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ABSTRACT. In this paper we prove that there are finitely many modular curves
that admit a smooth plane model. Moreover, if the degree of the model is
greater than or equal to 10, no such curve exists. For modular curves of
Shimura type we show that none can admit a smooth plane model of degree
5,6 or 7. Further, if a modular curve of Shimura type admits a smooth plane
model of degree 8 we show that it must be a twist of one of five curves.

1. INTRODUCTION

The compactification, by normalisation, of the quotient space of the complex up-
per half plane by the action of a subgroup I" of SLy(Z) = I'(1), a modular group, is
called a modular curve, Xt and it admits the structure of a compact Riemann sur-
face. Serre’s GAGA theorem tells us that X (C) is a projective complex algebraic
curve. Furthermore, Shimura, in |42, Proposition 6.9], proved that modular curves
admit the structure of projective algebraic curves, see also [18], §7.7]. The problem
of computing equations for such curves and their projective embeddings has been a
central topic in numerous papers, motivated by a plethora of applications. We will
describe some of those while making a summary of the state of the art.

Modular curves are moduli spaces for elliptic curves with a given level structure.
Given a positive integer N and a subgroup G C GLy(Z/NZ), the modular curve X¢
parametrises pairs (F, ¢) up to isomorphism, where E is an elliptic curve and ¢ is a
G-level structure on the N-torsion of E. Therefore, the explicit knowledge of models
of modular curves becomes key for understanding properties of elliptic curves. This
aspect leads to several different applications, for example towards coding theory
or for solving Diophantine applications, starting with the proof of Fermat’s last
theorem where they appear in several steps. In this article we study whether it is
possible to have “nice” models, that is smooth plane models, for modular curves
defined over the rationals.

In general, finding equations for modular curves of large level is computationally
difficult, as it involves computing group actions on large spaces and linear algebra
over large cyclotomic fields. However, for some groups it is easier to compute such
curves, e.g. in [22] Galbraith computes modular curves for the groups I'g(N). One
can look for a slightly larger class of groups: given a positive integer N, a group of
Shimura type of level N, as introduced originally by Shimura in [42], is a subgroup
I'(H,t) € PSLy(Z) projection of a subgroup G(H,t) C SL2(Z) of the form

G(H,t) = {( 8 Z > € GLy(Z/NZ) :a € H,t | b},

where H C (Z/NZ)* is a subgroup and t | N. We will call a modular curve of
Shimura type any modular curve corresponding to the choice of a group of Shimura

type.
The main result of this article is the following:
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Theorem 1.1. There are finitely many modular curves which admit a smooth plane
model over the rationals. There is no modular curve which admits a smooth plane
model of degree greater than 10. Moreover, there is no modular curve of Shimura
type which admits a smooth plane model of degree 5,6 or 7. A modular curve of
Shimura type which admits a smooth plane model of degree 8 must be a twist of one
of five curves.

Surprisingly, during the computations we found the example of a Galois trigonal,
i.e. superelliptic of degree 3, model of a modular curve of genus 6.

1.1. State of the art. Galbraith in [22| presented several techniques to obtain
explicit models of modular curves by computing projective embeddings, relying on
the computation of spaces of modular forms. Let us recall Galbraith’s approach
for the modular curves Xo(V) for a positive integer N. There is a well-known
canonical affine equation for X(N) using N-modular polynomials that are sym-
metric polynomials ¢(z,y) € Z[z,y], of degree N + 1 in each variable, such that
o(3(7),4(NT)) = 0, where j(7) be the classical modular j-function. These equa-
tions have very large degree, the model is highly singular, and the coefficients
involved are enormous. Galbraith’s approach consists in obtaining equations via
the canonical embedding, which is suitable for practical computation since the dif-
ferentials on the curve correspond to the weight 2 cusp forms for I'o(N). Chosen
a basis {f1,..., fy} for the weight 2 cusp forms, the canonical map is translated
into 7+ [fi(7) : -+ ¢ fy(7)] and gives a map from Xo(N) to P971(C) from the
modularity of the forms f;(7). Galbraith’s strategy is a key element in our approach
towards the main theorem of this article.

Kohel in [32] presented a different method which involves quaternions and a
different approach towards the computation of the differentials. These approaches
have been used, together with others, to collect the database of small modular curve
models available in Magma [12].

Despite the lack of a general algorithm, models for several modular curves have
been found in the literature with a wide range of applications in mind. We mention
some of these, as well as their relevance towards various research directions.

Baran found models for the isomorphic curves X, 4+ (13) and X +(13) in [7]. The
study of integral points on these curves relates to the Serre’s uniformity question
over Q, as in [41]. More recently, Dose, Mercuri and Stirpe [19] proposed a new
approach for computing (singular) models in order to study Serre’s question.

Derickx, Najman and Siksek [17] proved that elliptic curves over totally real
cubic fields are “modular" meaning that their L-functions match the L-function of
the associated Hilbert modular forms. A key step to obtain this result is the study
of points on a plane (singular) model of X (b5, ns7).

Banwait and Cremona [6] examined the failure of the local-to-global principle
for the existence of ¢-isogenies between elliptic curves over number fields by, among
others elements, determining a model for the exceptional modular curve Xg, (13).
Zywina, in [47], generalised the work of Banwait and Cremona, by relying on numer-
ical approximation of pseudo—eigenvalues of Atkin—Lehner operators. Through his
approach it is possible to determine g-expansions and models for modular curves.

Box in |13]| described an algorithm |13 Algorithm 4.13], that has been imple-
mented by the second named author, see [2], for computing the canonical model for
X /Q in the case where G has surjective determinant, —I € G and G is normalised
by J := (’01 (1)) In this algorithm, one first determines the g-expansions of a basis
for the corresponding space of cusp forms and then a model, using the techniques
developed by Galbraith [22] when the genus is at least 2. Box’s algorithm presents
the advantage that, for a finite groups A of the automorphism group of Xg, it is
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possible to determine a model for the quotient curve X /A directly, without com-
puting X first. Box’s algorithm is another key ingredient to reach the conclusion
of the main result of this article.

