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Abstract. We consider spaces of modular forms attached to definite orthogonal groups of
low even rank and nontrivial level, equipped with Hecke operators defined by Kneser neigh-
bours. After reviewing algorithms to compute with these spaces, we investigate endoscopy
using theta series and a theorem of Rallis. Along the way, we exhibit many examples and
pose several conjectures. As a first application, we express counts of Kneser neighbours in
terms of coefficients of classical or Siegel modular forms, complementing work of Chenevier–
Lannes. As a second application, we prove new instances of Eisenstein congruences of
Ramanujan and Kurokawa–Mizumoto type.
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1. Introduction

Motivation and context. The rich interplay between quadratic forms, theta series, and
modular forms—together with their associated Galois representations, automorphic repre-
sentations, and L-functions—remains a topic of broad interest in number theory. Computa-
tional methods have developed part and parcel with theoretical advances along these lines.
This union has provided a wide range of applications, including the explicit investigation of
predictions in the Langlands program.

Let Q(x1, . . . , xn) ∈ Z[x1, . . . , xn] be a positive definite, integral quadratic form of rank
n and (half-)discriminant D. One may think equivalently of a lattice Λ ≃ Zn embedded in
Rn, where the standard Euclidean norm restricts to Q on Λ. Related to Q are the forms in
its genus GenQ, the set of quadratic forms locally equivalent to Q at all places. The set of
global equivalence classes in the genus defines the class set ClsQ. The class set measures the
failure of the local–global principle for equivalence of forms, and by the geometry of numbers
we have #ClsQ <∞. Complex-valued functions on the finite set ClsQ (or more generally,
valued in an algebraic representation of the orthogonal group of Q) define a space of modular
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formsM =M(Λ). The spaceM can be equipped with the action of Hecke operators, defined
by counting classes of Kneser p-neighbours. Attached to eigenforms for the Hecke action are
automorphic L-functions. (For more detail, see Section 2.)

Just as in the classification of semisimple Lie groups, significant differences among spaces
of orthogonal modular forms emerge depending on the parity and size of the rank n. The case
of small odd rank has seen significant investigation. For rank n = 3 and arbitrary D, there
is a Hecke-equivariant, functorial association to classical modular forms, first developed by
Birch [6] and recently refined and generalized by Hein [26] and Hein–Tornaŕıa–Voight [27].
For n = 5 and squarefree D, Rama–Tornaŕıa [42] and Dummigan–Pacetti–Rama–Tornaŕıa
[16] exhibited striking explicit connections to Siegel paramodular forms, building on previous
work of Ibukiyama [28]. In both cases, the association can be understood as being furnished
by Clifford algebras.

On the other hand, the situation of large rank and low level has seen recent significant
strides. Chenevier–Lannes [9] beautifully studied functoriality for orthogonal modular forms
attached to even unimodular lattices of ranks n = 16, 24. Mégarbané [34] also studied lattices
of rank n = 23, 25 withD = 1. In both cases, the corresponding automorphic representations
are unramified at all finite places. For example, in rank n = 16, the class set is represented
by E8 ⊕ E8 and E16, and the partitioning of Kneser p-neighbours between these classes can
be expressed explicitly in terms of τ(p), the Fourier coefficients of Ramanujan’s ∆-function.
And for n = 24, Chenevier–Lannes prove a congruence modulo 41 between a Siegel modular
form and a classical modular form, originally conjectured by Harder [23]. For a résumé, see
Examples 7.1 and 7.4.

Our initial goal in this project (which began as an undergraduate summer project of
Secord) was to give explicit formulae for the partition of p-neighbours among isometry classes
in other genera of lattice similar to results of Chenevier–Lannes [9, Théorème A]. However,
it turned out to be necessary to change our viewpoint and consider the eigenvalues and
eigenvectors of the Kneser matrices and to relate them to automorphic forms and Galois
representations, as well as to investigate theta series, in order to facilitate the discovery of
such formulae and to enable us to prove them.

Results and contents. With this motivation in mind, here we seek to complement the work
mentioned above by considering low to moderate even rank and nontrivial discriminant D.
We are guided by computational discovery, and we highlight features and phenomena in this
setting that we hope will be insightful in the context of the Langlands program.

After a quick setup in Section 2, we present in Section 3 an implementation of algorithms
for computing the Hecke module structure of definite orthogonal modular forms (at good
primes), implemented in Magma and available online [4]. This implementation works with
an arbitrary lattice and allows arbitrary weight, and we report on its practical performance.

We then proceed in increasing even rank n. We set aside the case n = 2, as it concerns
genera of positive definite binary quadratic forms: the associated L-functions are Hecke
Größencharakters, and this can be understood already classically. Proceeding with n ≥ 4,
for simplicity in the remainder of the paper we focus on trivial weight—there is already a
lot to see in this case. In Section 4 we consider rank n = 4. We make explicit the transfer
to Hilbert modular forms, where we have a precise understanding of the eigensystems and
L-functions that can arise (Theorem 4.4), and we exhibit an example of every type.
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Preparing to move to higher rank, in Section 5 we define the theta series of an eigenform
ϕ ∈M(Λ): for example,

θ(1)(Q)(q) =
∞∑

m=0

rm(Q)q
m (1.1)

has coefficients rm(Q) := #{(x1, . . . , xn) ∈ Zn : Q(x1, . . . , xn) = m}. The depth of ϕ is
the smallest g ≥ 0 such that θ(g)(ϕ) ̸= 0. We then state a theorem of Rallis (Theorem
5.6) relating the L-series of an eigenform to its theta series for g equal to its depth, and we
consider the special cases of depth 0 and 1.

In Section 6, we pursue rank n ≥ 6. We find many examples that we can describe
completely in terms of classical modular forms. The following statement is a simple example
of what can be established this way; for this purpose, we label classical modular forms
following the LMFDB [32].

Theorem 1.2. Let Λ be the lattice A6⊕A2 of rank 8 and discriminant 21. Then #Cls(Λ) =
3, and there are three Hecke eigenforms in M(Λ) with eigenvalues

p7 − 1

p− 1
+ χ(p)p3,

p(p5 − 1)

p− 1
+ a2p − χ(p)p3,

p(p5 − 1)

p− 1
+ b2p − χ(p)p3

for the operators Tp with p ̸= 3, 7, where:

• χ is the quadratic character of discriminant 21, and
• ap and bp are the coefficients of the classical newforms of weight 4 and level 21 with
LMFDB labels 21.4.c.a and 21.4.c.b, respectively.

This theorem is established in Example 6.12. There, we give two other ways to write the
statement in the theorem: first, in terms of the L-functions of these eigenforms; and second,
as an explicit expression for the matrix of the Hecke operator Tp acting on M(Λ).
Further investigations in rank 6 led us to the following conjecture.

Conjecture 1.3. Let Gp be the genus of lattices of rank 6 and discriminant D = p. Then
the kernel of θ(2) on Gp has dimension equal to the number of classes in Gp of lattices with
no automorphism of determinant −1.

We verified this conjecture for p < 1000 (subject to the limitations on our ability to
rigorously determine ker θ(2)); however, we do not have a heuristic or conceptual explanation
for it.

As the discriminant and rank increase, we soon encounter Siegel modular forms of higher
genus. In some cases these can still be related explicitly to classical modular forms via
lifts—see Example 6.16 for the genus of lattices containing D4⊕D6. In the remaining cases,
which we think of as being genuine depth at least 2, we consider it a feature of working with
definite orthogonal modular forms that we can compute some higher genus Siegel eigenforms
explicitly, but indirectly.

Finally, in Section 7 we pursue congruences between eigenvalues of classical modular form
and of nonlift Siegel eigenforms. We propose Conjecture 7.8 which predicts such congruences
within the framework of Eisenstein congruences. In some cases, these congruences can easily
be proven by explicit computation with orthogonal modular forms: an illustrative example
is as follows.
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Theorem 1.4. The congruence

a1,p2(F ) ≡ ap(f)
2 − (1 + χ53(p))p

3 + p5 + p (mod q) (1.5)

holds for all primes p ̸= 53, where:

• F ∈ S4(Γ
(2)
0 (53), χ53) is a nonlift Siegel eigenform of weight 4, level 53, and quadratic

character χ53 whose Hecke eigenvalues a1,p(F ), a1,p2(F ) lie in the ring of integers of
the sextic number field K := Q({a1,p(F ), a1,p2(F )}p) defined by

x6 − 2x5 − 290x4 − 388x3 + 14473x2 + 11014x− 81256;

• q is the unique prime of norm 397 in the ring of integers of K; and
• ap(f) are the Hecke eigenvalues of the classical modular form f of weight 4, level 53,
and quadratic character with LMFDB label 53.4.b.a.

We prove Theorem 1.4 in Example 7.6. Remarkably, we do not exhibit the Siegel eigenform
directly; however, it would be interesting to do so.

Acknowledgements. The authors would like to thank Neil Dummigan for explaining how
our congruences fit into the general framework of his paper [5] and Gonzalo Tornaŕıa for
helpful discussions. Assaf and Voight were supported by a Simons Collaboration grant
(550029, to Voight). Ingalls was supported by an NSERC Discovery Grant RGPIN-2017-
0462. Secord was supported by the I-CUREUS program.

2. Setup and notation

In this section, we provide basic setup and notation. For convenience and to highlight
ideas, we take the ground field to be the rational numbers; however, much of what we present
extends to a general totally real base field. For further reading, see e.g. Greenberg–Voight
[22], Rama–Tornaŕıa [42], or Gross [21].

Lattices. Let (V,Q) be a positive definite quadratic space over Q with associated bilinear
form B(x, y) = Q(x + y) − Q(x) − Q(y) for x, y ∈ V . Let Λ ⊂ V be a Z-lattice of rank n.
Rescaling Q, we may suppose without loss of generality that Q(Λ) ⊆ Z, and we say that Λ is
integral. We say that Λ is maximal if Λ is not properly contained in another integral lattice.
Choosing a basis e1, . . . , en for Λ ≃ Zn, the Gram matrix of Λ is (B(ei, ej))i,j=1,...,n ∈ Mn(Z),
with diagonal entries 2Q(ei) ∈ 2Z for i = 1, . . . , n. We define the (half-)discriminant of Λ to
be disc(Λ) = (1/2)ϵ det(B(ei, ej))i,j ∈ Z where ϵ = 0, 1 according as n is even or odd.

The orthogonal group O(V ) of V is the group of Q-linear automorphisms of V that preserve
the quadratic form, the isometries of V ; the orthogonal group O(Λ) of Λ is the subgroup of
O(V ) that stabilizes Λ. If Λ′ = γ(Λ) for γ ∈ O(V ), we say Λ is isometric to Λ′ and we write
simply Λ ≃ Λ′.

Repeating these definitions but with Qp and Zp in place of Q and Z, respectively, we can
consider the completions Λp := Λ⊗ Zp ⊂ Vp := V ⊗Q Qp for primes p.

