigns to each sequence the corresponding point π(a) = Ia, which is there-
fore not injective at all preimages of 0 = 1 mod1.

The same discussion can be carried out for all other expansions. Indeed, recall
that for an integer λ ≥ 2, the base λ expansion of a number is given by the
sequence x0x1x2... so that

x =
x0

λ
+
x1

λ2
+
x2

λ3
+ . . .

It is easy to see then that the map f(x) = λx mod 1 corresponds exactly to
the action on the shift on the expansion. Moreover such a map is a piecewise
expanding map with λ branches and the lack of uniqueness for the λ expansions
can be explained dynamically exactly as in the case of λ = 10.

Remark 12.2. We remark finally that there is also another way to see this lack of
uniqueness of expansions. Indeed, for a, b ∈ Σ+

` , let

dE(a, b) =

∣∣∣∣∣
∞∑
i=0

ai − bi
`i

∣∣∣∣∣ ,
Then is is easy to check that dE is a pseudo-metric, i.e. satisfies dE(a, b) and the
triangle inequality but not the property of a metric that says that dE(a, b) = 0
if and only if a = b. Indeed, it is easy to see that there are distinct sequences
which are 0 distance apart. A pseudo metric can always be turned into a metric
on the quotient space obtained by identifying all points whose distance is zero. In
this case, the quotient space is exactly the space obtained by identifying sequences
which map to the same point under the semiconjugacy h defined above, i.e. which
give distinct expansions in base λ and the metric then corresponds exactly to the
Euclidean metric on the interval.
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12.2 Symbolic coding

The arguments described above for the case study f(x) = 10x mod 1 can easily
be generalized to any full branch piecewise expanding map and yield the following
general result.

Theorem 12.3. Let f : I → I be a full branch piecewise expanding map with `
branches. Then there exists a continuous surjective map

h : Σ+
` → I such that h ◦ σ = f ◦ h.

In particular f is transitive and Per(f) is dense in I. The semi-conjugacy h fails
to be injective only on a countable set Î∗ ⊂ I, formed by the boundary points of
the partition elements and their pre-images, on which it is 2-1.

The statements on transitivity and density of periodic orbits follow immediately
from the fact that h is continuous and surjective in which case it maps dense sets to
dense sets. We sketch here the formalization of the argument described above First
of all notice that that the assumptions that f(Ij) = I and that |f ′(x)| ≥ λ > 1 for
all x ∈ Ij imply that fj := f |Ij is a homeomorphism onto its image and admits a

continuous extension f j to the closure Ij of Ij so that f j(Ij) = I. We can thus

define a multivalued map f : I → I by

f(x) =

{
fj(x) if x ∈ Ij for some j ∈ {0, ..., `− 1}
f i(x) ∪ f j(x) if x ∈ I i ∩ Ij for some i, j ∈ {0, ..., `− 1}

Notice that if f is continuous, then f is single valued everywhere and in fact f = f .
For any a ∈ Σ+

` we then define

Ia := {x ∈ I : f i(x) ∩ Iai 6= ∅, for all i = 0, 1, 2, ...}

Notice that in the special case in which the closures of the intervals Ij are disjoint,
as in the previous chapter, we have f = f and the definition of Ia coincides exactly
with the previous definition.

Lemma 12.4. For each a ∈ Σ+
` , Ia is non-empty and consists of a single point.

Proof. The argument is almost identical to that used in the proof of Lemma 11.3.
The slight variation is that here we need to define

Ia0...an := {x ∈ I : f i(x) ∩ Iai 6= ∅, for all i = 0, 1, 2, ..., n}.

Then it is easy to see, following the same inductive argument as in the proof of
Lemma , that Ia0...an is a closed interval and we conclude that Ia is non-empty and

84



connected. Moreover, from the condition that |f ′(x)| ≥ λ > 1 for all x ∈ Ii for all
i = 0, ..., `− 1 we get

|Ia0...an| ≤ λ−(n+1) → 0 (12.1)

as n→∞. Thus Ia is a single point.

Lemma 12.4 allows us to define the map h : Σ+
` → I by h(a) = Ia. It fol-

lows immediately from the definition that h is a semi-conjugacy and it is clearly
surjective since every point belongs to at least on Ia.

Lemma 12.5. h is continuous.

Proof. By (12.1), for any ε > 0 there exists nε sufficiently large so that for any
a ∈ Σ+

` we have |Ia0...anε | ≤ λ−nε+1 < ε. By Lemma 14.3, for this nε there exists a
δnε > 0 so that d(a, b) < δnε implies ai = bi for all i = 0, ..., nε which implies that
h(a), h(b) belong to the same interval Ia0...anε which implies |h(a)− h(b)| < ε.

Lemma 12.6. h is not injective on a countable set Î∗, on which it is 2-1.