Notice that for degree larger than 3 all smooth plane curves are non-hyperelliptic,
see for example [26, Ex. IV.5.1]. In [8] the authors prove that for N > 8 all
geometrically connected curve modular curves X(N) defined over Q are neither
hyperelliptic nor bielliptic.

Enge and Schertz |20| presented (singular) models for the modular curves Xo(N)
for N the product of two arbitrary primes using Dedekind’s i functions. Kodrnja
in 31|, relying on the embeddings in projective space through modular forms and
modular functions presented by Mui¢ in [35] for computing models of modular
curves, was able to find an explicit recipe to obtain plane (singular) models for
all modular curves Xo(N) for N > 2. The equation of the model is the minimal
polynomial of the modular function A(Nz)/A over C(j), where A is the Ramanujan
A function and j is the modular j function. Some plane (singular) models for
modular curves X, (V) were already found by Hasegawa and Shimura in [29] using
different ideas, in particular studying the gonality of modular curves.

Borisov, Gunnells and Popescu [11] showed that it is possible to determine ex-

plicitly an embedding of the modular curve X;(p) into P @, where p > 5 is a
prime, using weight one Eisenstein series. The equation obtained is a (singular)
quadratic equation. More recently, Baziz |3| proposed different (singular) models
for X;(N) using N-division polynomials, and so with the advantage of keeping
track explicitly of the corresponding pairs (F, P) parametrised by the curve.

In this article we are interested only in modular curves as classically presented:
projective complex algebraic curves corresponding to the compactification of the
quotient space of the complex upper half plane by the action of a modular subgroup.
Nevertheless, it is possible to define curves that are modular: a curve C over Q is
modular if it is dominated by X;(N) for some N. Moreover, if in addition the
image of the jacobian of the curve in Ji(N) is contained in the new subvariety of
J1(N), then C is new-modular. Under this definition, the modular curves associated
to the classical modular groups I'o(N) and I'y(V), for some positive integer N,
are curves that are modular. In particular there are infinitely many curves over
Q that are modular and of genus 1: elliptic curves over Q are modular. Baker,
Gonzalez-Jiménez, Gonzalez and Poonen in [5] showed that for each genus g > 2,
the set of curves over QQ of genus g that are new-modular curves is finite and
computable. In particular, by analysing the automorphism group of the curve and
the dominant map, they describe explicitly all curves that are new-modular of genus
2, and construct a list of new-modular hyperelliptic curves of all genera (this list
might be complete, but there are pathologies presented in the last sections of the
aforementioned paper). In 23] Gonzalez-Jiménez and Oyono gave an algorithm to
compute explicit equations for non-hyperelliptic curves that are modular of genus
3 over Q. Moreover they conjectured that the list of non-hyperelliptic curves that
are new-modular and of genus 3 consists of 44 curves, and provided equations for
all of them. The issue, as in [5], is giving a bound for the coefficients of the modular
forms involved.

1.2. Structure of the paper. In §2 we prove that there are a finite number of
modular curves admitting a smooth plane model. To achieve this result, we bound
the genus of such curves and notice that there is a finite number of congruence
subgroups of any given genus. Moreover, we explicitly bound the level and the
index of such groups. These results give us a finite list of groups corresponding to
modular curves that may admit a smooth plane model. In §3 we discuss how to
perform the computation of the canonical model of the relevant modular curves.
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In particular, we present the analysis regarding the runtime of the algorithm for
computing g-expansions, with the precision required to prove the correctness of the
resulting equations. Later, in §4 we present an algorithm that, given a canonical
model of a non-hyperelliptic curve, checks whether the curve admits a smooth plane
model and, if it is the case, computes it. Finally, in §5 we present our computations
regarding Shimura type modular forms and modular curves.
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2. A BOUND FOR THE GENUS

In this section we prove the first two parts of the main theorem, Theorem [I.1]

Theorem 2.1. There are a finite number of modular curves admitting a smooth
plane model.

Proof. The genus—degree formula tells us that a smooth plane curve of degree d has
genus g = (dflgﬂ. The gonality (over the algebraic closure) of a smooth plane
curve of degree d is d — 1, see |14, Theorem A]. The gonality of a modular curve of
genus g is greater or equal to 975(g — 1)/4096, see |37, Remark 1.2] and |5, Remark
4.5]. Therefore, for a modular curve admitting a smooth plane model we have that

975d% — 11117d + 8192 < 0 and so
1<d<10 and g¢e€{0,1,3,6,10,15,21,28,36}.

There are a finite number of modular curves of a given genus, see |15], so there are
a finite number of modular curves admitting a smooth plane model. O

For degree 1 and 2, i.e. genus 0, the list of levels is given in |15, Table 4.24].

For degree 3, i.e. genus 1, the complete list of the relevant congruence subgroups
is given in |16].

For degree 4 we need to consider curves of genus 3. The non-hyperelliptic ones
are given by smooth plane quartics. Indeed, we find modular curves of genus 3
admitting a smooth plane model of degree 4, see Table [] for the complete list we
have computed.

Nevertheless, the following question arises naturally:

Question 2.2. Is there any modular curve of genus greater than 3 admitting a
smooth plane model?

For degrees 5 and 6 we did not find any example of a modular curve admitting
a smooth plane model, restricting to Shimura type modular curves, see §5.

For each genus up to 24 the complete explicit list of congruence subgroups of
PSLy(Z) is known: see |16, Theorem 2.8] and the associated Websiteﬂ

One way to count how many modular curves may admit a smooth plane model
is to count congruence subgroups of PSLy(Z) whose index is bounded in terms of
the degree of the model, as follows.