The genus of Λ is the set of lattices

Gen(Λ) := {Λ′ ⊂ V : Λ′
p ≃ Λp for all primes p}, (2.1)

i.e., the set of lattices which become isometric to Λ in each completion.
4
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The orthogonal group O(V ) acts on the genus Gen(Λ), and we define the class set to be
the set of global isometry classes

Cls(Λ) := O(V )\Gen(Λ). (2.2)

By the geometry of numbers we have h = h(Λ) := #Cls(Λ) < ∞ (see e.g. Siegel [44, First
Finiteness Theorem of Minkowski, p. 99]). Let Cls(Λ) = {[Λ1], . . . , [Λh]} with Λ = Λ1.

Following Kneser [30], for a prime p (allowing p = 2) and an integer 1 ≤ k ≤ ⌊n/2⌋, a
lattice Π ⊂ V is called a pk-neighbour of Λ, and we write Λ ∼pk Π, if there exist group
isomorphisms

Λ/(Λ ∩ Π) ≃ (Z/pZ)k ≃ Π/(Λ ∩ Π).

There are evidently only finitely many pk-neighbours of Λ, and if Π ∼pk Λ is a pk-neighbour,
then Π ∈ Gen(Λ). For any p ∤ D, the class set Cls(Λ) is connected under the p-neighbour
relation, and lattices in the same genus have the same number of pk-neighbours.

Orthogonal modular forms. The space of orthogonal modular forms for Λ (of trivial
weight) is the C-vector space of functions on Cls(Λ):

M(Λ) := {ϕ : Cls(Λ) → C}. (2.3)

(We often implicitly work with the subspace of functions with values in Q, or in a number
field.) A basis for this vector space is given by the characteristic functions on the set Cls(Λ):
explicitly, we take ϕ(1), . . . , ϕ(h) defined by ϕ(i)([Λj]) = δij = 1, 0 according as i = j or not.
For c1, . . . , ch ∈ C, we abbreviate

[c1, ..., ch] :=
h∑

i=1

ciϕ
(i) ∈M(Λ), (2.4)

noting that this depends on the implicit ordering of the elements in Cls(Λ).
More generally, given a finite-dimensional (algebraic) representation ρ : O(V ) ⟳ W , we

may similarly define a space of orthogonal modular forms M(Λ,W ) of weight W : these are
functions on Cls(Λ) with values inW , equivariant with respect to the orthogonal group, with

M(Λ,W ) ≃
h⊕

i=1

WO(Λi) (2.5)

where WO(Λi) denotes the fixed subspace of W under the finite group O(Λi). We omit the
details of this case, as we mostly restrict our attention below to the case where W is the
trivial representation: for more detail, see e.g. Rama–Tornaŕıa [42, §1.2] or Greenberg–Voight
[22, §2, (4)].

We define an inner product on M(Λ) by

⟨ϕ(i), ϕ(j)⟩ = δij
#O(Λi)

(2.6)

extending by linearity. The constant function [1, 1, . . . , 1] ∈ M(Λ) is called Eisenstein; we
define the cuspidal subspace S(Λ) ⊂M(Λ) to be the orthogonal complement of the constant
functions.
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The pk-neighbour relation defines linear operators onM(Λ) as follows: for p ∤ D, we define
the Hecke operator

Tp,k : M(Λ) →M(Λ)

Tp(f)([Λ
′]) =

∑
Π′∼

pk
Λ′

f([Π′]). (2.7)

More concretely, the matrix of Tp,k in the basis of characteristic functions has (i, j)-entry
equal to the number of pk-neighbours of Λj isometric to Λi. These operators pairwise com-
mute and are self-adjoint with respect to the inner product (2.6) so are simultaneously
diagonalizable. The Hecke algebra H(Λ) is the finite-dimensional Q-algebra generated by the
Hecke operators {Tp,k : p ∤ D}p,k; it is an Artinian commutative ring. An eigenform in M(Λ)
is a simultaneous eigenvector for the Hecke algebra.

The Eisenstein function is always an eigenform; its eigenvalue Np,k under Tp,k is the total
number of pk-neighbours of Λ. For example, we have

Np,1 =
n−2∑
i=0

pi + χD∗(p)p
n
2
−1 (2.8)

where D∗ = 1 if n is odd and D∗ = (−1)
n
2D if n is even, and χd =

(
d
·

)
is the quadratic

character attached to Q(
√
d).

Let ϕ ∈ M(Λ) be an eigenform with Tp,k(ϕ) = λp,kϕ. We define the (automorphic) L-
function attached to ϕ as an Euler product

L(ϕ, s) :=
∏
p

Lp(ϕ, p
−s)−1

where Lp(ϕ, T ) ∈ 1 + TC[T ] is a polynomial of degree n defined in terms of the eigenvalues
λp,k via the Satake transform: see Murphy [36, §3] for an explicit description and precise
formulae in ranks n ≤ 8 [36, p. 56–57]. For example, for n = 4 we have

Lp(ϕ, T ) =

{
1− λp,1T + p(λp,2 + 2)T 2 − λp,1p

2T 3 + p4T 4, if χD∗(p) = 1;

(1− pT )(1 + pT )(1− λp,1T + p2T 2), if χD∗(p) = −1.
(2.9)

In particular, note that in both cases the coefficient of T is −λp,1. This is the case for
arbitrary rank, a fact that we will need to use later.

3. Algorithms

In this section, we review algorithms for computing the Hecke module structure of orthog-
onal modular forms, and we report on our implementation in Magma [10], available online
[4]. This implementation allows a general totally real base field F , but again for simplicity
we restrict our presentation to the case F = Q. For further background reading, see e.g.
Greenberg–Voight [22, Section 6].

Algorithms. The algorithms we require include the following:

(1) OrthogonalModularForms(Λ,W ): construct from a lattice Λ and a weight W a basis
for the space of orthogonal modular forms M(Λ,W ). The returned data type stores
the genus of the lattice Gen(Λ) and the bases for each subspace WO(Λi).
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(2) HeckeOperator(M, p, k): the matrix representing the Hecke operator Tp,k on the
space M =M(Λ,W ) (with respect to the computed basis).

(3) HeckeEigenforms(M): a list of eigenforms for the Hecke algebra, with one represen-
tative for every Galois orbit.

(4) HeckeEigenvalue(f, p, k): for an eigenform ϕ, the eigenvalue λp,k such that Tp,k(ϕ) =
λp,kϕ.

(5) LPolynomial(f, p): the L-polynomial Lp(ϕ, T ) of the eigenform ϕ.

For OrthogonalModularForms, in view of (2.5) we need to enumerate the genus, and then
compute automorphism groups of the lattices; we obtain a basis by computing fixed subspaces
via standard linear algebra. The enumeration of representatives of the genus of a lattice using
p-neighbours has been studied in great detail, with many practical improvements.

We briefly elaborate upon the main workhorse HeckeOperator (2). By (2.7), the Hecke
operators are obtained by summing over pk-neighbours. An algorithm for computing Hecke
operators using pk-neighbours is described in generality (allowing for other algebraic groups
and arbitrary weights) in Greenberg–Voight [22]; it was implemented for orthogonal modular
forms of trivial weight in Magma [10] by Greenberg, Jeffery Hein, and Voight. (For lattices
over number fields, we rely upon an implementation of Markus Kirschmer and David Lorch.)
Beyond enumerating pk-neighbours using isotropic subspaces, it relies on the algorithm of
Plesken–Souvignier [39] for isometry testing between lattices, which was implemented in
Magma [10] by Souvignier, with further refinements to the code contributed by Allan Steel,
Gabriele Nebe, and others.

Algorithm 3.1 (HeckeOperator(M, p, k)).

1: Let Gen(Λ) = {Λ1, . . . ,Λh} be the genus representatives.
2: Let {v(i,l)}i,l be a basis for M such that {v(i,l)}l is a basis for WO(Λi).
3: for i = 1, 2, . . . , h do
4: Let ti,(j,m) := 0 for all m and j.
5: for Λ′ ∼pk Λi do
6: Find j and γij ∈ O(V ) such that Λ′ = γijΛj by isometry testing.
7: Let ti,(j,m)+ := γijv(j,m) for all m.
8: Write ti,(j,m) =

∑
l t(i,l),(j,m)v(i,l) for all m and j.

9: end for
10: end for
11: return T = (t(i,l),(j,m)).

The complexity of Algorithm 3.1 is dominated by O(h2pk(n−k−1)) isometry tests between
lattices, if done naively—for a refined approach, see more on isometry testing below. Build-
ing on their implementation, Assaf extended the implementation to support higher rank
lattices, Hermitian lattices (for unitary groups), and arbitary weight. This implementation
includes highest weight representations for orthogonal and unitary groups in characteristic
0 as explained e.g. by Fulton–Harris [19]. (An implementation of these representations over
finite fields exists in Magma [11,20] by Willem de Graaf and others, based on the LiE system
[33].)
HeckeEigenforms (3) is accomplished using linear algebra on the output of sufficiently

many calls to HeckeOperator. We compute the operators Tp = Tp,1 for small primes until
the simultaneous eigenspaces are irreducible over Q. For large enough spaces with a maximal
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lattice, the single operator T2 often suffices in practice to observe eigensystems occuring with
multiplicity one.

Remark 3.2. We expect that this multiplicity one phenomenon can be explained by work
of Aizenbud–Gourevitch–Rallis–Schiffmann [1]. However, when the lattice is not maximal,
multiplicity one need not hold due to the presence of oldforms. It would be interesting to
study these multiplicities in more detail.

HeckeEigenvalue (4) slightly improves on the preceding by using the fact that ϕ is an
eigenform. Indeed, if we write ϕ =

∑
i ϕ

(i) where ϕ(i) ∈ WO(Λi) (overlapping with previous
notation), we may choose an index i such that ϕ(i) ̸= 0 and compute only loop number i (Step
3) in Algorithm 3.1. This already yields Tp,kϕ

(i) = λp,kϕ
(i), from which we can extract λp,k.

Thus, Algorithm HeckeEigenvalue (4) saves a factor h in its running time in comparison
to HeckeOperator.
Finally, LPolynomial (5) first uses HeckeEigenvalue (4) to compute the eigenvalues λp,k

for k = 1, 2, . . . , ⌊n/2⌋. It then produces the L-polynomial from these eigenvalues using
the Satake transform, as described by Murphy [36, §3]. The running time complexity of
Algorithm (5) is dominated by O(hpn(n−2)/4) applications of isometry testing.

The running time is polynomial in p (exponential in log p), and the exponent is quadratic
in the rank n, making computations in very high rank almost infeasible. However, in some
of the applications described in the paper, we only require knowledge of the L-polynomial at
a single prime. In any case, even improvements by constant factors (depending on the rank
n) are of practical importance. We turn now to discuss several such improvements.

Genus enumeration. For some of the genera appearing in our examples, a straightforward
attempt to find all of the lattices in the genus and their automorphism groups using Magma
takes a long time. As an example, consider the genus of lattices of rank 8 and discriminant
p ≡ 1 (mod 4). One of the lattices in this genus is generated by E7 and a vector of norm
(p+ 3)/2, and Magma’s algorithm for finding the automorphism group of a lattice relies on
listing all of the vectors of norm up to m, where m is minimal such that these vectors span
a sublattice of finite index—hence unnecessarily enumerating all elements of E7 of norm up
to (p+ 3)/2.
Once this problem is recognized, it is easily dealt with: we compute directly with this

lattice, relating its automorphism group to that of E7. In cases where p ≡ 1 (mod 8) or
p ≡ 1 (mod 12), there are lattices generated by A7, D7, or E6 ⊕ A1 and one vector of large
norm that cause similar (but less severe) problems. More generally, if we were trying to
enumerate genera of lattices of rank n we would directly find the lattices that have a large
root sublattice of small discriminant and their automorphism groups.