Proof. Let I∗ := {x ∈ I : x ∈ Ij−1 ∩ Ij : i, j ∈ {1, ..., ` − 1}}. denote the set of

intersection points of the closures of the intervals I0, ..., I`−1 and Î∗ := {x ∈ I :
fn(x) ∈ I∗ for some n ≥ 0} denote the set of all preimages of I∗. Clearly I∗ is
a finite set and therefore Î∗ is a countable set. For any x ∈ I \ Î∗, by definition
there exists a unique sequence a = a0a1a2... such that fn(x) ∈ Ian for all n ≥ 0
and therefore h(a) = x and h(b) 6= x for all b 6= a. This shows that h is injective
on I \ Î∗. We remark in particular that h is injective on the two endpoints of the
interval I on which the map f is defined, without loss of generality we can assume
these endpoints are 0 and 1. Let us denote by a = a0a1a2.... and b = b0b1b2...
the symbolic sequence of these endpoints. , i.e. h(a) = 0 and h(b) = 1. Notice
that if the endpoints 0, 1 are fixed then these are simply the sequences 0 = 000...
and `− 1 = (`− 1)(`− 1)(`− 1).... but, depending on the signs of the derivatives
on the two extreme branches we can also have a = 0(` − 1)(` − 1)(` − 1)... and
b = (` − 1)(` − 1)(` − 1)... if 1 is a fixed point but 0 is not, a = 0000... and
b = (` − 1)000... if 0 is a fixed point and 1 is not, or a = 0(` − 1)0(` − 1)... and
b = (`− 1)0(`− 1)0... if neither 0 nor 1 are fixed points.

It just remains to show that h is 2-1 on Î∗. Consider first x ∈ I∗. Then, by
definition, x ∈ I i ∩ Ij for some i, j ∈ {0, ..., `− 1}. Then there are clearly exactly
two possible codings for this point: the first coding is given by the sequence starting
with the digit i followed the unique sequence associated to the endpoint of I to
which f i maps the point, and the other given by the digit j followed by the unique
sequence corresponding to the endpoint of I to which f j maps the point. This

shows that h is 2-1 on I∗. Points in Î∗ have a unique combinatorics corresponding
to the initial piece of orbit before thay land on I∗ at which point they have two
possibe combinatorics. This completes the proof.
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12.3 Topological conjugacy

One of the key properties of topological conjugacy is the fact that it is an equiva-
lence relation, which allows us for example to prove that two systems are conjugate
by conjugating both to a third system, for example a symbolic model, as in the
case of dynamically defined Cantor set. it is not immediately clear how to do this
with semiconjugacies in general, though in the specific examples of f(x) = 10x
mod 1 studied above, we can get some insight. Indeed, it is easy to see that an-
other map g which is a nonlinear perturbation of f , in particular which still is a
full branch map on 10 intervals, just like f , will have the same coding issues, in
the sense that the lack of injectivity of the coding will occur exactly at the same
points. This we will have two maps:

h1 : Σ+
10 → [0, 1] and h2 : Σ+

10 → [0, 1]

both of which are semiconjugacies. In principle they are not invertible, but amaz-
ingly in this case, the composition

h1 ◦ h−1
2

is actually defined and is a bijection and in fact is a homeomorphism. Thus f and
g are topologically conjugate.

Notice however that not all piecewise expanding map can be topologically con-
jugate, even if they have the same number of branches.

Lemma 12.7. The two maps f, g : [0, 1]→ [0, 1] given by

f(x) =

{
2x if x < 0.5

−2x+ 2 if x ≥ 0.5
and g(x) =

{
2x if x < 0.5

2x− 1 if x ≥ 0.5
(12.2)

are not topologically conjugate.

Proof. A topological conjugacy consists of a homeomorphism h : [0, 1] → [0, 1]
which in particular must send endpoints to endpoints. Moreover it must send
orbits to orbits and thus in particular fixed points to fixed points. However the
two fixed points of g are the two endpoints whereas the two fixed points of f are one
of the endpoints and the other is in the interior, thus h cannot be a conjugacy.

Let f : I → I be a full branch piecewise expanding map with ` branches.
Then by definition f |Ii is a diffeomorphism onto its image and thus can be either
orientation preserving and orientation reversing. It turns out that the information
about the topological conjugacy class is completely contained in the number of
branches and their orientation.
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Theorem 12.8. Let f, g be two full branch piecewise expanding maps with the
same number of branches and such that corresponding branches have the same
orientation. Then f, g are topologically conjugate.

Proof. From the previous construction we have that every point of I \ Î∗ has a
unique combinatorics and that every point in Î∗ has exactly two possible combi-
natorial associated sequences. Since f, g have the same number of branches and
corresponding branches have the same orientation, the endpoints have the same
unique combinatorics. Thus we can clearly map endpoints to endpoints (whether
they are fixed or not). Moreover, since the branches all have the same orientation,
their endpoints map to the corresponding endpoints of I and thus all points of I∗

have the same combinatorics for f and for g, and the same is also true for all pre
images of I∗. Thus we can simply map all points to the corresponding point with
the same combinatorics. This gives an order preserving bijection which conjugates
the dynamics of f, g.

It just remains to prove that h, h−1 are continuous. This follows by essentially
the same arguments used above, we sketch the proof and leave the details as an
exercise. Let x ∈ I and ε > 0. Then to prove that |h(x)− h(y)| < ε it is sufficient
to have that h(x), h(y) ∈ I ′a0a1...anε for some sufficiently large nε. Since h preserves
the combinatorics of points, it is sufficient to have that x, y ∈ Ia0a1...anε and for
that it is sufficient that |x − y| < δ for some sufficiently small δ. Notice that if
x ∈ Î∗ then it has two possible associated combinatorial sequences and the correct
one to choose in the argument simply depends on whether y is on the left or on
the right of x.

Corollary 12.9. Let f : S1 → S1 be C1 and suppose there exists λ > 1 such that
f ′(x) ≥ λ for all x ∈ S1. Then f is structurally stable.