Ihttps://mathstats.uncg.edu/sites/pauli/congruence/
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Proposition 2.3. The index v of a congruence subgroup in PSLa(Z) whose asso-
ciated modular curve admits a smooth plane model of degree d > 3 satisfies

(2.1) 6(d—1)(d—2)—12<.<101(d—1)

Proof. On the one hand, combining [45, Theorem 3] (see also |29, Theorem 4.3])
and an improvement presented in [16] due to Kim and Sarnak |30, Appendix 2], the
index of a congruence subgroup in PSLs(Z) is bounded by 101 times the gonality
of the corresponding modular curve. By assumption the modular curves admits a
smooth plane model, so its gonality is d — 1. The index is therefore bounded by
101(d — 1).

On the other hand, the genus g of a modular curve admitting a smooth plane
model of degree d > 3 satisfies g = %Q(d% > 0and g <1+ 15, where ¢ is the
index of the corresponding congruence subgroup, see |18, Theorem 3.1.1].

Therefore the index ¢ is bounded above and below as in Equation [2.1 O

Remark 2.4. The coefficient 101 used in Proposition is obtained by taking the
floor of a rational number o = 2!%/325. A sharper upper bound can be obtained
by rounding only after multiplication.

Remark 2.5. The result of Proposition together with the bound for the de-
gree presented in Theorem and the previous remark, implies in each case the
following lower and upper bounds for the index ¢:

degree | genus | index bound || degree | genus | index bound
3 1 0<:<201 7 15 | 168 <t <604
4 3 24 < <302 8 21 | 240 <1 <705
5 6 60 < ¢ <403 9 28 | 324 <1 <806
6 10 | 108 <t <504 10 36 | 420 < ¢ <907

TABLE 1. Index bounds

The logarithm of the number of congruence subgroups in PSLy(Z) of index
bounded by 907 is approximately 1132, see |9, Proposition 8.1]. Therefore naively
listing all subgroups would be not feasible, and the list of [16] contains only groups
of genus less than or equal to 24.

Let us also remark that for any given genus we can bound the level N of
the congruence subgroups occurring using the following formula, due to Cox and
Parry |15, Equation (4.22)],

< ) 168 if g=0
~ 129+ 3(13y/48g + 121 4 145) if g >1

Analysing the genera in Theorem we produce the level bounds appearing in
Table 21

(2.2)

genus | level bound || genus | level bound
1 169 15 441
3 214 21 542
6 256 28 657
10 351 36 784

TABLE 2. Level bounds

It remains to check this finite number of possibilities, a task which we proceed
to describe in the rest of the paper.
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3. COMPUTING MODULAR CURVES

Let I' C PSLo(Z) be a congruence subgroup of level N. Then the modular curve
Xr can be given the structure of an algebraic curve over Q(¢y). This structure
depends on the choice of a group G C GLy(Z/NZ) such that the projection of its
pullback to SLg(Z), denoted by PG, coincides with I'. We denote such a model
by X¢g. The Galois action on the connected components of the curve X is given
by the homomorphism o4 — (&9), where 04((n) = (%. Therefore, the field of
definition of X¢ is the fixed field of det(G) C (Z/NZ)* = Gal(Q({n)|Q), where det
denotes the usual determinant map from GLo(Z/NZ) to (Z/NZ)*. The connected
components of the curve X¢ are indexed by (Z/NZ)* /det(G), and each component
is defined over the field Q(¢y)9°%). In particular, X is geometrically connected
and defined over Q if and only if det(G) = (Z/NZ)*. Therefore, Xr, which is one of
the components of X¢, admits a model over Q only if there exists G C GL2(Z/NZ)
such that PG =T and det(G) = (Z/NZ)*.

The methods of Galbraith and Box, described briefly in the introduction, for
computing modular curves use duality with modular symbols, and therefore require
G also to be of real type, i.e. such that JGJ = G, where J = (Bl (1)) Since J
acts via complex conjugation on the Fourier coefficients of modular forms, it is
equivalent to requiring the Fourier coefficients to be fixed by complex conjugation.

We therefore restrict our attention to congruence subgroups I' such that there
exists G of real type with surjective determinant and PG = I". Note further that
for these groups, when the degree is prime to 3, it suffices to check one such model
X¢ by [4, Corollary 2.7]. In the range of degrees we are interested in, the only
relevant case is that of degree 6, i.e. genus 10. In this case, for groups of Shimura
type, the curve always admits a rational point, and so it is again enough to consider
a single model by [4, Corollary 2.2]. For the other congruence subgroups of genus
10 for which we compute the curve, we verify that the resulting curves indeed have
rational points, hence in these cases it also suffices to check a single model.

Our method of enumerating these subgroups of specific genus is to run over the
finite list of conjugacy classes of congruence subgroups of this genus in PSLy(Z),
and for a representative I' C PSLo(Z), we look at the projection of its pullback
H C SLy(Z/NZ). As for any compatible G C GL2(Z/NZ), H will be a normal
subgroup, we start by looking for a conjugate H' of H in GLy(Z/NZ) which satisfies
JH'J = H', or equivalently J € N(H), where the normalization takes place in
GL2(Z/NZ). Since N(gHg ') = gN(H)g~*, it suffices to consider conjugates of
N(H), and look for one which contains J. We then note that if G is such that
GNSLy(Z/NZ) = H, then H 4 G, so that G C N(H). Thus, looking for G with
surjective determinant amounts to enumerating the subgroups of N(H)/H of order
H(N).

In Table [3] we list how many congruence subgroups I' exist, up to conjugacy, for
each degree 3 < d < 7, and how many of these admit a model G C GLy(Z/NZ)
of real type with surjective determinant. In Table [3] we also record the number of
groups of Shimura type of each degree 3 < d < 8.

The methods we use for computing equations of modular curves make use of
explicit computation of the g-expansions and the canonical map. We briefly recall
the map and its properties.