In light of this issue, our implementation offers an option for the user to supply the lattices
in a genus together with their automorphism groups.

Isometry testing. To test for isometry, we rely on standard algorithms for Z-lattices.
Since our genus representatives are fixed while computing Hecke operators, we are able to
perform some precomputation steps in order to improve the running times. If Λ1, . . . ,Λh are
representatives for Cls(Λ), we compute the first few coefficients of its theta series θ(1)(Λi)
(as defined in (1.1)) and cache them before enumerating the p-neighbours. Since these are
isometry invariants, we can compute them for every p-neighbour, and test for isometry only
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when they match. If the cached data determines the genus representative uniquely and the
weight is trivial, we do not need to test for isometry at all. In higher weight, one needs to
compute the actual isometry, but this can be computed on the correct representative so the
total number of isometry tests is equal to the number of neighbours.

There are several other possible ways to exploit the ability to precompute data in order to
reduce the running time of isometry testing. For example, the ultimate representative would
be a canonical form for the lattice [24] (or in rank ≤ 4, we could compute a Minkowski-
reduced representative). Although this seems to work very well when tested on its own
terms, we have not been able to take advantage of this speedup in computing modular forms
because its implementation does not easily plug into our implementation in Magma. We
have also attempted to use greedy reduction, as described by Nguyen–Stehlé [37]. However,
as the reduction process does not yield a unique representative, one has to determine the
orbits of the greedy-reduced lattices. The precomputation of these orbits turned out to be
slower than computing the Hecke operators Tp,k in practice.

Automorphism group and time/memory trade-off. The algorithms HeckeOperator
and HeckeEigenvalue for computing the Hecke operator Tp,k and its eigenvalues has naive
running time complexity of O(h2pk(n−k−1)) isometry tests, while requiring only O(1) memory.
In the presence of memory resources, we leverage this to gain some improvement, even if by
a constant, as follows.

The group O(Λ) acts on the set of pk-neighbours by isometries, hence it suffices to test
isometries on a set of orbit representatives. The naive time/memory trade-off is then to
precompute the orbits of O(Λ) on neighbours by union find, at the cost of O(pk(n−k−1))
memory. An alternative is obtained by keeping only a single orbit in memory at any
given time, expanding it while computing its stabilizer. In both cases, if we are computing
HeckeEigenvalue, we can choose an index i such that #O(Λi) is maximized.

Timings. We record the performance of our implementation. All the timings appearing
here were measured on a standard desktop machine. Each example has a corresponding
code snippet included in the examples in our package [4].

Example 3.3. We consider the genus of maximal, integral lattices of rank 4 and discriminant
D = 372 = 1369. We compute L-polynomials for the eigenforms. A representative Λ of the
genus corresponds to the quadratic form

Q(x, y, z, w) = x2 + xz + xw + 2y2 + yz + 2yw + 5z2 + zw + 10w2. (3.4)

Running OrthogonalModularForms, we find #Cls(Λ) = 4, with representatives

Λ1 = Λ =


2 0 1 1
0 4 1 2
1 1 10 1
1 2 1 20

 , Λ2 =


2 1 0 −1
1 8 −1 −4
0 −1 10 −2
−1 −4 −2 12

 ,

Λ3 =


4 −1 −1 0
−1 4 2 −1
−1 2 6 2
0 −1 2 20

 , Λ4 =


4 −1 −1 1
−1 6 3 −1
−1 3 8 1
1 −1 1 10

 .

(3.5)
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The first three Hecke operators have matrices (under the standard basis):

T2,1 =


1 1 1 1
2 4 0 2
2 0 4 2
4 4 4 4

 , T3,1 =


4 1 1 2
2 9 0 3
2 0 9 3
8 6 6 8

 , T5,1 =


4 4 4 4
8 10 6 8
8 6 10 8
16 16 16 16


The corresponding eigenforms and eigenvalues are:

ϕ1 = [1, 1, 1, 1] : λ2,1(ϕ1) = 9, λ3,1(ϕ1) = 16, λ5,1(ϕ1) = 36, . . .

ϕ2 = [0, 1,−1, 0] : λ2,1(ϕ2) = 4, λ3,1(ϕ2) = 9, λ5,1(ϕ2) = 4, . . .

ϕ3 = [4,−2,−2, 1] : λ2,1(ϕ3) = 0, λ3,1(ϕ3) = 4, λ5,1(ϕ3) = 0, . . .

ϕ4 = [4, 1, 1,−2] : λ2,1(ϕ4) = 0, λ3,1(ϕ4) = 1, λ5,1(ϕ4) = 0, . . .

Below are the timings (in seconds) measured to produce L-polynomials for p < 100.

p 2 3 5 7 11 13 17 19 23 29 31 37 41
ϕ1 0.00 0.01 0.04 0.07 0.13 0.16 0.27 0.33 0.45 0.71 0.84 0.00 1.40
ϕ2 0.01 0.02 0.06 0.10 0.20 0.26 0.42 0.55 0.80 1.22 1.37 0.01 2.41

p 43 47 53 59 61 67 71 73 79 83 89 97
ϕ1 1.50 1.79 2.24 2.86 3.04 3.57 4.01 4.19 4.99 5.45 6.28 7.38
ϕ2 2.62 3.12 4.03 5.09 5.40 6.54 7.37 7.44 8.87 9.80 11.25 13.46

Table 1. Timings for a lattice of rank 4 and D = 372

Note that running times for ϕ2 are longer. This is due to the fact that the support of ϕ1 (and
ϕ3, ϕ4) includes a lattice with #O(Λ) = 8, while the support of ϕ2 only includes lattices with
#O(Λ) = 4. Note also that p = 37 is significantly faster, which is due to the ramification at
37.

Example 3.6. We consider the genus of maximal integral lattices of rank 4 and D = 193.
We find that #Cls(Λ) = 9. Below are the timings (in seconds) measured to produce L-
polynomials for p < 100. Note that in this case all forms have support including the lattice

p 2 3 5 7 11 13 17 19 23 29 31 37 41
ϕ 0.01 0.03 0.02 0.06 0.05 0.07 0.12 0.15 0.34 0.32 0.61 0.47 0.58

p 43 47 53 59 61 67 71 73 79 83 89 97
ϕ 1.10 0.78 1.00 1.97 1.36 2.58 1.80 1.89 2.21 3.88 2.81 5.42

Table 2. Timings for a lattice of rank 4 and D = 193

with the largest automorphism group. The time taken is closely approximated by cχ193(p)p
2

seconds, where c1/c−1 is roughly 1.62; this is due to the fact that for inert primes, there are
fewer neighbours.

Example 3.7. We consider a genus of (maximal) integral lattices of rank 6 and D = 39
containing a lattice Λ ≃ A2 ⊕ Λ2, where Λ2 is a lattice of rank 4 generated by A3 and a
vector of norm 4 whose intersections with the 3 roots corresponding to the vertices of the
Dynkin diagram are 1, 0, 0. It takes less than a second to set up the space (of dimension

10



2) and compute the two eigenforms. We give timings (in seconds) measured to produce
L-polynomials for p < 20 in Table 3.

p 2 3 5 7 11 13 17 19
ϕ 0.13 0.30 4.11 12.05 185.39 341.80 1209.94 2228.58

Table 3. Timings for a lattice of rank 6 and D = 39

Example 3.8. Consider the genus of integral lattices of discriminant D = 75 that contains
the lattice A4 ⊕Λ15, where Λ15 is a lattice of rank 2 spanned by vectors of norm 4 and inner
product 1. We give timings (in seconds) measured to produce L-polynomials for p < 20 in
Table 4.

p 2 3 5 7 11 13 17 19
ϕ 0.03 0.23 3.97 14.31 126.77 358.64 1055.34 2256.81

Table 4. Timings for a lattice of rank 6 and D = 75

Example 3.9. Consider the genus of integral lattices with discriminantD = 84 that contains
Λ = A2

1 ⊕A2 ⊕L7, where L7 is the lattice of rank 2 and discriminant 7. We give timings (in
seconds) measured to produce L-polynomials for p < 20 in Table 5.

p 2 3 5 7 11 13 17 19
ϕ 0.05 0.27 3.59 12.58 187.29 358.52 1489.43 2604.32

Table 5. Timings for a lattice of rank 6 and D = 84

Example 3.10. Consider the genus of integral lattices of rank 6 with discriminant D = 131.
We give timings (in seconds) measured to produce L-polynomials for p < 20 in Table 6.

p 2 3 5 7 11 13 17 19
ϕ 0.11 0.54 4.08 18.52 202.14 488.63 1323.29 2284.46

Table 6. Timings for a lattice of rank 6 and D = 131

Example 3.11. We consider the genus of lattices of rank 8 and D = 21 containing Λ =
A6 ⊕ A2. It takes 14 seconds to compute the space (dimension 3) and 0.23 seconds to
compute eigenforms, and the following much shorter Table 7 shows how long it takes to
compute L-polynomials.

p 2 3 5
ϕ 1.25 62.8 93955.09

Table 7. Timings for a lattice of rank 8 and D = 21

11



p 2 3 5 7
ϕ 2.43 71.62 9559.27 345324.19

Table 8. Timings for a lattice of rank 8 and D = 53

Example 3.12. We consider the unique genus of lattices of rank 8 and D = 53. It takes
305 seconds to compute the space (dimension 8) and 1 second to compute eigenforms, and
the following Table 8 shows how long it takes to compute L-polynomials.

Example 3.13. We consider the lattice from Example 3.7, but consider forms of weight
(2, 0, 0). It takes us less than a second to find that the dimension of the space is 4, and that
it consists of two Galois orbits of eigenforms, of sizes 1, 3. The following table shows how
long it takes to compute L-polynomials for either eigenform:

p 2 3 5 7
ϕ 0.66 0.98 19.81 37.7

Table 9. Timings for a lattice of rank 6, D = 39 and weight (2, 0, 0)

Example 3.14. We consider the root lattice A6, of rank 6 and discriminant 7. In trivial
weight it only admits an Eisenstein series, but in weight (4, 0, 0) we find a cusp form ϕ in 10
seconds. The following table shows how long it takes to compute L-polynomials.

p 2 3 5 7
ϕ 181.56 468.45 4632.85 10253.26

Table 10. Timings for a lattice of rank 6, D = 7 and weight (4, 0, 0)

Example 3.15. We consider the root lattice A10 of rank 10 and discriminant 11. We find
that the genus consists of 3 lattices, giving 3 distinct eigenforms, ϕ1, ϕ2, ϕ3. We can compute
the polynomials L2(ϕi, T ) for i = 1, 2, 3 in 249.52 seconds.

Example 3.16. We consider the genus of lattices of rank 10 and discriminant 27 that
contains E6 ⊕A2

2. We find that the genus consists of 2 lattices, giving a single cusp form, ϕ.
We can compute the polynomial L2(ϕ, T ) in 264.51 seconds.