Proof. Notice that any C1 map of S1 is a covering map and can therefore be
represented as a full branch map on the unit interval [0, 1] with the endpoints
identified. The number of branches corresponds exactly to the degree of the map.
Moreover any small C1 perturbation g of f will also be a full branch map on S1

with the same number of branches and will also satisfy the expanding condition.
Thus f, g can both be represented as piecewise expanding full branch maps with
the same number of branches with the same orientation and thus are topologically
conjugate. Therefore f is structurally stable.
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Chapter 13

The quadratic family

We conclude this chapter by introducing an important family of maps fa : R→ R,
the so-called quadratic family, defined by

fa(x) = x2 + a.

Notice that for large negative of the parameter a there exists an interval I and
two closed disjoint subintervals I0, I1 ⊂ I on which f is expanding and such that
f(I0) = f(I1) = 1. Thus for these parameters the maps have invariant Cantor
sets as described in the previous chapter. For parameters a < −2 but close to −2
we still have two closed disjoint subintervals but the map is no longer expanding.
nevertheless it is possible to show that in this case the weaker expansivity condition
(11.3) holds, and thus we continue to have invariant Cantor sets. In this section
we will focus on the parameter a = −2 in which we have a full branch map with
two intervals whose closures are not disjoint and which also clearly cannot satisfy
the expansivity condition (11.3) since it has a point where f ′(x) = 0. Notice
in particular that the symbolic coding argument cannot be applied, at least not
directly, in this case, since we used in an esential way the expansivity properties
of the map to to show that the symbolic coding was injective.

Proposition 13.1. The maps f : [−2, 2] → [−2, 2] and g : [0, 1] → [0, 1] defined
by

f(x) = x2 − 2 and g(z) =

{
2z, 0 ≤ z < 1

2

2− 2z, 1
2
≤ z ≤ 1.

are topologically conjugate.

The map f(x) = x2 − 2 is sometimes called the Ulam-von Neumann map.
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Proof. This is one of the very exceptional situations in which we can find a con-
jugacy completely explicitly. Define the map h : [0, 1]→ [−2, 2] by

h(z) = 2 cos πz.

h is clearly a (orientation reversing) homeomorphism and so we just need to show
that it is a conjugacy, i.e. that it satisfies the conjugacy equation f ◦ h = h ◦ g.
On one hand we have

f(h(z)) = f(2 cosπz) = (2 cos πz)2−2 = 4 cos2 πz−2 = 2(2 cos2 πz−1) = 2 cos 2πz.

On the other hand we have, for z ∈ [0, 1/2),

h(g(z)) = h(2z) = 2 cos π2z

and, for z ∈ [1/2, 1],

h(g(z)) = h(2− 2z) = 2 cos π(2− 2z) = 2 cos(2π− 2πz) = 2 cos(−2πz) = 2 cos 2πz

This proves the conjugacy.

As an immediate corollary of the topological conjugacy we get

Corollary 13.2. The map f : [−2, 2] → [−2, 2] is transitive and has a dense set
of periodic orbits.

Notice that h : [0, 1]→ [−2, 2] is a homeomomorphism but if we restrict to the
open interval (0, 1) we actually get a C1 diffeomorphism h : (0, 1) → (−2, 2). It
does not extend as a C1 diffeomorphism to the closed interval [0, 1] beacuse h′(0) =
h′(1) = 0. However this means that f, g are almost C1 conjugate, and indeed,
to all effects and purposes they are. This means that the conjugacy preserves
significantly more structure than just a topological conjugacy. As a first interesting
corollary we mention the following.

Proposition 13.3. For every periodic point p ∈ (−2, 2) of period n, |(fn)′(p)| =
2n.

Remark 13.4. Notice that by the topological conjugacy with the tent map, f has a
dense set of periodic points which means that there are periodic points arbitrarily
close to the critical point. For a periodic point p of period n we have

|(fn)′(p)| = |f ′(p)f ′(f(p)) · · · f ′(fn−1(p))|

thus the result says that for any periodic orbit the derivatives compensate each
other exactly. In particular, any orbit for which some point lies very close to
the critical point must have a very high period in order to compensate the small
derivative near the critical point.
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Proof. The assumption that p ∈ (−2, 2) implies that the entire orbit lies in
(−2, 0) ∪ (0, 2). Indeed, if some iterate of p falls on the critical point at 0 or
on one of the endpoints ±2, it would then fall onto the fixed point at 2 contradict-
ing the assumption that p is a periodic orbit and that p ∈ (−2, 2). Since the entire
orbit lies in (−2, 2) we can use the fact that the conjugacy h is C1 and that p is a
fixed point for fn and is therefore mapped to a fixed point q for gn, to get that the
derivative of fn at p is the same as the derivative of gn at q which is necessarily
2n.
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Part V

Minimal Dynamics
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Chapter 14

Minimal Homeomorphisms

The dynamical systems we have studied so far exhibit a variety of dynamical
behaviour but are all essentiallyu simple in the sense that every initial condition
eventually either diverges to infiinity or converges to some fixed point. We now
intrdoduce a couple of examples of systems which have no fixed or periodic points
but nevertheless exhibit nontrivial recurrence.

Definition 14.1. Let X be a metric space and f : X → X be a map. We say
that a point x ∈ X has a dense orbit if ω(x) = X. We say that f is minimal if
every x ∈ X has a dense orbit in X.

Trivial examples of minimal systems can be obtained when for example X is
just a single point or a finite set of points which are cyclically permuted. However
there are several other very interesting and highly non-trivial examples of such
dynamical behaviour. We will present here two important examples.