3.1. The canonical map. Let k be a perfect field. Let C/k be a smooth projective
curve of genus g > 2 with canonical divisor K. Let {20, ..., 24—1} be a basis defined
over k of the Riemann-Roch space £L(K). The canonical map of C' is given by

b C =PI Py (2(P):...: zg—1(P)).
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congruence real type & .
degree | genus subgroups surjective det Shimura type
3 1 163 108 38
4 3 241 160 26
5 6 175 74 8
6 10 235 120 17
7 15 485 244 23
8 21 729 431 55

TABLE 3. Congruence subgroups of low genus

The curve C' is non-hyperelliptic if and only if ¢ is an embedding. In this case
¢x(C) is defined over k and it is unique up to a linear transformation of P9~1.
Otherwise, when ¢k is not an embedding, the curve C' is hyperelliptic and ¢k is
the quotient by the hyperelliptic involution: ¢ (C) ~ P*.

Theorem 3.1. (Noether-Enriques-Petri, |36]) Let C' be a smooth projective non-
hyperelliptic curve of genus g. The homogeneous ideal defining the canonical curve
o (C) CPI~L is generated by its elements of degree 2, except in the following cases:

e g =3, so C is a smooth plane quartic.

e g >4 and C is a trigonal curve. In this case an element of degree 3 is also
needed to generate the ideal.

e g =06 and C is a smooth plane quintic. Again in this case an element of
degree 3 is also needed.

Therefore, to compute an equation for the modular curve, using the identifica-
tion S»(T, Q(¢n))Y ~ QY (Xg), it suffices to compute g-expansions up to sufficient
precision and look for relations in low degrees. We proceed by describing first the
required precision.

3.2. Bounds. In order to distinguish modular forms we will use a finite number
of coefficients of the associated g-expansions thanks to the following result due to
Sturm |44, Theorem 1], see also [43, Section 9.4]. Let us recall that for a congruence
subgroup I" C SLo(Z) the width of the cusp oo is the positive integer h defined by
(4" =Tn()

Theorem 3.2 ([44] Theorem 1]). Let T' be a congruence subgroup of SLa(Z). Let
h be the width of the cusp oo for I'. Let f be a modular form on I' of weight k,
with coefficients in a discrete valuation ring R contained in C. Let F be the residue
field of R. Suppose that the image 3 an,q™'" in F[[¢"/"])] of the q-expansion of f
has a, =0 for all n < k[SLy(Z) : T]/12. Then a, =0 for all n, i.e. f is congruent
to 0 modulo the mazximal ideal of R.

Moreover, we can state the following corollary, derived from an observation at
the end of [44] and stated in this form in |3§]:

Corollary 3.3 (|38, Theorem 2.1]). Under the same hypotheses of the theorem
above, let us assume furthermore that f is a cusp form. If the image Zanq”/h m
F[[¢*/"]] of the g-expansion of f has a, = 0 for alln < k[SLy(Z) : T|/12—#(cusps).
Then a, =0 for all n, i.e. f is congruent to 0 modulo the mazimal ideal of R.

The integer x[SL2(Z) : I'|/12 (resp. k[SL2(Z) : T']/12 — #(cusps)) is known as
the Sturm bound (resp. Sturm bound for cusp forms) and we will use the notation
B(T', k) (resp. B(T',k).) to refer to such a bound.
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3.3. Groups of Shimura type. For groups of Shimura type, the methods de-
scribed in [1] can be used to compute the g-expansions. Alternatively, conjugating
by a; = (§9), we see that

I (Nt) C oyT'(H,t)a; b C To(Nt).
Moreover, if we decompose the space by Dirichlet characters as

S2(I'1(Nt)) = @ S2(Lo(Nt), x),

x:(Z/NtZ)* —C*

then we obtain

So(al(H,t)oy ) = @ Sa(To(Nt), x).
x:x(H)=1

The g-expansions for modular forms in the spaces in this decomposition are then
straightforward to compute.

In order to compute equations for all modular curves of Shimura type of genus
1,3,6,10, 15, we will need to compute weight 2 cusp forms and then check quadratic
and cubic relations, according to Theorem [3.I] The number of coefficients of the g¢-
expansions of the weight 2 cusp forms needed to certify the computation performed,
is equal to B(T', k)., where k is either 4 or 6.

Proposition 3.4. The level of a congruence subgroup in PSLa(Z) associated to a
Shimura type modular curve admitting a smooth plane model is bounded by 496.
More precisely, we can bound the level for each genus as shown in Table [}

Proof. A congruence subgroup I' in PSL2(Z) corresponding to a Shimura type mod-
ular curve is contained in I'g(M) for an appropriate level M. Therefore its index

is less than the index of T'g(M), which is given by MHp\M,p prime (1 + %), and it
is bounded by 907 as in Table [1} This implies that M loglog M < 907 and so that

M < 496. (]
genus | level bound || genus | level bound
1 127 15 342
3 182 21 394
6 237 28 445
10 290 36 496

TABLE 4. Level bounds for Shimura type modular curve admitting
a smooth plane model

3.4. Other congruence subgroups. For groups that are not of Shimura type, we
apply the (generalization of the) method of twists described by Box in [13]. We note
that Box uses an auxiliary divisor M of the level N such that Gy = Bo(M), where
By(M) is the Borel subgroup of GLy(Z/MZ), but this constraint can be relaxed
to allow for Bi(M) C Gy C Bo(M), where By(M) is the unipotent subgroup
of By(M), by decomposing according to the action of Dirichlet characters. More
precisely, if G’ C GLy(Z/NZ) is such that G 4 G’ and G'/G is abelian, we can
decompose according to the characters of G'/G, namely

S$(G)= P S(Ge).

£:G’ /G—CX
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In the cases where G’ = By(M) and T'; (M) NT(K) C G for some relatively prime
K, M, such that KM = N, we may further identify

S(G )= P SloME) )T

x:(Z/MK?2)* —C>

X‘(KZ+1)/MK2Z:€
by conjugating with axr = (§ ). We can then create the space of modular symbols
corresponding to S2(To(MK?), ), and cut out the subspace on which G’ acts via
¢ by a method similar to the algorithm described in |13, Algorithm 4.11]. Putting
together all these elements, we obtain an algorithm that, given a group G such that
Bi(M) C Gy C Bo(M), returns the g-expansions of a basis for the space of cusp
forms S2(G). Denote by s : GL2(Z/NZ) — GLo(Z/M7Z) the natural projection
map.