4. Rank four

In this section, we consider spaces M(Λ) where Λ has rank n = 4. In this case, we relate
orthogonal modular eigenforms explicitly to Hilbert modular forms, and we give examples.

Transfer. Let Λ be a lattice of rank 4, as in section 2. In this section, we suppose that Λ
is maximal, to simplify the discussion of newforms and oldforms. Write its discriminant as
D = D0N

2 where D0 is a fundamental discriminant. The orthogonal modular forms for Λ
will be described as Hilbert modular forms over the étale algebra

K := Q[
√
D0] = Q[x]/(x2 −D0) (4.1)

12



So if D0 = 1 we have K ≃ Q×Q and will again find classical modular forms, otherwise we
have a real quadratic field. Let ZK be the ring of integers of K, with ZK = Z×Z if D0 = 1.
To further focus on a clarifying case, we explain the precise relation in the case where N

is squarefree. We say that a prime p is isotropic for V if there exists nonzero x ∈ V ⊗ Qp

such that Q(x) = 0; else, we say that p is anisotropic. There are finitely many anisotropic
primes, and we let M be their product.

For an integer N , write S2(NZK) for the space of Hilbert cusp forms of parallel weight
2, level NZK , and trivial character. This finite-dimensional C-vector space comes equipped
with a Hecke algebra H(NZK) of operators away from N as well as a cavalcade of additional
structures, as follows.

(1) The space S2(NZK) decomposes into new and old subspaces; we let S2(NZK)
M -new

be the space of forms which are new at all primes p |M .
(2) For every p | N , there exists an involution Wp on this space, called the Atkin–Lehner

involution at p. (When p splits, this is the product of the involutions for the two
primes above p.) For a sequence {cp}p|N with cp ∈ {±1}, we write S2(NZK ; {cp}p|N)
for the subspace of forms f ∈ S2(NZK) such that Wpf = cpf .

(3) The Galois group GK := Gal(K |Q) = ⟨σ⟩ acts on S2(NZK) via its action on the
base field: in terms of Hecke eigenvalues, we have ap(σf) = aσ(p)(f).

(4) There is a twisting action by the group of finite order Hecke characters of modulus
NZK(∞). We denote byX = X(N) the Hecke characters that act on S2(NZK ; {cp}p):

X := {χ : Cl+(NZK) → C× : χ2 = 1, χ(p) = 1 for all p | N}. (4.2)

Putting these altogether, we write

GK\S2(NZK ; {cp}p)X,M -new (4.3)

for the subspace of forms which are M -new at all primes p | M and fixed by all characters
in X, up to the swapping action of GK .
The following transfer of modular forms can be proven using the even Clifford functor.

Theorem 4.4 ([3]). There is an injective linear map from orthogonal cusp forms to orbits
of Hilbert cusp forms

C0 : S(Λ) ↪→ GK\S2(NZK)

and a natural embedding H(Λ) ↪→ H(NZK) for which this injection is equivariant for the
action of the corresponding Hecke algebras. The image of this map consists of the orbits in
S2(NZK ; {cp}p|N)X,M-new, where cp = −1, 1 according as p |M or not.

In the square discriminant case, i.e., D0 = 1, this was proved by Böcherer and Schulze-
Pillot in [8]. An equality of dimensions can be deduced from the results of Ponomarev in
[40].

As a corollary from this description, we obtain a relationship between the L-polynomials
of the objects on both sides. In order to describe this relation we recall the definition of the
Asai L-function associated to a Hilbert eigenform. Let f ∈ S2(NZK) be an eigenform. For
every prime p of ZK that does not divide N with Tpf = apf , we factor

1− apT +Nm(p)T 2 = (1− αpT )(1− βpT ) (4.5)
13



where Nm(p) is the absolute norm. Asai [2] defines for every prime p ∤ N a polynomial
depending on the splitting behavior of p in K:

Lp(f, T,Asai) :=

{
(1− αpαp′T )(1− αpβp′T )(1− βpαp′T )(1− βpβp′T ), if pZK = pp′;

(1− αpT )(1− βpT )(1− p2T 2), if pZK = p.

(4.6)
These are the “good” L-polynomials of the Asai lift of f to GL4. The precise description of
the embedding of Hecke algebras H(Λ) ↪→ H(NZK) in Theorem 4.4 then yields the following
corollary.

Corollary 4.7. Let ϕ ∈ S(Λ) be an eigenform. Then for every prime p ∤ D we have

Lp(ϕ, T ) = Lp(C0(ϕ), T,Asai). (4.8)

Remark 4.9. In the square discriminant case, i.e. D0 = 1, we have K ≃ F × F and
S2(NZK) ⊆M2(N)⊗M2(N) is the subspace spanned by pairs of (classical) modular forms
of level N such that either both are cusp forms, or one form is a cusp form and the other
is the Eisenstein series E2. This space was named the “essential” subspace in [8]. In this
case, all the primes are split, and so the Asai L-function in (4.6) turns out to be simply the
Rankin–Selberg L-function associated to f ⊗ g ∈ S2(NZK). Namely, if C0(ϕ) = f ⊗ g, then
Lp(ϕ, T ) = Lp(f ⊗ g, T ). We further note that the Galois action here is simply the swap,
identifying f ⊗ g with g ⊗ f .

Remark 4.10. In view of the description of the image of the map C0 in Theorem 4.4, one
might wonder where all the other forms went. Indeed, working with a compact form we
only expect to see Hecke characters whose associated Dirichlet character is trivial, and since
the Clifford functor is trivial on scalars, we must also restrict to forms with trivial Hecke
character. However, it is possible to obtain the spaces of forms with different Atkin–Lehner
eigenvalues by using appropriate weights. For d | N , we let νd : Q×

>0/Q×2 → {±1} be the
character defined on primes by νd(p) = −1 iff p | d. Let γ0 ∈ O(V ) be an isometry with
determinant −1. Elements in SO(V ) can be represented as composition of reflections by
vectors, and the product of the norms of these vectors is invariant up to squares, yielding
a map called the spinor norm, nrd : SO(V ) → Q×

>0/Q×2, which we extend to O(V ) by
setting nrd(γ0) = 1. Then ψd = νd ◦ nrd is a character of O(V ), known as the spinor norm
character, as in Hein–Tornaŕıa–Voight [27]. One can find the forms with other Atkin–Lehner
eigenvalues by considering the space of orthogonal modular forms with weight given by the
spinor norm character. Full details and more general statements will be given in future work
[3].

Square discriminant case. We now proceed to give examples that exhaust all possible
types of eigensystems and L-functions in the rank 4 case. Throughout p is assumed to be a
good prime, i.e. p ∤ D. We begin with the case where D0 = 1. By Remark 4.9 the eigenforms
ϕ ∈M(Λ) can only belong to one of four types.

Example 4.11. Let Λ be a maximal integral lattice with D = 372, as in Example 3.3. As
expected, the eigenform ϕ1 is Eisenstein, having eigenvalue

λp,1 = (1 + p+ p2) + p = (1 + p)2

and L-polynomials
Lp(ϕ1, T ) = (1− T )(1− pT )2(1− p2T )
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(the L-polynomial of the “Asai L-function” of E2 ⊗ E2).
To explain the eigenforms ϕ2 and ϕ3 we let

f2 := q − 2q2 − 3q3 + 2q4 − 2q5 + 6q6 − q7 +O(q9) ∈ S2(Γ
(1)
0 (37))+

f3 := q + q3 − 2q4 − q7 − 2q9 +O(q11) ∈ S2(Γ
(1)
0 (37))−

(4.12)

be the forms with LMFDB labels 37.2.a.a and 37.2.a.b. In both cases it appears that λp,1 =
a2p, where ap is the Tp eigenvalue of f2 and f3 respectively. Indeed, both are explained in the
same fashion by using the transfer map. For example, one can check that C0(ϕ2) = f2 ⊗ f2,
so that

Lp(ϕ2, T ) = Lp(C0(ϕ2), T,Asai) = Lp(f2 ⊗ f2, T ).

Comparing linear terms gives λp,1 = a2p.
It remains to explain the eigenform ϕ4. It appears that λp,1 = (1 + p)ap, where ap is the

Tp eigenvalue of f3. This is again explained by the transfer map, since one can check that
C0(ϕ4) = E2 ⊗ f3, so that

Lp(ϕ4, T ) = Lp(C0(ϕ4), T,Asai) = Lp(E2 ⊗ f3, T ).

Comparing linear terms gives λp,1 = (1 + p)ap.
Note that W37f2 = −f2 while W37E2 = E2 and W37f3 = f3, and indeed we only obtain

the pairs which are fixed by W37 coming from pairs having the same Atkin–Lehner sign (see
Remark 4.10).

Example 4.13. Let Λ be a maximal integral lattice with D = 672 and Gram matrix
2 0 0 1
0 2 1 0
0 1 34 0
1 0 0 34

 .

Then #Cls(Λ) = 13 and we compute the Hecke operator T2,1.
Consider the eigenvector ϕ satisfying T2,1ϕ = −ϕ. The first few eigenvalues λp,1(ϕ) = λp,1

are:

λ2,1 = λ3,1 = λ5,1 = λ7,1 = λ13 = −1, λ11,1 = 1, λ17,1 = 4, λ19,1 = 29, . . .

It seems that

λp,1(ϕ)
?
= ap(f1)ap(f2), (4.14)

where ap(f1) is the Tp-eigenvalue of the eigenform f1 with LMFDB label 67.2.a.c

f1 := q − αq2 + (1− α)q3(−1 + α)q4 + (1 + 2α)q5 + q6 + αq7 +O(q8) ∈ S2(Γ
(1)
0 (67)),

where α := (1 +
√
5)/2, and f2 is the Galois conjugate of f1. The observed equality (4.14)

is true for all good p: it is explained by the transfer map, since C0(ϕ) = f1 ⊗ f2, and so

Lp(ϕ, T ) = Lp(C0(ϕ), T,Asai) = Lp(f1 ⊗ f2, T ).

Comparing linear terms gives λp,1(ϕ) = ap(f1)ap(f2).
Note here the necessity to consider Galois orbits appearing in Theorem 4.4. We needed

to identify f1 ⊗ f2 and f2 ⊗ f1 in order to uniquely determine C0(ϕ) (similarly with E2 ⊗ f3
with f3⊗E2). This is clear from an L-function perspective since L(f1⊗f2, s) = L(f2⊗f1, s)
and L(E2 ⊗ f3, s) = L(f3 ⊗ E2, s).
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Non-square discriminant. We now consider the somewhat less well-studied nonsquare
discriminant case. Here an eigenform ϕ ∈M(Λ) can be one of three types.

Example 4.15. Let Λ be a maximal integral lattice with D = 193, as in Example 3.6.
The eigenforms ϕ1, ϕ2, ..., ϕ9 come in three Galois orbits. The eigenvector ϕ1 is the Eisen-

stein eigenvector with eigenvalues

λp,1 =
p3 − 1

p− 1
+ χ193(p)p

and L-polynomials

Lp(ϕ1, T ) = (1− χ193(p)pT )(1− T )(1− pT )(1− p2T )

(those of the “Asai L-function” of the Hilbert Eisenstein series E2 ∈ M2(ZK) over K =
Q(

√
193)).