14.1 Circle rotations

14.1.1 An application to Number Theory

Many results in dynamics have application to other areas of mathematics. In
particular there is a very strong connection between certain dynamical systems
and certain kinds of results in number theory. We present here a first example of
such a situation.

Proposition 14.2. Let k ∈ N be a natural number other than a power of 10.
Then, for any given finite sequence of digits a0a1 . . . a`, there exists an n ∈ N such
that the initial digits of the number kn coincide exactly with the given sequence.
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Proof. The statement is equivalent to saying that there is some m,n ∈ N and some
sequence a`+1 . . . a`+m such that

kn = a0 . . . a`a`+1 . . . a`+m = a0 . . . a` × 10m + a`+1 . . . a`+m.

Letting p = a0 . . . a` this is equivalent to saying that there exsts some n,m, q ∈ N
with q < 10m such that

kn = 10mp+ q

which is equivalent to saying that there exists some m,n ∈ N such that

10mp < kn < 10m(p+ 1). (14.1)

Therefore we just need to show that there exist m,n satisfying (14.1). Taking logs
(base 10) this is equivalent to showing

m+ log10 p < n log10 k < m+ log10(p+ 1)

which is equivalent to showing that there exist n,m ∈ N such that

log10 p < n log10 k −m < log10(p+ 1).

This is saying that there exists some n such that the distance of n log10 k to the
nearest integer is contained in the interval (log10 p, log10(p+ 1)). Notice that this
is a interval of size log10[(p + 1)/p] ≤ log10 2 < 1 since p ≥ 1 and log10[(p + 1)/p]
is monotonically decreasing with p. Therefore it is sufficient to show that that
fractional part

n log10 k mod 1

of n log10 k contained in the interval (log10 p, log10(p+ 1)) ⊂ (0, 1) for some n ≥ 1.
Indeed, notice that letting

xn = n log10 k mod 1 = log10 k + · · ·+ log10 k mod 1

the sequence {xn}∞n=0 is nothing less than the orbit of a point (x0 = 0) under a
“rotation” by the angle log10 k if we identify the interval [0, 1) with the circle S1

in the obvious way.
It is therefore sufficient to show that log10 k is irrational to conclude that its

orbit is dense and in particular the points of the “orbit” xn must fall (infinitely
many times) in the intervals (log10 p, log10(p+1)). To show that log10 k is irrational,
suppose by contradiction that there exist integers p, q such that log10 k = p/q.
Then this is equivalent to q log10 k = p or kq = 10p. Clearly the last equality can
only hold if k is a power of 10.
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14.2 The adding machine

Irrational circle rotations are a special case of translations on compact groups,
which often have similar dynamical properties. We give here another example
of such a translation in a more abstract setting. We first need to define a very
interesting metric space.

14.2.1 Symbolic spaces

Let ` ≥ 2 and
A := {0, ...., `− 1}

be a finite alphabet of ` symbols, and let

Σ+
` := {a = a1a2a3... : ai ∈ A}

be the set of all (one-sided) infinite words made up of this alphabet.

Exercise 14.2.1. Show that Σ+
` is uncountable.

For two sequence a, b ∈ Σ+
` we let

d(a, b) =
∞∑
i=1

|ai − bi|
`i

Exercise 14.2.2. Show that d is a metric1 on Σ+
` .

Exercise 14.2.3. Show that (Σ+
` , d) is a Cantor set, i.e. it is (sequentially) com-

pact, totally disconnected and perfect (no isolated points).

Exercise 14.2.4. Show that the function

d(a, b) =

∣∣∣∣∣
∞∑
i=1

ai − bi
`i

∣∣∣∣∣
is a pseudo metric but not a metric, i.e. it satisfies conditions ii) and iii) in the
definition of a metric, but not i). It can however become a metric by making certain
identifications on the space. Can you describe these identifications? Suppose
` = 10. Can you define a correspondence between Σ+

10 and all real numbers in the
interval [0, 1] using their decimal expansions? What is the relation between the
Euclidean metric on [0, 1] and the metric on Σ+

10 defined above?

1Recall that d(x, y) is a metric on X if it satisfies the following conditions: i) d(x, y) ≥
0 ∀ x, y ∈ X and d(x, y) = 0 ⇔ x = y; ii) d(x, y) = d(y, x) for all x, y ∈ X; iii) d(x, z) ≤
d(x, y) + d(y, z) for all x, y, z ∈ X.
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A key property of this metric is that two sequences are close if and only their
terms coincide for a sufficiently large initial block. We will use this property
repeatedly below.

Lemma 14.3. For every ε > 0 there exists nε > 0, with nε →∞ when ε→ 0, such
that if a, b ∈ Σ+

2 satisfy ai = bi for all i = 0, ..., nε then d(a, b) < ε. Conversely, for
every n > 0 there exists εn > 0, with εn → 0 when n→∞, such that if d(a, b) < εn
then ai = bi for all i = 0, ..., n.

Proof. Given ε > 0 let nε be sufficiently large so that `−nε < ε. Then, if ai = bi for
all i = 1, ..., nε we have

d(a, b) :=
∞∑
i=1

|ai − bi|
`i

=
∞∑

i=nε+1

|ai − bi|
`i

≤
∞∑

i=nε+1

1

`i
=

1

`nε
< ε.