Proposition 3.5. The running time complexity of the algorithm described above
for a group G = 73} (Gar) N7t (Gi) with By(M) C G € Bo(M) of genus g is
given by

O ([Gar = Bi(M)|(MPK® + MK*¢?)) .

For a group of Shimura type G = G(H,t), it is given by 0] (%NthQ).

Proof. We note that the complexity of the algorithm is dominated by the linear
algebra operations performed in these spaces of modular forms. Specifically, since
the algorithm requires computing the Hecke decomposition, to obtain the modular
symbols corresponding to the eigenform, our complexity is dominated by O(d® +
dL?), where d = dim Sy(T'o(M K?), x) is the dimension of the space and L is the
precision required for the g-expansions, see [10, Table 5.2.3]. By Corollary as
the cusp width h is bounded by K, we see that the required precision to ascertain
our linear relations indeed hold is bounded by L < KB(T, k)., where  is the
maximal weight in which we look for an equation and I' is the pullback of G to
SLs(Z). By Theorem k € {4,6} in all considered cases, with k¥ = 6 occurring
only if g < 6. Finally, by [46, Theorem 2.3|, the index [SLy(Z) : T'] = O(g), hence
L=0(Kg). As d = O(MK?) (see |33] for a more precise and detailed asymptotic
analysis), it follows that the running time complexity of the algorithm on the space
corresponding to each Dirichlet character x is O(M3KS + MK*¢?), and summing
over all Dirichlet characters we obtain the result. For a group of Shimura type, we
can simply compute for each of the direct summands the Hecke operators up to
the required precision, which now satisfies L = O(tg), as the cusp width at oo is
precisely h =t. O

As a result, when looking for smooth plane models of general congruence sub-
groups, we will have to restrict ourselves to reasonable ranges of the parameter
MK?. We therefore treat in this paper only groups that are of Shimura type or
such that M K2 < 500. We further note that different representatives in the con-
jugacy class of T',; and different groups G which pull back to I' give rise to different
values of M, K. We find for each conjugacy class of the congruence subgroup T,
a corresponding group G with the maximal value of M (and so the minimal for
MK?). Moreover, by their definition, for groups of Shimura type we may choose
M = N/t and K = t, making them the easiest to compute using this method as
well.

4. FROM A CANONICAL MODEL TO A SMOOTH PLANE MODEL

In this section we propose an algorithm to check whether a smooth irreducible
projective curve C of genus g and defined over a perfect field k& does not admits a
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smooth plane model over k. In the case where we cannot rule out this possibility,
we propose a strategy to compute such smooth plane model. We do not focus on
the minimal fields of definitions for these models, but we point the interested reader
to [4].

4.1. The low genus cases. For g = 0, 1 there is always a smooth plane model. For
genus 2, or more generally, for hyperelliptic curves, there is never one. For genus
3 non-hyperelliptic there is always a smooth plane model and it is given by the
canonical model. The next genus to check is 6, for which we have another necessary
condition in order to have a smooth plane model of degree 5: the canonical ideal
Ic defining ¢ (C) is not generated only by degree 2 elements, see Theorem (3.1
Still in this situation we need to distinguish between trigonal curves and smooth
plane quintics, see Subsection for a detailed example. Let us recall the following
classical result, coming from the description of the regular differential forms of a
smooth plane curve: The canonical model of a degree d smooth plane curve is given
by the composition of C' < P? with the (d — 3)-Veronese embedding P? — P9~1,

Lemma 4.1. Let C' be a smooth plane quintic curve. Then the degree 2 elements
of the canonical ideal Ic defining ¢ (C) define a P2. A bijective parametrization
of it, evaluated at a degree 3 mon-trivial generator of Ic, gives the smooth plane
quintic model.

Proof. In the quintic case C' : F(x,y,z) = 0 C P? with deg(F) = 5 and the
Canonical model is given by the composition with the 2-Veronese embedding P? —
P°. The canonical image ¢ (C) is generated by the equations defining ¢z (P?)
that can all be taken of degree 2 and the 3 degree 3 equations, corresponding to
xF(z,y,2) =0, yF(z,y,2) = 0 and zF(z,y,z) = 0. O

We deal next with the higher genus situations.

4.2. The minimal free resolution. A smooth curve C of genus g admits a smooth
plane model if and only if it has a (unique up to linear equivalence) very ample
complete gg—linear series, i.e. a very ample divisor D such that deg(D) = d and
¢(D) = 3. Given a basis {z,y, 2z} of £L(D), the plane model is given by the image
of C = P?: P (z(P):y(P): 2(P)).

Theorem 4.2 (|25, Appendix]). If a smooth curve C of genus g = W with
d > 5 and canonical divisor K, has a g3-linear series then the Koszul cohomology
group XK a—sa-2 1(C’, K) #0.

e=pe==

This theorem proves a special case of one of the directions of Conjecture 5.1 in
[25]. In terms of graded Betti numbers [40, p. 84] we have:

dim (X (a-3)(d-2) | (C,Kc¢)) = Ba—a,d—2-

Let C'/C be a smooth curve of genus g and ¢k (C) its image by the canonical map
given by the ideal I in S = C[zo, 21, ..., 2g—1]. Let S¢ = S/Ic be the homogeneous
coordinate ring of ¢x (C). We consider the minimal free resolution:

0 Sc S+ FiFy ...« F;_ 90

Noether proved that F; = S(—i—1)Pui+1 @ §(—i—2)Pui+2 fori = 1,...,g— 3, i.e.
that F; is a module generated by elements of degree ¢ + 1 and 7 + 2. These Betti
numbers can be computed with Magma [12]. In order to speed up these calculations,
we compute the Betti numbers for the reduction of the curve modulo a prime of

good reduction: in this case the Betti numbers are the same for both curves, see
[34 Thm. 20.5].
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When 4-4,4-2 # 0, we still need to check whether a smooth plane model exists.
As in the proof of Lemma when g > 6 the ideal I is generated by the degree
2 equations defining P? < P9~! by the (d — 3)-Veronese embedding plus the (this
time) degree 2 equations z%y’2¢F(x,y,2z) = 0 with a + b+ ¢ = d — 6. In order
to recover the putative smooth model we aim to determine the degree 2 equations
defining the P?. Then we compute a bijective parametrization and plug it into
any other equation of I, not defining the P2, and, therefore, we should obtain the
smooth plane model we are looking for. If not such a model is found, it means that
it does not exists. This strategy to recover the P2 is the one in the proof of Theorem
4.1 in [40] that gives a proof of the reverse implication of Conjecture 5.1 in 25| for
d = 6. The idea is to recover the exceptional surface, so the P2, by finding relations
with a certain shape and the standard basis techniques presented in the Appendix
of [40]. We present an implementation of this algorithm in [2].

4.3. The algorithm. Following the discussion in the previous subsections, we
present an algorithm, Algorithm [I} which allows to determine whether a curve
admits a smooth plane model.

4.4. Other strategies. Sometimes, in order to prove that a certain curve does not
admit a smooth plane model, we can try some less computationally expensive tech-
niques. For instance, when the curves under considerations have some involutions:

Theorem 4.3. [Remark 2.1 (i) & Theorem 2.2 with n = 2 in [27|] Let C be a
smooth plane curve of degree d and o an involution of C. Then the involution o

has f =d+ # fized points and the quotient C/{c) has gonality L%J

Other ways of using the knowledge of some quotients to prove the non-existence
of smooth plane models are the following results:

Lemma 4.4. Let C be a smooth curve admitting a degree n morphism to a hyper-
elliptic curve. Then C' does not admit a smooth plane model of degree greater than
2n+ 1.

Proof. The gonality of a smooth plane curve of degree d is d — 1 and the gonality
of a hyperelliptic curve is 2. O

Theorem 4.5. [Theorem 3.1 with r =1 in |24]] A smooth plane curve of degree d
does not admit any rational map to P! of degree n such that

(a—1)d+1<n<ad—(a®+1)

for some a € N.

5. COMPUTATIONS

We compute equations for all modular curves of Shimura type of genus 1, 3,6, 10
and 15, i.e. possibly admitting a smooth plane model of degree 3,4,5,6 or 7. We
run the algorithm in previous section on all of them, in order to check which ones
do admit a smooth plane model.

We also compute equations for modular curves of these genera which are not of
Shimura type, when the congruence subgroup is I' = PG, with G C GLy(Z/NZ)
satisfies G = 7, (Gy) N 7' (Gk) with Bi(M) € Gy € Bo(M) and Gy C
GLy(Z/KZ), and such that MK? < 500. Note that (MK?)? is the dominant
factor in the running time complexity, and indeed for larger values of MK?, the
linear algebra becomes the bottleneck.

We discuss the results in the following subsections. We use the congruence
subgroup labels introduced in [16]. All computations were done using Magma [12]
and the full results are available online at [2].
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Data: C/k a genus g curve given with its canonical model
Result: determining whether C' admits a smooth plane model and, when
possible, returning such model
M + 0;
if g is 0 or 1 then
‘ T < true;
else
if g s 3 then
if g(¢x(C)) = 3 then
T + true;
M « ¢k (O);
else
‘ T < false;
end
else
if g is 6 then
if Ic generated by quadrics then

‘ T « false;
else
compute M with Lemma
if M is a smooth plane quintic then
‘ T < true;
else
‘ T « false;
end
end
else
T < false;

if 3d € N with g = (d — 1)(d — 2)/2 and g(¢x(C)) # 0 then
Apply Theorem

if Bd—4,d—2 75 0 then
compute M with Schreyer’s strategy [40];
if M is smooth then

‘ T <+ true;
end
end
end
end
end
end
return T, M

Algorithm 1: Existence of a smooth plane model

5.1. Genus 1. In the case of modular curves of genus 1 they always admit a smooth
plane model of degree 3. However, it is not given by the canonical model since they
are not non-hyperelliptic. In this case we note that all groups of Shimura type give
rise to elliptic curves, since the cusp at oo is rational. We may further compute
models for some of the other congruence subgroups, using the methods in [39] to
obtain the j-map and a model for the curve. For example, we see that for the
congruence subgroups of level 6, the groups labeled 6A1, 6C1, 6D1 all yield elliptic
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curves, with equations y? = 23 — 27, y?2 = 22 + 1 and 3% = 2% + 1. We also find the
g-expansion of the unique eigenform for all 98 congruence subgroups of genus 1 for
which M K? < 500.

5.2. Genus 3. Among the 26 groups of Shimura type of genus 3, we find that there
are 11 modular curves which are hyperelliptic, these are listed below. We note that
7 of these curves belong to the Xo(N) family, and indeed we recover the models
of Galbraith [22]| for all these curves except for X((35) and X(41) that we find
different ones. These, of course, give isomorphic curves to the Galbraith ones.

label | name Hyperelliptic model

12K3 y? =a8 4+ 1zt + 1

20J3 y? = a8 4+ 825 —22* + 822 +1

21D3 y? =a2® — 62% + 42° + 112" — 242® + 2227 — 8z + 1

24V 3 y? =28+ 142t +1

30K3 | X (30 y? =28 4+ 62" + 92° + 62° — 4zt — 623 + 922 — 62+ 1
33C3 | Xo(33 y? =28 4+ 102° — 8x° + 47x* — 402> + 822% — 442 + 33
35A3 | Xo(35) | v? =28 — 1227 + 502° — 1082° + 1312* — 762° — 1022 4 442 — 19