The seven eigenvectors ϕ2, ..., ϕ8 appear to have eigenvalues λp,1 = a2p,i + p(1 − χ193(p))

with ap,i running through the Tp eigenvalues of f ∈ S2(Γ
(1)
0 (193), χ193) (a Galois orbit of size

14 with LMFDB label 193.2.b.a). This is explained by the transfer map. Indeed, we find
that C0(ϕ2) = DN(f), the Doi–Naganuma lift [13], and so we have

Lp(ϕ2, T )(1− χ193(p)pT ) = Lp(DN(f), T,Asai)(1− χ193(p)pT )

= Lp(f ⊗ f̄ ⊗ χ193, T )(1− pT ).
(4.16)

Comparing linear terms yields λp,1+χ193(p)p = a2p,i+p. Note that the Galois action identifies
pairs of forms in the orbit, shrinking its size from 14 to 7.

The eigenvector ϕ9 is slightly more mysterious. The first few eigenvalues are

λ2,1 = −4, λ3,1 = −4, λ5,1 = 1, . . .

These are linked to a Hilbert eigenform f ∈ S2(ZK). Indeed, there is such an eigenform
(LMFDB label 2.2.193.1-1.1-a) with Hecke eigenvalues

ap2 = ap3 =
1 +

√
17

2
, ap̄2 = ap̄3 =

1−
√
17

2
, ap5 = 1, . . .

and it is true that

λp =

{
apap̄ if pOK = pp̄ splits in K

ap if pOK = p is inert in K
.

This follows from the transfer map, since C0(ϕ9) = f and the above is exactly the linear
term of Lp(f, T,Asai).

5. Theta series and a theorem of Rallis

In the interest of finding explicit formulae for the eigenvalues λp,k, we will find it very
useful to consider theta series, defined as follows.

First, given a lattice Λ of rank n defining the space M(Λ) of orthogonal modular forms,
we define the theta map for g ∈ Z≥1 by

θ(g) : M(Λ) →Mn
2
(Γ

(g)
0 (D), χD∗)

[c1, ..., ch] 7→
h∑

i=1

ci
#O(Λi)

θ(g)(Λi),
(5.1)
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where

θ(g)(Λi)(τ) :=
∑

A∈Matn,g(Z)

eπi tr(A
TQiAτ) (5.2)

is the Siegel theta series of Λi of genus g (with variable in the Siegel upper half plane
Hg = {τ ∈ Mg(C) | τT = τ, Im(τ) > 0}). Here Qi is the Gram matrix of Λi with respect to
Q and T denotes matrix transpose. Note that

θ(0)(Λi) := 1 (5.3)

so that

θ(0)([c1, . . . , ch]) =
h∑

i=1

ci
#O(Λi)

= ⟨[c1, . . . , ch], [1, 1, . . . , 1]⟩ (5.4)

with inner product as in (2.6).
A long-standing problem has been to determine relations (and non-relations) between

Siegel theta series of lattices. For example the fact that θ(1)(E8⊕E8) = θ(1)(E16) shows that
there exist isospectral tori that are non-isometric. The fact that θ(4)(E8⊕E8)−θ(4)(E16) ̸= 0
is related to the famous Schottky problem (this function vanishes precisely when τ ∈ H4

corresponds to the Jacobian of a genus 4 curve).

Definition 5.5. Let ϕ ∈ M(Λ) be an eigenform. The depth dϕ is the smallest integer such
that θ(dϕ)(ϕ) ̸= 0.

In fact θ(g)(ϕ) ̸= 0 for all g ≥ dϕ, since theta series are compatible under the Siegel
operator

Φg : Mk(Γ
(g)
0 (D), χD∗) →Mk(Γ

(g−1)
0 (D), χD∗),

i.e., Φg(θ
(g)(Λ)) = θ(g−1)(Λ) for any lattice Λ (see Böcherer [7]).

For p ∤ D, results of Rallis relate the action of pk-neighbour operators on eigenforms
ϕ ∈ M(Λ) with the action of Hecke operators at p acting on the Siegel modular form
F = θ(g)(ϕ) (if non-zero). This implies precise statements relating the Hecke eigenvalues of
ϕ and F . The following is a consequence of such results that will prove useful later.

Theorem 5.6. Let ϕ ∈M(Λ) be an eigenform. Suppose that g ≥ 0 is such that F := θ(g)(ϕ)
has F ̸= 0. Let m := n/2− 1. Then the following statements hold.

(a) F is an eigenform for the algebra of Hecke operators generated by Tp when χD∗(p) = 1
and T1,p2 when χD∗(p) = −1.

(b) If 2g < n and p ∤ D then

Lp(ϕ, T ) = Lp (χD∗ ⊗ F, pmT, std)

m−g∏
i=g−m

(
1− pm−iT

)
.

(c) If 2g ≥ n and p ∤ D then

Lp (χD∗ ⊗ F, pmT, std) = Lp(ϕ, T )

g−(m+1)∏
i=(m+1)−g

(
1− pm−iT

)
.
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Here the standard L-function of χ⊗F for eigenform F ∈ Sk(Γ
(g)
0 (D), χ) has L-polynomials

Lp(χ⊗ F, T, std) = (1− χ(p)T )

g∏
i=1

(1− χ(p)αiT )(1− χ(p)α−1
i T ),

at p ∤ D, where {α0,p, α1,p, ..., αg,p} are the (standard) Satake parameters of F at p, normal-
ized so that α2

0,pα1,p . . . αg,p = 1. See Pitale [38, Chapter 3] for a more detailed discussion.

Proof. Parts (b) and (c) follow from work of Rallis [41, Remark 4.4]. Part (a) uses an
additional Eichler commutation relation from the work of Freitag [25, Theorem 4.5] (see also
Chenevier–Lannes [9, p. 178, (ii); (7.1.1)]. The translation in the unimodular case is given
explicitly by Chenevier–Lannes [9, Corollary 7.1.3], but the argument applies more generally,
by carefully following arrows [41, Theorem 6.1]. □

Note that in the above theorem F may be a lift and so the standard L-function may
decompose further into L-functions corresponding to eigenforms of lower genus. The rank 4
examples in the previous section already demonstrate this behaviour.

In fact, a consequence of general conjectures of Arthur (known in this case by work of
Täıbi [45]) is that the global L-function L(ϕ, s) should always decompose into a product of
automorphic L-functions for general linear groups. Knowing this decomposition is related
to understanding how ϕ is an endoscopic lift, and it lets us understand exactly how the λp,k
can be rewritten in terms of eigenvalues of automorphic forms of lower rank groups.

Small depth. Theorem 5.6 tells us that the underlying structure of the eigenvalues λp,k of
an eigenform ϕ ∈ M(Λ) is intimately related to its depth dϕ. We begin with small depths;
in this case, general formulae can be proved.

Theorem 5.7. Let ϕ ∈ M(Λ) be an eigenform and let p ∤ D be prime. Then the following
statements hold.

(a) dϕ = 0 if and only if ϕ is the Eisenstein eigenform. In this case:

Lp(ϕ, T ) =
(
1− χD∗(p)p

n
2
−1T

) n−2∏
i=0

(1− piT )

and so

λp,1(ϕ) =

(
pn−1 − 1

p− 1

)
+ χD∗(p)p

n
2
−1.

(b) If dϕ = 1 and F := θ(1)(ϕ) ∈ Sn
2
(Γ

(1)
0 (D), χD∗) then:

Lp(ϕ, T ) = Lp(χD∗ ⊗ Sym2(F ), T )
n−3∏
i=1

(1− piT )

and so

λp,1(ϕ) = ap(F )
2 − χD∗(p)p

n
2
−1 + p

(
pn−3 − 1

p− 1

)
,

where ap(F ) is the Tp eigenvalue of F .
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Proof. If ϕ = [1, 1, ..., 1] is the Eisenstein eigenform then dϕ = 0 since

θ(0)(ϕ) = mass(Λ) =
h∑

i=1

1

#O(Λi)
> 0.

Conversely, if ϕ is not Eisenstein then dϕ > 0 since θ(0)(ϕ) = 0 (by definition of the cuspidal
subspace). The Euler factors for the Eisenstein eigenform immediately follow from Theorem
5.6, and the corresponding formula for λp,1 follows by comparing linear terms. This formula
is expected since the right-hand side is the total number of p-neighbours of Λ.

We next consider depth dϕ = 1. To prove the formula for the Euler factor we again use
Theorem 5.6. Letting {βp, χD∗(p)β−1

p } be the (spinor) Satake parameters of F at p, we find

that the (standard) Satake parameters of F at p are {χD∗(p)β2
p , 1, χD∗(p)β−2

p }. These are

readily recognised as those of the symmetric square lift Sym2(F ) of F to GL3. Hence in this
case Lp(χD∗ ⊗ F, p

n
2
−1T, std) = Lp(χD∗ ⊗ Sym2(F ), T ), proving the claim.

Once again, comparing linear terms gives

λp,1(ϕ) = p
n
2
−1(β2

p + χD∗(p) + β−2
p ) + p

(
pn−3 − 1

p− 1

)
= p

n
2
−1((βp + χD∗(p)β−1

p )2 − χD∗(p)) + p

(
pn−3 − 1

p− 1

)
= ap(F )

2 − χD∗(p)p
n
2
−1 + p

(
pn−3 − 1

p− 1

) (5.8)

as desired. □

Given the above, it makes sense to focus on finding higher rank lattices that give eigen-
vectors of higher depth, i.e., dϕ ≥ 2. Some of these will still only relate to genus 1 data (the
standard L-function of F might break up into L-functions of classical modular forms and
Dirichlet L-functions, e.g. if F is an Ikeda lift). However, when the lattice has rank greater
than 4, some will relate to genuine Siegel cusp forms of higher genus, and so are much more
mysterious.

6. Higher rank

Our investigations of orthogonal modular forms also have applications to lattices of rank
greater than 4. One such application is to find formulae analogous to those of Chenevier–
Lannes [9, Théorème A], expressing the number of ways that the two even unimodular lattices
of rank 16 are p-neighbours of each other in terms of the coefficients of τ(p) and powers of p.
There is no genus of even unimodular lattices of order greater than 1 in rank less than 16, so
instead we considered lattices of small discriminant and moderate rank. It is also interesting
to study the set of possible types of automorphic forms and their L-functions that arise in
a given weight and to try to realize them all on specific genera. In some cases this gives a
method for computing Hecke eigenvalues of Siegel modular forms, though not a systematic
one since we cannot necessarily produce a genus of lattices corresponding to a given form.

Rank 6. We begin our study of lattices of rank 6 with a typical small example. Once again,
p is assumed to be a good prime, i.e., p ∤ D.
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Example 6.1. Consider the genus of integral lattices of discriminant D = 39 as in Example
3.7. The two eigenforms are explained by Theorem 5.7. The Eisenstein eigenform ϕ1 = [1, 1]
satisfies dϕ1 = 0 and has L-polynomials

Lp(ϕ1, T ) = (1− χ−39(p)p
2T )(1− T )(1− pT )(1− p2T )(1− p3T )(1− p4T )

and so

λp,1 =

(
p5 − 1

p− 1

)
+ χ−39(p)p

2.