Conversely, given n > 0, let εn = `−n and assume that d(a, b) < εn. Suppose
by contradiction that there exists some j ∈ {1, ...., n} such that aj 6= bj. Then
|aj − bj| = 1 and therefore

d(a, b) :=
∞∑
i=1

|ai − bi|
`i

≥ 1

`j
≥ 1

`n
= εn.

This contradicts the assumption that d(a, b) < εn and therefore shows that ai = bi
for all i ≤ n.

14.2.2 The adding machine

We define the adding machine or odometer τ : Σ+
` → Σ+

` ,

τ(x1x2x3...) = y1y2y3...

by the operation of add 1 and carry as follows. Let x ∈ Σ+
` . First of all, if xi = `−1

for all i ≥ 1, i.e. if x is the constant sequence (`− 1)(`− 1)(`− 1)..., then we let
yi = 0 for all i ≥ 1. Otherwise we let

i0(x) := min{i ≥ 1 : xi 6= `− 1}

If i0(x) = 1 then x1 ∈ {0, ..., `− 2} and we let y1 = x1 + 1 and yi = xi for all i > 1.
If i0(x) > 0 then we have xi = ` − 1 for all i0 > i ≥ 1 and thus we let yi = 0 for
all i0 > i ≥ 1, let yi0 = xi0 + 1, and yi = xi for all i > i0.

Lemma 14.4. The map τ : Σ+
` → Σ+

` is a homeomorphism.
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Proof. To see that h is injective let x 6= x′. Then we must have xi 6= x′i for some
i ≥ 0. Let i1 := min{i ≥ 0 : xi 6= x′i}. By the definition of τ we then necessarily
have yi 6= y′i. Therefore τ is injective. To see that it is surjective we just define
the inverse map τ−1(y0y1y2...) = x0x1x2.... explicitly as follows. If yi = 0 for all
i ≥ 0 then let x0 = ` − 1 for all i ≥ 0. Otherwise, let j0 := min{j ≥ 0 : yj 6= 0}.
If j0 = 0 then we just let x0 = y0 − 1 and xi = yi for all i > 0. Otherwise, let
xi = ` − 1 for all j0 > i ≥ 1, xi0 = yi0 − 1, and xi = yi for all i > i0. This shows
that τ is surjective.

To show that τ is continuous, recall from the definition of the metric d that
for every δ > 0 there exists iδ such that |x − x′| < δ if xi = x′i for all i ≤ iδ. By
the definition of τ , letting τ(x) = y, τ(x′) = y′, this implies yi = y′i for all i ≤ iδ.
Therefore τ is uniformly continuous. The (uniform) continuity of τ−1 is proved in
the same way.

Theorem 14.5. The dynamics of τ is “minimal”, i.e. ω(x) = Σ+
` for all x ∈ Σ+

` .

Proof. Let x ∈ Σ+
` . We need to show that the forward orbit O+(x) accumulates

every point in Σ+
` , i.e. for every z ∈ Σ+

` and every ε > 0 there exists n ≥ 0 such
that d(τn(x), z) < ε. By the definition of the metric, there exists an integer nε,
depending only on ε, such that d(τn(x), z) < ε if τn(x) and z coincide for at least
the initial nε terms of the sequences.

We prove the statement first for the particular initial condition x = 0 = 0000....
Then the first few iterates are as follows 000 . . . → 100 . . . → 200 . . . → . . . →
(n−1)00 . . . 010 . . .→ 110 . . . 210 . . . . Considering the first nε digits in the sequence
of iterates, it follows that all possible combination of digit will have occurred after
at most `nε iterations. Since we can take ε arbitrary, this implies that the orbit
of 0 is dense. For an arbitrary initial condition x = x1x2 . . . notice that after at
most ` iterations, the digit 0 will appear in the first position, after at most `2

iterations the digit 0 wil apear in both the first and second place, and continuing
in this way, after at most `nε iterations, the digit 0 will appear in all of the first
nε places. Therefore we have some iterate of x′ = τn(x) with n ≤ `nε such that
x′i = 0 for all i ≤ nε. It follows then, by the argument used previously that all
possible combination of the first nε digits will occur with a maximum of a further
`nε iterations. Since ε is arbitrary this implies again that the orbit of x is dense.
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Chapter 15

Translations and Circle
Homeomorphisms

We now begin a study of an important class of discrete dynamical systems: circle
homeomorphisms. Beacuse these are homeomorphisms of compact spaces they
cannot be either fully contracting or fully expanding but rather have a kind of
neutral behaviour on average. Special cases of circle homeomorphisms are rigid
circle rotations which are also special cases of translations on compact groups. In
this chapter we will study such kinds of systems. We will show that in many cases
we have one of two kinds of behaviour for all orbits. We recall that the (forward)
orbit of a point x0 ∈ X is dense in X if ω(x0) = X.

Theorem 15.1. Let f : S1 → S1 be a homeomorphism.
If f has a periodic orbit, then every point is asymptotic some some periodic orbit.
If f has a dense orbit, then every orbit is dense.

At the end of the chapter we will also how that there exist examples of circle
homeomorphisms which have neither periodic orbits nor dense orbits. A classical
result of Denjoy, which we will not prove here, says that such counterexamples
cannot occur if f is a C2 diffeomorphism, in which case we have only the two
possibilities stated in the Theorem.