40F3 | Xo y? =a8 4+ 825 — 22" + 822 +1
41A3 | Xo(41 y? = a® — 1227 4 482° — 822° + 602" — 82 — 272 + 162 — 4
48J3 | Xy y? =a® + 14zt +1

(30)
(33)
(35)
39A3 | X4(39) y? =% — 627 + 32°% + 122° — 232" +122° + 322 — 6z + 1
(40)
(41)
(48)

TABLE 5. Hyperelliptic Shimura type modular curves of genus 3

Remark 5.1. The curves corresponding to the groups labeled 12K3, 24V3 and 48J3
are isomorphic. The curves corresponding to the groups labeled 20J3 and 40F3
are isomorphic. No other curves in Table [5| are isomorphic. This phenomenon is
explained by the fact that the corresponding groups are conjugate in GLg(Z).

The other groups of Shimura type of genus 3 give rise to smooth plane quartics.
In table [6] we present the plane quartics obtained.

Remark 5.2. The curves corresponding to the groups labeled by 7A3 and 49A3 are
isomorphic. The curves corresponding to the groups labeled by 8A3, 16H3, 32J3,
64B3 are isomorphic. The curves corresponding to the groups labeled by 1203
and 36K3 are isomorphic. The curves corresponding to the groups labeled by 15E3
and 45D3 are isomorphic. No other curves in Table [f] are isomorphic. Again, the
explanation for these isomorphisms is that the congruence subgroups are conjugate
in GLy(Z).

We have also computed models for 92 out of the 105 congruence subgroups that
are not of Shimura type and have MK? < 500. An example of a plane quartic
occurs for the group labeled 943, cut out by the quartic 81a* — 5423y — 272%y? +
3zy® + yt — 729223 + 486y2°.

5.3. Genus 6. Among the 8 groups of Shimura type occurring, none admits a
smooth plane model. We have also computed models for 19 out of the 29 congruence
subgroups that are not of Shimura type and have M K? < 500.
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label | name Plane quartic model

TA3 | X(7) —zy® + 22+ y2 =0

8A3 23z 4z -yt =0

1203 w3z — 32222 —xyd + a2 + 2432 - 221 =0

15E3 22z — 22y + oy — P2 — 52 =0

16H3 oyt 2+ a2 =0

2083 | X1(20) 23z —2?y? — 3222 +ay® + 422’ — 221 =0

94X3 23z — 22%yz — 222% — xy® + 2wy°2
+6xyz® + 232 — 2y%2% —da2® =0

24Y3 3z — :v2y2 —x22% 4 x2d — a:y2z

—3zyz? + P24+ 20722 +y22 =0
32J3 —yt 2l 4z =0
—z2y? 4+ 2xy® — yt + 232 + 3xyPr + 4yt a—
32222 — 3xyz? — 6322 + 4w + 4y — 221 =0
36K3 —xy® + 2Pz 4 2y%2 — 32227 +4x2® — 22 =0
—22%y% + xy® — 9yt + 2%z + 22%yz + 3wy®z + 24952 —
22%2% — by — 28y%2% + 3x2° + 16y2° — 421 =0

34C3 | Xo(34)

43A3 | Xo(43)

45D3 | Xo(45) 22y a2tz — P oy — 52 =0
49A3 —xyt a2tz 4y =0
64B3 | X((64) —yt i 4 =0

TABLE 6. Plane quartic Shimura type modular curves of genus 3

Except the curve corresponding to 18A6, all the other ones are of genus 6 and
have a canonical model generated by quadrics, which means that they are non-
hyperelliptic and that they do not admit a smooth plane model.

For the curve 18A6, we also need cubic equations to define its canonical model.
According to Theorem [3.1] this implies that it does admit a smooth plane model or
that it is a trigonal curve. We first found an explicit birational equivalence between
P? and the locus of the quadrics in the ideal generating the canonical model. This
birational map gives a parametrization of the locus of the quadrics. We plugged it
into the degree 3 equations, and, after a suitable scaling of the variables, we found
the following equation:

y? = (z —3)(z + 1)(2% + 3)(x + 3)%(2 + 62 + 21)2,

Interestingly, the curve (that it is not a smooth plane quintic) is not only trigonal,
but also superelliptic. Notice that this is a quite remarkable exception since the
dimensions of the moduli space of curves of genus 6, and the locus of trigonal, plane
and superelliptic ones of degree 3 inside it are: dim(Mg) = 15, dim(M§ ™) = 13,
dim(ME™) = 12 and dim(MEP"3) = 5. Actually, we could have guessed
the existence of an automorphism of order 3 of the curve, since Aut(G) contains
an element o of order 3, which induces an automorphism of the curve Xg. The
induced action of the automorphism on the g-expansions is via o(f)(q) = f((39)-
Therefore, we can readily compute its action on the curve, and observe that it
corresponds to the action x — x and y — (3y in the model we found.



ON SMOOTH PLANE MODELS FOR MODULAR CURVES OF SHIMURA TYPE 15

5.4. Genus 10. We have checked all the 17 groups of Shimura type of genus 10.
None of them admits a smooth plane model. This was verified by computing the
graded Betti number 85 4. In 15 out of the 17 cases we have 24 = 0. Therefore,
by Theorem these curves do not admit a g2, or equivalently a smooth plane
model. The remaining cases, of the groups 46A10 and 92A10, are both isomorphic
to the curve X((92). In this case, we obtain 5 4 = 27, which by [40, Corollary 4.2]
implies either that the curve is a smooth plane curve or that it is a double cover of
an elliptic curve. However, in this case one checks that the quotient of the curve
by the Atkin-Lehner involution Wa3 yields an elliptic curve, hence by Lemma [1:4]
it does not admit a smooth plane model.