The other eigenform ϕ2 = [6,−5] satisfies dϕ2 = 1 and has L-polynomials

Lp(ϕ2, T ) = Lp(χ−39 ⊗ Sym2(f), T )(1− pT )(1− p2T )(1− p3T )

and so

λp,1(ϕ2) = ap(f)
2 − χ−39(p)p

2 + p

(
p3 − 1

p− 1

)
where ap(f) are the Tp eigenvalues of the newform f ∈ S3(Γ

(1)
0 (39), χ−39) with LMFDB label

39.3.d.c).
Here, the map θ(1) is injective and so only classical modular forms contribute to the

eigenvalues.

Example 6.2. Consider the genus of integral lattices of discriminant D = 75 that contains
the lattice A4 ⊕Λ15, where Λ15 is a lattice of rank 2 spanned by vectors x, y of norm 4 with
inner product 1, as in Example 3.8. Two eigenforms are explained by Theorem 5.7. The
Eisenstein eigenform ϕ1 = [1, 1, 1] is as in the Example 6.1 (but with character χ−75). The
cusp form ϕ1 = [12, 5,−9] has depth dϕ2 = 1 and so is also as in the above example (but
with character χ−75 and modular form f with LMFDB label 75.3.c.e).
The eigenform ϕ3 = [16,−10, 3] has depth dϕ = 2 and generates the kernel of θ(1). Com-

putation suggests that

λp,1(ϕ3) = (p+ 1)ap(g) + (1 + χ−3(p))p
2,

where g ∈ S4(Γ0(5)) has LMFDB label 5.4.a.a. This may be proved using Theorem 5.6. We
know that

Lp(ϕ3, T ) = Lp(χ−3 ⊗ F, p2T, std)(1− p2T ),

where F = θ(2)(ϕ3) ∈ S3(Γ
(2)
0 (75), χ−3). There is no obvious theoretical reason for F to be a

lift. However, our algorithm readily computes that

L2(ϕ3, T ) = (1− 4T )(1 + 4T )(1 + 4T + 8T 2)(1 + 8T + 32T 2),

immediately suggesting that F is a lift. We computed more L-polynomials and found that
they factor in the same way. In fact, it can be shown that F is the Ikeda lift of f to Sp4

(i.e., the Saito–Kurokawa lift of f), so that

Lp(ϕ3, T ) = (1− p2T )(1− χ−3(p)p
2T )Lp(χ−3 ⊗ f, T )Lp(χ−3 ⊗ f, pT ).

The formula for λp,1(ϕ3) then follows by comparing linear terms.
This example shows that higher depth eigenforms can still have eigenvalues explained by

classical modular forms (e.g. θ(dϕ)(ϕ) could be an Ikeda lift, so that L(ϕ, s) is a product of
GL2 and Dirichlet L-functions).
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There appear to be other eigensystems that are explainable by classical modular forms,
but not corresponding to Ikeda lifts.

Example 6.3. Consider the genus of integral lattices with discriminantD = 84 that contains
Λ = A2

1 ⊕ A2 ⊕ L7, where L7 is the lattice of rank 2 and discriminant 7, as in Example 3.9.
There is an eigenform ϕ = [2,−8,−2, 0, 5] of depth dϕ = 2. For all good p < 40, we find that

λp,1(ϕ) = pap(f1) + ap(f2) + (1 + χ−3(p))p
2 (6.4)

where f1 and f2 with LMFDB labels 4.5.b.a and 7.3.b.a respectively. The equality (6.4) is
equivalent to

λp,1(ϕ) = pap(f
′
1)

2 + ap(f2) + (χ−3(p)− χ−7(p))p
2, (6.5)

where f ′
1 has LMFDB label 49.2.a.a. The nature of the formula (6.5) suggests that F =

θ(2)(ϕ) is a Miyawaki-style lift of f1 and f ′
1—this would explain the appearance of both a

classical eigenform and a symmetric square.
However, we were unable to prove the equality (6.4) for all p, so we propose it as a

conjecture.

Conjecture 6.6. The equality (6.4) holds for all p ̸= 2, 3, 7.

In general, higher depth eigenforms are likely to have eigenvalues that are not completely
explained by classical modular forms. The L-function cannot be expected to always factor
into degree 1 or 2 pieces. Eventually we must see a contribution from higher genus Siegel
modular forms.

Example 6.7. Let us consider the genus of lattices of rank 6 and discriminant 131, as in
Example 3.10. One such lattice is obtained by adjoining a vector of norm 34 to D5 that pairs
to 1 with one of the two roots corresponding to a leaf of the Dynkin diagram that is adjacent
to the vertex of degree 3 and to 0 with the other generators. The kernel of the θ(1) map
has dimension 1. In just a few seconds we use our algorithm to compute the L-polynomials
for the corresponding eigenform ϕ at small primes p = 3, 5, 7 and find irreducible factors of
degree 4; for example

L3(ϕ, T ) = (1− 9T )2(1 + 14T + 138T 2 + 1134T 3 + 6561T 4).

This shows that F = θ(2)(ϕ) ∈ S3(Γ
(2)
0 (131), χ−131) is a non-lift. This is hard to check

directly, since there are currently no general algorithms that allow us to compute F . One
linear factor is explained by the zeta factor in Theorem 5.6, whereas the other degree 5 piece
corresponds to Lp(χ−131 ⊗ F, p2T, std). We conclude that

Lp(ϕ, T ) = Lp(χ−131 ⊗ F, p2T, std)(1− p2T ),

and that F contributes genuine genus 2 data to the eigenvalues λp,k(ϕ) (i.e., via the standard
lift to a GL5 automorphic form). In particular, a comparison of linear terms gives:

λp,1(ϕ) = a1,p2(F ) + p+ p2,

for p ̸= 131, where a1,p2(F ) is the T1,p2 eigenvalue of F .

Let us now consider θ(2); for simplicity we restrict to prime discriminant. It is not easy to
be certain that an eigenvector is in the kernel of θ(2), since there is no effective Sturm bound
bp to tell us when we can conclude that a linear combination is 0 from the first bp terms
being all 0 (see e.g. Kikuta–Takemori [29, Corollary 2.3], where in this case bki = 679615).
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However, it seems reasonable to expect that if the kernel on the coefficients of the lattices of
rank 2 of smallest discriminant is stable and nontrivial over a substantial range, then this is
genuinely the kernel of θ(2). Under this assumption, we found that θ(2) appeared not to be
injective for the genus of lattices of discriminant 599, and for 19 of the 30 primes congruent
to 3 mod 4 between 600 and 1000. (It is also not injective for a number of composite values,
the smallest being 471, but we made no systematic attempt to list these.)

Remark 6.8. We might expect that θ(2) would almost always be injective for n = 6 and for
only finitely many genera in larger even rank. Indeed, the mass of a lattice of rank n and
discriminant p grows like p(n−1)/2 (this follows easily from the mass formula of [12]), and thus
the number of lattices in the genus is of this order. On the other hand, the codomain of θ(2)

is a space of modular forms for a group of index roughly p3 (for more detail see [17, Corollary
II.6.10]), and so its dimension is proportional to p3. Thus the case of rank 6 is interesting,
since θ(2) fails to be injective for many p even though there is no obvious reason for this.

Some investigation of these lattice genera led us to Conjecture 1.3, which we restate here
for convenience.

Conjecture 6.9. Let Gp be the genus of lattices of rank 6 and discriminant p and let kp be
the number of isomorphism classes in Gp of lattices with no automorphism of determinant
−1. Then the kernel of θ(2) on Gp has dimension kp.

In particular, such a lattice has no vectors of norm 2, since reflection in such a vector has
determinant −1. This explains why no such lattices exist for small p.

Example 6.10. We consider the root lattice A6, of rank 6 and discriminant 7, as in Exam-
ple 3.14. In trivial weight it only admits an Eisenstein series, but in weight (4, 0, 0) we find
a cusp form ϕ. We find that for the first few primes

Lp(ϕ, T ) = Lp(χ−7 ⊗ Sym2(f), T )(1− p5T )(1− p6T )(1− p7T )

where f ∈ S7(Γ
(1)
0 (7), χ−7) with LMFDB label 7.7.b.b.

Example 6.11. We consider the lattice from Example 3.7, now with forms of nontrivial
weight (2, 0, 0). The space is of dimension 4, and it consists of two Galois orbits of eigenforms,
of sizes 3 and 1. Denote an eigenform from each orbit by ϕ1, ϕ2, respectively.

It appears that

Lp(ϕ1, T )
?
= Lp(χ−39 ⊗ Sym2(f), T )(1− p3T )(1− p4T )(1− p5T )

for all p ̸= 3, 13, where f ∈ S5(Γ
(1)
0 (39), χ−39) with LMFDB label 39.5.d.d; this would follow

from an extension of the theta map to higher weight and the corresponding extension of
Theorem 5.6.

We also find for p = 2, 5, 7, 11 that

Lp(ϕ2, T ) = (1 + apT + p8T 2)(1− χ−39(p)p
4T )(1 + p4T )(1− p4T )2

with a2 = 2 · 13, a5 = 47 · 13, a7 = 49 · 13, a11 = −682 · 13.
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Rank 8. As in the case of rank 6, for small discriminants, the map θ(1) is injective and
we can easily express the eigenvalues of the Kneser matrices in terms of ordinary modular
forms.

Example 6.12. Consider the genus of lattices of discriminant D = 21 containing Λ =
A6⊕A2, as in Example 3.11. In this case #Cls(Λ) = 3. Aside from the Eisenstein eigenform
ϕ1 = [1, 1, 1] with

Lp(ϕ1, T ) = (1− χ21(p)p
3T )(1− T )(1− pT )(1− p2T )(1− p3T )(1− p4T )(1− p5T )(1− p6T )

and

λp,1(ϕ1) =

(
p7 − 1

p− 1

)
+ χ21(p)p

3,

we have eigenforms ϕ2 = [7,−15, 84] and ϕ3 = [3,−4,−32], of depth dϕ2 = dϕ3 = 1 with

Lp(ϕi, T ) = Lp(χ21 ⊗ Sym2(fi), T )(1− pT )(1− p2T )(1− p3T )(1− p4T )(1− p5T )

and

λp,1(ϕi) = ap(fi)
2 − χ21(p)p

3 + p

(
p5 − 1

p− 1

)
,

where the ap(fi) are the Tp-eigenvalues of newforms fi ∈ S4(Γ
(1)
0 (21), χ21) with LMFDB

labels 21.4.c.a and 21.4.c.b for i = 1, 2, respectively.
To illustrate our initial goal for this project, we give explicit expressions for the p-neighbour

adjacency matrices. Let Λ1 = Λ, and let Λ2,Λ3 be the other lattices in the genus, such that
the root sublattices of Λ2 and Λ3 are E6 and E7 respectively. Given the eigenvectors and
eigenvalues as above, this amounts to a simple change of basis. The p-neighbour adjacency
matrix is 1/1309 times

816 816 816
476 476 476
17 17 17

λ
(1)
p,1 +

 196 −420 2352
−245 525 −2940
49 −105 588

λ
(2)
p,1 +

 297 −396 −3168
−231 308 2464
−66 88 704

λ
(3)
p,1

where we abbreviate λ
(i)
p,1 = λp,1(fi). One could do the same for the pk-neighbour matrices

using the eigenvalues λ
(i)
p,k. Clearly the description in terms of the eigenvectors and eigenvalues

is more perspicuous.