15.1 Circle homeomorphisms with periodic points.

We consider first of all the case in which f is orientation preserving, i.e. monotone
increasing. Recall first of all that if J is a closed interval and f : J → J is an
orientation preserving continuous injective map, then every orbit is asymptotic to
a fixed point. This is of course not necessarily true if we replace J by S1 (as for
example irrational circle rotations are monotone increasing but have no periodic
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points. However, let us assume that f : S1 → S1 is orientation preserving and has
at least one periodic point p of period k. Let us assume first that k = 1 so that p is
a fixed point. Then we can identify the circle with the half-closed interval (p, p] and
f is monotone increasing on this interval. By the same arguments it follows that
every orbit must be asymptotic to some fixed point for f . If p is a periodic point
of period k then similarly p is a fixed point for fk which is monotone increasing
on the interval (p, p] and we get that every orbit is asymptotic to a periodic point
of period k.

Suppose now that f is orientation reversing. Notice first of all that this implies
that it always has exactly two fixed points as can be easily seen just by considering
the graph of f . Therefore f 2 is orientation preserving and also has (at least two
fixed points, and thus we proceed as above.

This completes the proof that if f contains at least one periodic orbit, than
every point is asymptotic to a periodic orbit.

15.2 Rotation number

The dynamics of homeomorphisms without periodic points is significantly more
complicated and requires introducing some additional notions and tools. The most
important is the notion of rotation number of f which measures the ”average”
amount of rotation of points under iteration by f . To define the rotation number
we first need to introduce the concept of a lift of a circle homeomorphism.

Recall that S1 can be represented as the quotient S1 = R/Z which is by defini-
tion the set of equivalence classes of real numbers whose difference is an integer.
We let

π : R→ S1

denote the natural projection map onto this quotient which maps each real number
to the point on S1 corresponding to its fractional part:

π(x) = x mod 1 = x− bxc

where
bxc := max{k ∈ Z : k ≤ x}.

This projection is clearly continuous and surjective.

Definition 15.2. Let f : S1 → S1 be a circle homeomorphism. We say that
F : R→ R is a lift of f if

π ◦ F = f ◦ π.
Remark 15.3. Notice that this condition looks exactly like the conjugacy condition,
except that π is only surjective, and not bijective. We say that π is a semiconjugacy
between F and f .
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Example 23. Let f = Rα : S1 → S1 be a circle rotation

f(x) = x+ α mod 1

Let k ∈ Z and define the function F : R→ R by

F (x) = x+ α + k.

Then

π(F (x)) = π(x+α+k) = x+α+k mod 1 = x+α mod 1 = π(x)+α mod 1 = f(x).

So F is a lift of f .

Proposition 15.4. For any homeomorphism f : S1 → S1

1. There exists a lift F : R→ R;
2. any lift F of f is a homeomorphism;
3. if F,G are two lifts of f , there exists k ∈ Z such that F −G = k;
4. if f is orientation preserving and F is a lift of f , then F (x+ n) = F (x) + n

for any x ∈ R and any n ∈ Z.

Proof. Let
F (x) := f(x− bxc) + bxc)

Then it is easy to verify that F is a lift of f . We leave the other conditions as
exercises.

Proposition 15.5. Let f : S1 → S1 be an orientation-preserving homeomorphism
and F : R→ R a lift of f . Then, for every x ∈ R, the limit

lim
n→∞

F n(x)− x
n

exists and is independent of the point x. We denote this limit by ρ(F ). Moreover,
the number

π(ρ(F ))

is independent of the lift F .

Definition 15.6. Since π(ρ(F )) does not depend on the specific choice of lift F
we can define

ρ(f) := π(ρ(F ))

for any lift F . ρ(f) is called the rotation number of f .

Example 24. The rotation number measures the average rotation of points under
iteration of f . If f(x) = x+ α mod 1 is a rigid circle rotation, then ρ(f) = α.
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Before starting the proof of the Proposition we state and prove a simple pre-
liminary Lemma.

Lemma 15.7. Let {cn} be a subadditive sequence of positive numbers (i.e. cm+n ≤
cm + cn for all m,n ∈ N). Then

lim
n→∞

cn
n

= inf
{cn
n

: n ∈ N
}
.

In particular the limit exists.

Proof. For any positive integers k, n we can write n = qk+ r for some q ∈ N∪{0}
and r ∈ {0, ..., q − 1}. Then we have

cn
n
≤ cqk + cr

qk + r
≤ qck + cr

qk + r
.

For arbitrary fixed k we therefore have

lim sup
n→∞

cn
n
≤ ck

k
.

and so, as n→∞ we have that q →∞ and thus, since k is arbitrary, we have

lim sup
n→∞

cn
n
≤ inf

{cn
n

: n ∈ N
}
≤ lim inf

n→∞

cn
n
.

Proof of Proposition 15.5. We fix some arbitrary x ∈ S1. Letting an := F n(x)− x
we will show that the sequence cn = an + 1 is subadditive and thus, by Lemma
15.7 we have

lim
n→∞

F n(x)− x
n

= lim
n→∞

an
n

= lim
n→∞

an + 1

n
= lim

n→∞

cn
n

= inf
{cn
n

: n ∈ N
}
∈ [0,∞).