In most cases, projecting to P2 using the three divisors of maximal valuation at
the cusp at oo, which is a flex, one obtains a singular curve of degree 10 or 11 with
coefficients of large height. However, for the groups in Table [7] we obtain a smooth
cubic (an elliptic curve).

label name Image in P2
9A10 X(9) y* =2+ 16
18E10 y? =2® — 122 4 48z
27B10 y?=2®4+16
36Q10 y? =a® — 1222 4+ 48z
54A10 y? =3 — 1222 + 48z
81A10 yP=x3+16
108F10 | X((108) | y* = 2® — 122 + 48z

TABLE 7. Elliptic curves admitting a morphism from a Shimura
type modular curve of genus 10

5.5. Genus 15. We have not been able to check the existence of a smooth plane
model for any of the 23 groups of Shimura type of genus 15 using Algorithm [I]
as computing the corresponding Betti numbers 33 5 turned out to be beyond our
computational ability.

However, we can rule out the existence of smooth plane models for all these
curves by looking at their Atkin-Lehner quotients. Indeed, any congruence sub-
group I'(H,1) of Shimura type of level N and parameter ¢ = 1 satisfies I'; (V) C
I' CTy(N), and a subset of the Atkin-Lehner operators on I'o(N) normalize I as
well. These induce automorphisms of the curve X (for G = G(H, 1)), and we
denote the quotients by a subset W of them by X /W. Whenever |W|= 4 and
Xa/W is hyperelliptic, we have a morphism X — P! of degree 8, and we can
deduce from Theorem that X does not admit a smooth plane model (which
must be of degree d = 7).

Moreover, each of the congruence subgroups of Shimura type of genus 15 is
isomorphic to a group of type I'(H, 1). Table |8 summarizes our findings, where for
groups which are conjugate in GLg(z) we have written down both labels.

Note that, with the exception of X((102), X((136), Xo(175), Xo(179), X0(193)
and the two curves corresponding to labels 43A15 and 67A15, the genus of all Atkin-
Lehner quotients is either 1 or 2, implying that they are hyperelliptic, and |W|= 4.
By [28] we deduce that X (136) = Xo(136)/W is also hyperelliptic and thus we are
left with six curves for which we were not able to rule out the existence of a smooth
plane model using Theorem namely X(102), Xo(175), X¢(179), X(193) and
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label name w 9g(Xa/W)
35C15, 175A15 | Xo(175) | (was,wr) 3
40W15, 80R15 (w16, ws) 1
40X15, 80T15 (w6, ws) 1
43A15 (w43) 7
51A15, 153A15 | Xo(153) | (wo,w17) 2
60AC15 (w3, ws) 1
60AD15 (ws, ws) 1
67A15 (wer) 7
68D15, 136D15 | Xo(136) |  (ws,w:7) 3
85A15 (ws, wi7) 2
85B15 (ws, w17) 2
102C15 X0(102) | (wa, w3, w17) 1
110A15 Xo(110) | (w5, wr1) 1
141D15 Xo(141) | (w3, wyr) 1
155A15 Xo(155) | (ws,ws3;) 1
161A15 Xo(161) | (wr,wa3) 2
179A15 X(179) {wy79) 3
193A15 X(193) (w193) 7

TABLE 8. Atkin-Lehner quotients of modular curves of Shimura
type of genus 15

the two curves corresponding to labels 43A15 and 67A15. Note that by [21] there
is no quotient of either of X(175), Xo(179), X0(193) which is hyperelliptic.

In order to rule out the six remaining curves, we use Theorem with a simple
application of Riemann-Hurwitz as follows. If Xs admits a smooth plane model
(of degree d = 7), and w € W is any Atkin-Lehner involution, by Theorem w
has 8 fixed points. Riemann-Hurwitz then implies that the genus of the quotient is
g(X¢/(w)) = 6. Therefore, if we find some w € W where the genus of the quotient
is not 6, it does not admit a smooth plane model. Looking again at Table |8 we
see that this rules out X,(179), X((193) and the two curves corresponding to labels
43A15 and 67A15. Finally, for X((102) we see that g(Xo(102)/(ws)) = 7, and
for Xo(175) we have g(Xo(175)/(w7)) = 8, showing that they also do not admit a
smooth plane model.

The map to P2 obtained by using the cusp at co as the flex point always yields
a singular curve of degree 16, except the following cases. For the group 60AC15,
we obtain the elliptic curve

y? =2 + 42% — 162.

For the groups 40W15 and 80R15 (which induce isomorphic curves) we obtain a
septic with 3 singular points, namely

25y? — 282 — batyPz + 2yt + 42522 4+ 1223y22% — day2? — 62123

—1622y223 + dy2® + 4232 + 1209%2% — 2225 — 422° = 0.
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5.6. Genus 21. We have not been able to check the existence of a smooth plane
model for any of the 55 groups of Shimura type of genus 21 using Algorithm
as computing the corresponding Betti numbers 346 turned out to be beyond our
computational ability.

However, we can rule out the existence of smooth plane models for all but five
of these curves by looking at their Atkin-Lehner quotients, and using Theorem
and Riemann-Hurwitz as before. In this case, if X admits a smooth plane model
(of degree d = 8), and w € W is any Atkin-Lehner involution, by Theorem [4.3] w
has 8 fixed points. Riemann-Hurwitz then implies that the genus of the quotient is
9(Xc/{w)) = 9. Table [J] shows, for each of these curves, the chosen Atkin-Lehner
involution and the genus of the corresponding quotient, where for groups which are
conjugate in GLg(z) we have written down all labels in a single line. The remaining
curves for which we were not able to rule out the existence of a smooth plane model
are X(256) and the curves corresponding to labels 41A21, 91A21, 91B21, 137A21.
Each of these curves has a single Atkin-Lehner involution, and the quotient by that
involution has genus 9.

5.7. Proof of Theorem We are ready to prove now our main theorem:

Proof. The first claim is Theorem and the second one is deduced from its proof.
The last claim is a consequence of the computations in this section. O
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