For slightly larger discriminants we again expect to see a nontrivial kernel of θ(1). At first
all such eigensystems are explained by classical modular forms (since once again θ(dϕ)(ϕ) is a
lift from GL2). For example, the smallest such discriminant is D = 36, the genus in question
containing the lattice A2

2 ⊕D4. For the eigenvector ϕ of depth dϕ = 2, we have

λp,1(ϕ) = (p+ 1)ap(f) + p2(p+ 1)2,

for f ∈ S6(Γ
(1)
0 (3)) with LMFDB label 3.6.a.a. As previously explained, this is expected

since θ(2)(ϕ) is the Ikeda lift of f to Sp4 (i.e., Saito–Kurokawa lift).
Eventually, we expect to see genuine contributions from non-lift Siegel modular forms. In

studying such examples it is important to be able to compute L-polynomials, so our general
code is essential, as the following example indicates.
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Example 6.13. As in Example 3.12, we consider the genus of lattices of discriminant D =
53. Here #Cls(Λ) = 8. The Eisenstein eigenform ϕ1 = [1, 1, 1, 1, 1, 1, 1, 1] is as in the above
example (but with character χ53). The depth 1 eigenforms all lie in a (messy) Galois orbit
with coefficients in the sextic field defined by a root of

x6 − 2x5 − 290x4 − 388x3 + 14473x2 + 11014x− 81256. (6.14)

We let ϕ2 be one representative of this orbit. Then the L-polynomials and eigenvalues
of ϕ2 are also as in the above example (but with character χ53 and modular form f ∈
S4(Γ

(1)
0 (53), χ53) with LMFDB label 53.4.b.a).

The eigenform ϕ3 = [6, 0,−96,−21,−42,−16, 0, 216] has depth dϕ3 = 2. However, in

contrast with Example 6.2, the eigenform F = θ(2)(ϕ3) ∈ S4(Γ
(2)
0 (53), χ53) is not a lift. This

is nontrivial to verify, since there are currently no general algorithms that would allow us
to compute F directly. However, we were able to check this by using our algorithm and
computing L-polynomials of ϕ3:

L2(ϕ3, T ) = (1− 16T )(1− 8T )(1− 4T )(1 + 8T )

(1 + 13T + 118T 2 + 832T 3 + 4096T 4),

L3(ϕ3, T ) = (1− 81T )(1− 27T )(1− 9T )(1 + 27T )

(1− 12T − 129T 2 − 8748T 3 + 531441T 4),

L5(ϕ3, T ) = (1− 625T )(1− 125T )(1− 25T )(1 + 125T )

(1− 172T + 12885T 2 − 2687500T 3 + 244140625T 4),

L7(ϕ3, T ) = (1− 2401T )(1− 343T )2(1− 49T )

(1 + 690T + 288617T 2 + 81177810T 3 + 13841287201T 4).

(6.15)

Three of the linear factors are the zeta factors in Theorem 5.6, whereas the remaining
degree 5 piece corresponds to Lp(χ53⊗F, p3T, std). Once again, the presence of an irreducible
degree 4 factor in each case indicates that F is a non-lift. We conclude that

Lp(ϕ3, T ) = Lp(χ53 ⊗ F, p3T, std)(1− p2T )(1− p3T )(1− p4T ),

and that F contributes genuine genus 2 data to the eigenvalues λp,k(ϕ3) (i.e., via the standard
lift to a GL5 automorphic form). In particular, a comparison of linear terms gives:

λp,1(ϕ3) = a1,p2(F ) + p3 + p2
(
p3 − 1

p− 1

)
,

for p ̸= 53, where a1,p2(F ) is the T1,p2 eigenvalue of F .

In the rank 8 case it is possible to see non-lift Siegel modular forms of genus 3 contributing
their eigenvalues. Indeed, we were able to compute a genus of lattices of discriminantD = 269
and observe an eigenform of depth 3 corresponding to a non-lift Siegel eigenform F of genus
3 (clear after computing the corresponding L-polynomials). We were also able to check that
this is the first prime discriminant for which this happens.

Higher rank. For larger ranks, we expect results similar to those we found for rank 6 and
8. However, the transition to vectors of larger depth happens at smaller discriminant and
the Hecke operators become much more difficult to calculate, so only a few examples can be
analyzed completely. We briefly discuss three examples in rank 10 and one in rank 12.
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Example 6.16. For rank 10 and discriminant D < 15, the θ(1) map is always injective, with
results as predicted in Section 5. To illustrate this, we return to Example 3.15, with root
lattice A10. We find that

Lp(ϕ1, T ) = (1− χ−11(p)p
4T )

8∏
i=0

(1− piT )

Lp(ϕ2, T ) = Lp(χ−11 ⊗ Sym2(f1), T )
7∏

i=1

(1− piT )

Lp(ϕ3, T ) = Lp(χ−11 ⊗ Sym2(f2), T )
7∏

i=1

(1− piT )

(6.17)

for all p ̸= 11, where f1, f2 ∈ S5(Γ
(1)
0 (11), χ−11) are the forms with LMFDB labels 11.5.b.a

and 11.5.b.b, respectively.

Example 6.18. We now consider the genus G consisting of the three lattices D4 ⊕ D6,
D8 ⊕ A2

1, E7 ⊕ A3
1. There are three rational eigenvectors ϕi for G; in this ordering they are

[1, 1, 1], [6,−4,−9], [−12,−56, 63], of depth 0, 1, 2 respectively. We already know how to
describe the eigenvalues for the first two of these (the modular form whose symmetric square
arises in the second has LMFDB label 4.5.b.a). For the third, the Siegel modular form can
once again be shown to be an Ikeda lift to Sp4 (i.e., a Saito–Kurokawa lift), implying the
following formula for eigenvalues:

λp,1(ϕ3) = (p+ 1)ap(f) + χ−4(p)p
4 + p2

(
p5 − 1

p− 1

)
, (6.19)

for f having LMFDB label 2.8.a.a.

Example 6.20. Consider the genus of lattices of rank 10 and discriminant 27 that contains
E6 ⊕ A2

2, as in Example 3.16. This is not a maximal lattice, and there are 2 lattices in the
genus, whose theta series are equal; in other words, [1,−1] is an eigenform of depth 2. Its
eigenvalues are of the form (p+ 1)ap + χ−3(p)p

4 +
∑6

i=2 p
i where the ap come from the form

with LMFDB label 3.8.a.a (checked for p = 2, 5, 7), like (6.19).

Example 6.21. We proceed to an example of rank 12 and discriminant 16: the genus of
D6 ⊕D6. It contains three other root lattices E7 ⊕D4 ⊕ A1, D10 ⊕ A1 ⊕ A1, and E8 ⊕ A4

1,
as well as a lattice containing D8 ⊕A4

1 with index 2. The kernel of θ(1) has dimension 3; the
kernel of θ(2) appears to have dimension 1. The eigenvector ϕ of depth 1 has eigenvalues

λp,1(ϕ) = ap(f)
2 + p5 + p

(
p9 − 1

p− 1

)
,

for f having LMFDB label 4.6.a.a. The eigenvectors ϕ2, ϕ3 of depth 2 are both explained by
an Ikeda lift to Sp4, (i.e., Saito–Kurokawa lift) and so has eigenvalues

λp,1(ϕ2) = λp,1(ϕ3) = (p+ 1)ap(g) + p5 + p2
(
p7 − 1

p− 1

)
,

where g has LMFDB label 2.10.a.a. The reason for the duplication is that the lattices in
this genus are not maximal: for example, E7 ⊕D4 ⊕A1 is a sublattice of index 2 in E8 ⊕D4

(indeed, E7 +A1 ≃ ⟨r⟩ ⊕ r⊥, where r is a root of E8), and thus the forms for the genus that
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is represented by E8 ⊕D4 and D12 appear twice here as well. The situation is analogous to
that of classical modular forms where the forms of weight k and level N appear twice in the
space of modular forms of weight k and level pN . The eigenvector of depth greater than 2
is unexplained and presumably has eigenvalues arising from a non-lift.

7. Eisenstein congruences

One can often easily prove explicit congruences between the eigenvalues λp,k of eigen-
forms ϕ ∈ M(Λ). If these eigenforms are explicitly understood as endoscopic lifts (e.g., via
their L-function), then this understanding implies congruences between Hecke eigenvalues of
eigenforms for lower rank groups. This has recently been a fruitful strategy when trying to
prove nontrivial Eisenstein congruences, as the following example illustrates.

Example 7.1. Consider the 16-dimensional even unimodular lattice Λ = E8 ⊕E8 equipped
with the standard inner product. Then famously Cls(Λ) = {[E8 ⊕ E8], [E16]} and one can
calculate in a few seconds that

T2,1 =

(
20025 18225
12870 14670

)
;

diagonalizing then produces the two eigenforms ϕ1 = [1, 1] and ϕ2 = [405,−286] of M(Λ)
with eigenvalues λ2,1 = 32895 and λ′2,1 = 1800 respectively. It is immediately clear that
λ2,1 ≡ λ′2,1 (mod 691). Indeed, the simple fact that 286ϕ1 + ϕ2 ≡ [0, 0] (mod 691) implies
the congruence λp,k ≡ λ′p,k (mod 691) for all p and k.

The cusp form ϕ2 has depth dϕ2 = 4 and F = θ(4)(ϕ2) ∈ S8(Sp8(Z)) can be shown to be
the Ikeda lift of ∆ ∈ S12(SL2(Z)) to Sp8, see Chenevier–Lannes [9, Section 7.3]. It follows
that

Lp(χD ⊗ F, p7T, std) = (1− p7T )Lp(∆, T )Lp(∆, pT )Lp(∆, p
2T )Lp(∆, p

3T ),

and so by Theorem 5.6 we have the following explicit formula (for all p):

λ′p,1 = τ(p)

(
p4 − 1

p− 1

)
+ p7 + p4

(
p7 − 1

p− 1

)
(7.2)

Since λp,1 = p7 + (p15 − 1)/(p− 1), the congruence (7.2) reduces to(
p4 − 1

p− 1

)
τ(p) ≡

(
p4 − 1

p− 1

)
(1 + p11) (mod 691). (7.3)

The congruence (7.3) is a rescaling of the familiar Ramanujan congruence—the scaling factor
can be removed by deeper work with the associated Galois representations.

The existence of such Eisenstein congruences was used by Ribet in his proof of the con-
verse to Herbrand’s theorem [43], relating divisibility of special values of ζ(s) (i.e., Bernoulli
numbers) with the Galois module structure of class groups of cyclotomic fields. In particular,
Ramanujan’s congruence relates the fact that ord691(B12) > 0 with the fact that Cl(Q(ζ691))
has an element of order 691 satisfying σ · [a] = χ−11

691 (σ)[a] for all σ ∈ Gal(Q(ζ691) |Q), where
χ691 is the cyclotomic character modulo 691.

Many other types of Eisenstein congruences on GL2 can be proved by computing orthog-
onal eigenforms and adopting the above strategy, including the following.
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• Congruences featuring modular forms of nontrivial level and character can be found
by considering lattices with nontrivial discriminant. These have moduli dividing
special values of Dirichlet L-functions;

• Congruences of local origin are also found for lattices of varying discriminant. These
have moduli dividing special values of Euler factors [15].