To show that cn is subadditive, notice that

am+n = Fm+n(x)− x = Fm(F n(x))− F n(x) + an. (15.1)

To bound the right hand side notice first of all that

banc ≤ F n(x)− x < banc+ 1

and in particular
F n(x) < banc+ x+ 1
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therefore, using also the fact that F is orientation preserving and thus monotone
increasing, and the periodicity of F we have

Fm(F n(x)) < Fm(banc+ x+ 1) = Fm(banc+ x) + 1. (15.2)

To bound the right hand side notice that

Fm(x+ banc)− (x+ banc) = Fm(x) + banc − (x+ banc) = Fm(x)− x = am

and therefore
Fm(x+ banc) ≤ am + x+ banc (15.3)

Substituting (15.3) into (15.2) we get

Fm(F n(x)) < am + x+ banc+ 1

Substituting this into (15.1) we get

am+n < am+x+banc+1−F n(x)+an = am+an+1+banc−(F n(x)−x) ≤ am+an+1

Therefore the sequence cn = an + 1 satisfies

cn+m = an+m + 1 < am + an + 1 < (am + 1) + (an + 1) = cn + cm

and is therefore subadditive. We therefore have that the limit exists. We now
show that this limit doesn’t depend on the point x. Let x, y ∈ R. Then we can
choose some integer k such that |x− y| ≤ k. Moreover, by the periodicity of F we
have

F (x) ≤ F (y + k) = F (y) + k and F (x) ≥ F (y − k) = F (y)− k

and therefore |F (x)− F (y)| ≤ k. Thus, inductively, we get

|F n(x)− F n(y)| ≤ k

for any n ∈ N. It follows that∣∣∣∣(F n(x)− x)

n
− (F n(y)− y)

n

∣∣∣∣ =

∣∣∣∣(F n(x)− F n(y)) + (y − x)

n

∣∣∣∣ ≤ 2k

n
.

This converges to 0 as n→∞ and so the limits are the same. Finally, we just need
to show that for two lifts the limit can only differ by an integer. Since any two lifts
differ only by an integer translation, any other lift has to be of the form G = F +k
for some integer k. Therefore ρ(G) = ρ(F ) + k and π(ρ(G)) = π(ρ(F )).
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15.2.1 Homeomorphisms with rational rotation number

Proposition 15.8. Let f : S1 → S1 be a homeomorphism. Then ρ(f) is rational
if and only if f has at least one periodic orbit.

Proof. Suppose first that ρ(f) = 0. We show that f has a fixed point. Suppose
by contradiction that f does not have a fixed point. Then for any lift F of f and
any x ∈ R we have

F (x)− x ∈ R \ Z
since otherwise f would have a fixed point (check!). Since F is continuous, this
means that F (x) − x is contained in some component of R \ Z for all x ∈ R, i.e.
there exists an integer k such that

k < F (x)− x < k + 1

for all x ∈ R. On the other hand F is periodic and therefore the range of F is
completely determined by the range of F on the unit interval [0, 1]. Since [0, 1] is
compact and F is continuous, the range of F is compact and therefore there exists
ε > 0 such that

k + ε ≤ F (x)− x ≤ k + 1− ε.
Writing

F n(x)− x =
n−1∑
i=0

[F i+1(x)− F i(x)] =
n−1∑
i=0

[F (F i(x))− F i(x)]

it then follows that

k + ε ≤ F n(x)− x
n

≤ k + 1− ε.

and therefore

ρ(f) = lim
n→∞

F n(x)− x
n

mod 1 ∈ [ε, 1− ε]

which contradicts ρ(f) = 0. Thus f must gave a fixed point. Now suppose that
ρ = p/q ∈ Q. If F is a lift of f the F q is a lift of f q and therefore we have

ρ(f q) = lim
n→∞

(F q)n(x)− x
n

mod 1 = q lim
n→∞

F qn(x)− x
qn

= qρ(f) mod 1 = p mod 1 = 0.

Thus, by the argument above, f q has a fixed point, and so f has a periodic point
of period q. This completes the proof in one direction, i.e. if ρ(f) is rational then
f has at least a periodic point.

We leave the converse as an exercise. Notice that it is sufficient to show that
the rotation number of this periodic point is rational, since we have proved above
that the rotation number is independent of the point.
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15.3 Irrational rotation number

Theorem 15.9 (Poincaré, 1900’s). Let f : S1 → S1 be a homeomorphism with
irrational rotation number ρ(f) = α. Then f is topologically semi-conjugate to a
rigid rotation fα : S1 → S1: there exists a continuous surjective map h : S1 → S1

such that h ◦ f = fα ◦ h. If moreover there exist a orbit for f which is dense in S1

then f is topologically conjugate to fα.

The key technical step in this result is to show that the orbits of f have the
same order as the orbits of the rigid rotation fα. We formalize this notion as
follows.

Proposition 15.10. Let F be a lift of a circle homeomorphism f with irrational
rotation number α. Then, for every x ∈ R and any n1, n2,m1,m2 ∈ Z we have

F n1(x) +m1 < F n2(x) +m2 if and only if n1α +m1 < n2α +m2. (15.4)

Proof. We assume that n1 6= n2 otherwise there is nothing to prove. Notice first
of all that the left hand side of (15.4) in principle depends on x whereas the right
hand side does not. We therefore begin by showing that in fact the left hand side
does not depend on x in the sense that it either holds for all x ∈ R or does not
hold for any x ∈ R. Since F is continuous it is sufficient to show that we can never
have an equality F n1(x)+m1 = F n2(x)+m2 for some x ∈ R so that the inequality
is either always satisfied or never satisfied. Assuming by contradiction that we
have equality, this implies F n1(x) = F n2(x) + m2 −m1 = F n2(x + m2 −m1) and
therefore F n1−n2(x) = x + m2 −m1 but this would imply that π(x) is a periodic
point and this contradicts the assumption that the rotation number if irrational.

