
TWISTS OF THE BURKHARDT QUARTIC THREEFOLD

NILS BRUIN AND EUGENE FILATOV

Abstract. We study twists of the Burkhardt quartic threefold over non-algebraically
closed base fields of characteristic different from 2, 3, 5. We show they all admit quar-
tic models in projective four-space. We identify a Galois-cohomological obstruction
that measures if a given twist is birational to a moduli space. This obstruction
has implications for the rational points on these varieties. As a result, we see that
all possible 3-level structures can be realized by abelian surfaces, whereas Kummer
3-level structures that group theoretically may be admissible, may not be realizable
over certain base fields. We give an example of a Burkhardt quartic over a bivariate
function field whose desingularization has no rational points at all.

Our methods are based on the representation theory of Sp4(F3), Galois cohomol-
ogy, and the classical algebraic geometry of the Burkhardt quartic.

1. Introduction and results

The Burkhardt quartic threefold
B(1) : y0(y3

0 + y3
1 + y3

2 + y3
3 + y3

4) + 3y1y2y3y4 = 0,
has received significant study both classically over C (see [Bur91, Mas89, Cob17,
Hun96]) and more recently arithmetically. For instance, in [BN18, CC20] the ra-
tionality and non-rationality of certain twists of the Burkhardt quartic over Q is
established, while in [CCR20, BCGP21] it is remarked that twists of the Burkhardt
quartic that parametrize abelian surfaces are unirational.

In this paper, we consider twists of B(1) over base fields of characteristic distinct
from 2, 3, 5. By a twist of B(1) we mean a variety B over k that, when base changed
to a separable closure ksep, is isomorphic to B(1). We refer to such a variety B as a
Burkhardt quartic over k. This terminology suggests that B can indeed be realized
as a quartic threefold in P4. This is true, but requires proof. It, and some other basic
facts, follows quite directly from the representation theory of Sp4(F3). We collect
these in the following theorem. See Section 3.1 for the proof.

Theorem 1.1. Let k be a field of characteristic distinct from , 2, 3, 5 and let B be a
twist of B(1).
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(a) B admits a quartic model in P4 with 45 singularities.
(b) B comes equipped with a rational map π : M → B of generic degree 6, where

M is a Brauer-Severi variety of dimension 3. We write Ob(B) for the class
of M in Br(k).

(c) Ob(B) ∈ Br(k) is of period dividing 2 and of index dividing 4.

It is well-known that B(1) is a birational model of the moduli space of principally
polarized abelian surfaces with full 3-level structure. Outside the Hessian locus He(B)
on B, a point α corresponds to the Jacobian Aα = Jac(Cα) of a genus 2 curve Cα,
together with an isomorphism Σ(1) → Aα[3]. Here, Σ(1) = (Z/3Z)2×(µ3)2 is equipped
with a natural pairing Σ(1) × Σ(1) → µ3 and the isomorphism is compatible with the
Weil-pairing on Aα[3].

The intersection B∩He(B) consists of a union of 40 planes over ksep, called j-planes.
The rational map π : M → B, which is regular outside of He(B), has a moduli

interpretation as well. It corresponds to marking an odd theta characteristic: a
rational weierstrass point on Cα. The M here is referred to as the Maschke P3.

For our purposes, it is more natural to think of B(1) as a moduli space of Kummer
surfaces Kα = Aα/〈−1〉. These come with a marked singularity (the image of the
identity element of Aα) as well as a Kummer 3-level structure Σ(1) = Σ(1)/〈−1〉.

In general a Kummer surface K over k, with one of the 16 singular points marked,
is a quotient of an abelian surface A over ksep. It does not fully determine A over
k: if A admits a model over k, then any quadratic twist of A has a Kummer surface
isomorphic to K as well. In fact, there may be no such abelian surface over k at all.
This is measured by Ob(K) ∈ Br(k) and is represented by a conic QK . Equivalently,
this obstruction arises from the moduli determining the curve Cα. These moduli
determine a curve of genus 0 with a degree 6 locus marked, but only if that genus 0
curve is actually a P1 can one realize a double cover ramified over the marked locus.