• Certain congruences featuring Hilbert modular forms over totally real fields F were
proven [14] by computing with ZF -lattices with F a real quadratic field of small
discriminant. Some of these congruences were of Ramanujan type (with modulus
explained by special values of ζF (s)), but others were new and involved non-parallel
weight (with modulus explained by special values of adjoint L-functions). The second
family of congruences were observed experimentally, allowing more general conjec-
tures to be made.

All such congruences provide evidence for the Bloch–Kato conjecture, a vast generalisation
of the Herbrand–Ribet theorem (among other things). This links divisibility of special values
of motivic L-functions with elements of prescribed order in various Bloch–Kato Selmer groups
attached to these motives.

Beyond GL2, it becomes much harder to prove Eisenstein congruences. Even gaining
computational evidence can be tricky, due to the lack of explicit algorithms for computing
with higher rank automorphic forms. However, recent interest in computing orthogonal
modular forms has led to proofs of nontrivial Eisenstein congruences for higher rank groups.

Example 7.4. A well-known conjecture of Harder suggests that if j ≥ 0 is even, k ≥ 3, and
f ∈ Sj+2k−2(SL2(Z)) is an eigenform, then any (large enough) prime q of the ring of Hecke
eigenvalues Z[{µf,p}p] for f that divides Lalg(f, j + k) should in fact be the modulus of a
congruence of the form

λF,p ≡ µf,p + pj+k−1 + pk−2 (mod q′) (7.5)

for an eigenform F ∈ Sj,k(Sp4(Z)) and some q′ | q in the ring Z[{µf,p}p, {λF,p}p]. Typically
“large enough” means that q lies above a rational prime q > j + 2k − 2.
When j = 0, the right-hand side of (7.5) is the Tp eigenvalue of the Saito–Kurokawa

lift of f , and so much has been proved. Before the recent work of Chenevier–Lannes, this
congruence was unknown for even a single modular form satisfying j > 0. Their work [9]
proved the first instance of Harder’s conjecture: the case (j, k) = (4, 10) and q | 41. This is
achieved by proving an explicit congruence between eigenforms inM(Λ) for Λ = E8⊕E8⊕E8,
where Cls(Λ) consists of the 24-dimensional Niemeier lattices. The congruence then follows
once again by a comparison of L-functions, although it is now not a simple task to decompose
them into automorphic L-functions.

Work of Mégarbané [34] extended the above to certain high, odd rank lattices of half-
discriminant 1, leading to proofs of Harder-type congruences. Recent work of Dummigan–
Pacetti–Rama–Tornaŕıa [16] considers certain quinary lattices and links the eigensystems λp,k
with eigenvalues of paramodular forms. Explicit computations led to proofs of Harder-type
congruences of paramodular level, as predicted in the paper of Fretwell [18].

Some of our own computations have similarly resulted in proofs of new Eisenstein con-
gruences, this time of Kurokawa–Mizumoto type (extending those in Kurokawa [31] and
Mizumoto [35]), as illustrated in the following example.
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Example 7.6. Consider the genus of lattices of rank 8 and discriminant D = 53. Recall
from Example 6.13 that there is a depth 1 eigenform ϕ2. Its eigenvalues satisfy

λp,1(ϕ2) = ap(f)
2 − χ53(p)p

3 + p

(
p5 − 1

p− 1

)
,

for p ̸= 53, where ap(f) is the Tp eigenvalue of f = θ(1)(ϕ2) ∈ S4(Γ
(1)
0 (53), χ53) (LMFDB

label 53.4.b.a). There is also a rational eigenform ϕ3 of depth 2, with

λp,1(ϕ3) = b1,p2(F ) + p3 + p2
(
p3 − 1

p− 1

)
,

where b1,p2(F ) is the T1,p2 eigenvalue of a non-lift eigenform F ∈ S4(Γ
(2)
0 (53), χ53). (It would

be interesting to exhibit the Siegel modular form F directly—perhaps as a Borcherds product,
if it admits such a description?)

It is possible to normalize the eigenform ϕ3 so that the entries are algebraic integers with
no common prime ideal factors. After doing so, it is then a true splendour to observe that

ϕ2 + 273ϕ1 ≡ [0, ..., 0] (mod q)

for a prime q | 397 in the ring of integers of the sextic number field (6.14). This observation
immediately implies a congruence λp,k(ϕ2) ≡ λp,k(ϕ3) (mod q) for all p ̸= 53 and 1 ≤ k ≤ 4.
In particular for k = 1, this becomes

b1,p2(F ) ≡ ap(f)
2 − (1 + χ53(p))p

3 + p+ p5 (mod q), (7.7)

for p ̸= 53.
Recall that the modulus of an Eisenstein congruence should come from special values

of L-functions. So how do we explain the modulus q in the above example? Numerical
computations suggest that the norm of

L(Sym2(f), 1)

π2L(Sym2(f), 3)

is equal to 24250736770795028/2197125, which has numerator divisible by 397. The func-
tional equation would then imply that ordq(Lalg(Sym

2(f), 6)) > 0.

As far as the authors are aware the congruence of Example 7.6 was not previously known,
and it seems intractable using other existing techniques (as with Harder-type congruences).
The fact that we were able to prove it easily using orthogonal modular forms is an interesting
application of our computations.

We made similar calculations for all primes congruent to 1 mod 4 and less than 200 for
which θ(1) has a kernel. (We restrict to prime discriminant just to simplify the determination
of the bad factors of the L-functions.) In every case we found a similar divisibility as Example
7.6: that is, for all large primes q for which there was a congruence modulo a prime dividing
q between a vector in the kernel of θ(1) and one in the kernel of θ(0) we found a cusp form f

of weight 4, level q, and quadratic character such that the ratio
L(Sym2(f), 1)

π2L(Sym2(f), 3)
appeared

to be an algebraic number of norm divisible by q.
Our computations of L-functions have been restricted to rank 8: it is difficult to perform

such computations for genera of rank 6 because there is only one pair of critical values of the
L-function, and so we would need another way to calculate the period and find the algebraic
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part. However, we have been able to compute L-polynomials of Siegel modular forms in this
setting and find the predicted congruence. Our computations suggest the following general
conjecture.

Conjecture 7.8. Let N ≥ 1 be square-free, χ be a quadratic character with modulus N , and

let j ≥ 0 and k ≥ 3. Let f ∈ Sj+k(Γ
(1)
0 (N), χ) be an eigenform with ordq(Lalg(Sym

2(f), j +
2k − 2)) > 0 for some prime q of the ring generated by the Hecke eigenvalues of f . Suppose
that q | (q) for a prime number q > 2(j + k)− 1.

Then there exists an eigenform F ∈ Sj,k(Γ
(2)
0 (N), χ) and a prime q′ | q of the ring generated

by the eigenvalues of f and F , such that

b1,p2(F ) ≡ ap(f)
2 − χ(p)pj+k−1 − pj+2k−5 + pj+2k−3 + pj+1 (mod q′) (7.9)

for all primes p ∤ N , where ap(f) is the Tp-eigenvalue of f and b1,p2(F ) is the T1,p2-eigenvalue
of F .

The congruence proved in Example 7.6 is the case j = 0, k = 4, N = 53, χ = χ53, and
q = 397. This conjecture should hold in greater generality, but for ease of exposition we
decided to state it only for squarefree level and quadratic character.

Remark 7.10. Naturally, one asks how Conjecture 7.8 fits into the general framework of
Eisenstein congruences. The following gives a brief justification.

Just as the right-hand side of Ramanujan-type congruences involve eigenvalues of Eisen-
stein series, and the right-hand side of Harder-type congruences involve Saito–Kurokawa
like eigenvalues, the right-hand side of congruences of Mizumoto–Kurokawa type involve
Klingen–Eisenstein like eigenvalues.

More precisely, suppose that j ≥ 0 and k ≥ 3. Then whenever f ∈ Sj+k(SL2(Z)) is an
eigenform and q is a (large enough) prime such that ordq(Lalg(Sym

2(f), j+2k−2)) > 0, one
expects a congruence of the form

bp(F ) ≡ ap(f)(1 + pk−2) (mod q′), (7.11)

for some eigenform F ∈ Sj,k(Sp4(Z)) and some q′ | q as in Conjecture 7.8. In this case,
“large enough” typically means that q lies above a rational prime q > 2(j + k)− 1.
The right-hand side of (7.11) is the eigenvalue of a genus 2 Klingen–Eisenstein series

attached to f (although technically we would need k > 4 to allow convergence).
Generalizations of Mizumoto–Kurokawa congruences exist for nontrivial level and charac-

ter. For example, if f ∈ Sj+k(Γ
(1)
0 (N), χ) satisfies the same divisibility condition then one

instead expects a congruence of the form

bp(F ) ≡ ap(f)(χ(p) + pk−2) (mod q′).

We are indebted to Neil Dummigan for explaining this to us, as well as explaining how it
follows from general conjectures on Eisenstein congruences for split reductive groups in his
recent paper with Bergström [5, Section 6].

Conjecture 7.8 is the analogue of this congruence but for the T1,p2 eigenvalues of F . To
see this, note that the (spinor) Satake parameters at p ∤ N corresponding to the right-hand
side of the congruence are

{αpp
k−2
2 , χ(p)αpp

− k−2
2 , α−1

p p
k−2
2 , χ(p)α−1

p p−
k−2
2 }.
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Thus the corresponding (standard) Satake parameters are

{χ(p)pk−2, χ(p)α2
p, 1, χ(p)α

−2
p , χ(p)p−(k−2)}.

Twisting by χ, scaling suitably and summing gives a2p − χ(p)pj+k−1 + pj+2k−3 + pj+1. Doing
the same with the left-hand side of the congruence (i.e., the (spinor) Satake parameters of
F at p) gives b1,p2 +p

j+2k−5. Comparing modulo q′ reveals the congruence in Conjecture 7.8.
It makes sense that our congruence is the “standard” version of the original “spinor”

one, since by Theorem 5.6 we usually see standard L-polynomials of Siegel modular forms
appearing in Lp(ϕ, T ) (as opposed to spinor L-polynomials). However, we expect that any
F satisfying Conjecture 5.6 should also satisfy the original congruence for Tp eigenvalues.

We end by noting that we were also able to observe congruences between eigenforms of
higher depths. For example, consider the genus of rank 8 lattices of genusD = 269 mentioned
at the end of Section 6. The depth 3 eigenform corresponds to a non-lift Siegel eigenform F
of genus 3 and there is a depth 2 eigenform that corresponds to a non-lift Siegel eigenform F ′

of genus 2. The two orthogonal eigenforms have eigenvalues that are (provably) congruent
mod q | 347. This implies an Eisenstein congruence involving F and F ′. However, it is not
clear what the true explanation of this congruence is in terms of eigenvalues of F and F ′.
We suspect it to be related to a genus 3 congruence of Mizumoto–Kurokawa type, similar
to those discussed in Bergström–Dummigan [5, Section 9] (but with nontrivial character).
Unfortunately, verifying this would require computation of special values of L(F ′, s, std),
which is far beyond the scope of existing Magma packages.
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