Now suppose that the left hand side of (15.4) holds for all x ∈ R. We distinguish
two cases. If n1 > n2 we have

F n1−n2(x) < x+m2 −m1

for any x ∈ R and therefore

F 2(n1−n2)(x) = F (n1−n2)(F (n1−n2)(x)) < F (n1−n2)(x) +m2 +m1 < x+ 2(m2 −m1)

and therefore, inductively,

F n(n1−n2)(x) < x+ n(m2 −m1)

By the definition of the rotation number, this implies

ρ = lim
n→∞

F n(n1−n2)(x)− x
n(n1 − n2)

<
m2 −m1

n1 − n2
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which implies the right hand side of (15.4). If n1 < n2 we just repeat completely
analogous calculations to get ρ > (m1 − m2)/(n2 − n1) which also in this case
implies the right hand side of (15.4).

To prove the converse, it is sufficient to show that the negation of the left
hand side implies the negation of the right hand side, i.e. that if F n1(x) + m1 ≥
F n2(x) + m2 holds for every x ∈ R then n1α + m1 ≥ n2α + m2. But this follows
by exactly the same arguments as above by just inverting the inequalities.

Proof of Theorem. Let F be a lift of f and Fρ be the lift Fρ(x) = x + ρ of the
rigid rotation fρ. We will construct a semi-conjugacy H : R → R between these
two lifts and show that this semi-conjugacy is periodic and thus ”projects” to a
seminconjugacy between f, fρ. We start by using Proposition 15.10 to construct a
bijection between two individual orbits. More precisely, for arbitrary x ∈ R let

θx := {F n(x) +m : n,m ∈ Z} and let θρ := {nρ+m : n,m ∈ Z}.

By proposition 15.10 these two sets are ordered in the same way. We define a
function H : R→ R by

H(y) = sup{nρ+m : F n(x) +m ≤ y}.

We remark first of all that H is non-decreasing and constant on each closed interval
[a, b] ⊆ R \ θ̄x (if such an interval exists). Indeed, since F n(x) +m ≤ a if and only
if F n(x) + m ≤ b for any m,n ∈ Z and therefore H(a) = H(b). Secondly, notice
that θρ is dense in R, since {nρ mod 1 : n ∈ Z} is exactly the orbit of 0 under the
irrational circle rotation fρ and we know that this set is dense in [0, 1]. Therefore
it follows from the definition of H that

H(F n(x) +m) = nρ+m

for every m,n ∈ Z. Thus H maps the orbit θx of x under F to the orbit θρ of 0
under Fρ. Since H is monotone and the range of H is dense, it follows that H is
continuous and surjective. In particular, since it clearly conjugates two individual
orbits, this conjugacy passes to the closure and thus we have that H is a conjugacy
between θx and θρ = R. Moreover, since H is constant on each interval in the
complement of θx it is a semiconjugcy on all of R. To see that H is periodic we
have

H(y + 1) = sup{nρ+m : F n(x) +m ≤ y + 1}
= sup{nρ+m : F n(x) +m− 1 ≤ y}
= sup{nρ+m− 1 : F n(x) +m− 1 ≤ y}+ 1

= H(y) + 1.
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Therefore, we can define h(y) = H(y) mod 1, and we obtain a function h : S1 → S1

which is continuous, non-decreasing and surjective and such that h ◦ f = fρ ◦ h.
Finally, if there exists a point x whose orbit is dense for f , we carry out the

construction described above for that orbit in which case we have that also θx
is dense in R. Thus the function H is also injective and it follows that it is a
homeomorphism and thus h is also a homeomorphism and f, fρ are topologically
conjugate.

15.4 Denjoy counter-example

Theorem 15.11. There exists a circle homeomorphism without periodic points for
which not all orbits are dense.

We just give a sketch of the construction. Start with a rigid circle irrational
circle rotation

f(x) = x+ θ

of a circle S of total length 1. Choose an arbitrary point x0 and a sequence
{`k}+∞

k=−∞ of positive numbers with

+∞∑
k=−∞

`k = L <∞.

We now perform a “surgery” on the circle as follows:

“cut” the circle open at each point xn of the orbit of x0 and replace
the point xn with an “arc” In of length `n.

This yields a new circle S̃ of total length 1 + L. We can define a map

f̃ : S̃1 → S̃1

as follows. First of all let int(In) denote the interior of In, i.e. the interval In
without its endpoints, and define

C̃ = S̃ \
∞⋃

n=−∞

int(In).

There is a natural bijection between the set C̃ and the set

C = S \
∞⋃

n=−∞

xn
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since the surgery did not affect any point lying outside the orbit x0. Therefore we
define f̃ on C̃ simply as f on C using this bijection. It therefore just remains to
define f̃ on the union of the intervals In. To do this, we just define a family of
homeomorphisms

fn : In → In+1

for n ∈ Z in an essentially arbitrary way. These could be, for example, just linear
rescalings depending on the relative lengths of In and In+1.

This construction clearly gives a bijection f̃ : S̃ → S̃ and it is clear that f̃ has
no periodic points and that all orbits in C̃ are not dense in S̃. It is not difficult
to show that f̃ is a homeomoprhism and, with additional work, it is also possible
to show that f̃ can be constructed to be a C1 diffeomorphism. It is however not
possible to construct such a counterexample for f̃ a C2 diffeomorphism.
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