The Kummer 3-level structure already detects Ob(K). We establish that any
Burkhardt quartic B parametrizes Kummer surfaces with prescribed Kummer 3-level
structure, so it follows that the obstruction map is constant and hence is a function
of B itself. We collect results about it, and implications for the rational points on B,
in the theorem below, that we prove in Section 4.1.

Theorem 1.2. Let B be a Burkhardt quartic over a field k of characteristic not 2, 3, 5.
(a) Then B is naturally birational to the moduli space of Kummer surfaces with

a Kummer 3-level structure Σ.
(b) If α ∈ B(k) \ He(B)(k), then Ob(B) = Ob(Kα).
(c) If He(B) ∩B contains a j-plane defined over k then Ob(B) = 1.
(d) If the Kummer 3-level structure Σ is a quotient of a full 3-level structure Σ

over k, then B(k) is Zariski-dense in B, and one can find a hyperelliptic curve
with a rational Weierstrass point

C : y2 = x5 + a1x
4 + a2x

3 + a3x
2 + a4x+ a5

such that Jac(C)[3] ' Σ.
(e) If Ob(B) has index 4 then B(k) consists of singular points and the desingu-

larization of B has no k-rational points at all.

We also show that Ob(B) can indeed be of index 1, 2, or 4; see Section 4.2.
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Example 1.3.
(a) The standard model B(1) over Q has Ob(B(1)) = 1, which is of index 1.
(b) The symmetric model

B′ : σ1 = σ4 = 0,
where σi is the standard degree i elementary symmetric function in six vari-
ables, has Ob(B′) = (−3,−1), which over Q is of index 2.

(c) The model
B′′ : z4

0 + 4z0z
3
1 + 3z4

1 + 3s2z4
2 + 3t2z4

3 + 3s2t2z4
4

+ 12sz0z1z
2
2 + 12tz0z1z

2
3 + 12stz0z1z

2
4 + 24stz0z2z3z4 + 24stz1z2z3z4

− 6sz2
1z

2
2 − 6tz2

1z
2
3 − 6stz2

2z
2
3 − 6stz2

1z
2
4 − 6s2tz2

2z
2
4 − 6st2z2

3z
2
4 = 0.

has Ob(B′′) = (−1, s) ⊗ (s, t), which over k = R(s, t) has index 4. We have
B′′(R(s, t)) = {(1 : −1 : 0 : 0 : 0)}, which is a singular point on B′′. The
blow-up of B′′ at that point has no k-rational points at all.

We see that having Ob(B) of index 4 puts severe restrictions on the rational points
on B. As Example 1.3(c) shows, there are Kummer 3-level structures that a-priori
are admissible in the sense that they correspond to an element of H1(k,PSp3(F3)), but
do not occur for a Kummer surface over k. This is in stark contrast to what happens
with 3-level structures for abelian surfaces, where Theorem 1.1(a) guarantees that
the corresponding moduli space is in fact unirational.

Over a number field, however, and in particular over Q, index and period of Brauer
group elements agree, so Ob(B) is of index at most 2 and we don’t get a particular
obstruction to Q-rational points on B.

For instance for Example 1.3(b) it is not hard to find many rational points on B′,
including ones that do not lie in He(B′). We establish in Section 4.3 the following.
Proposition 1.4. The Burkhardt quartic defined by B′ : σ1 = σ4 = 0 over Q is
birational to the elliptic threefold in P2 × A2, defined by

C(u,v) : (u+ v − 1)XY (X + Y ) + (−uv + u+ v)(X2 + Y 2)Z
+ (−u2 − 3uv + 3u− v2 + 3v − 1)XY Z + (u2v + uv2 − uv)Z3

+ (u2v − u2 + uv2 − 3uv + u− v2 + v)(X + Y )Z2 = 0,
where C(u,v) has rational flex points (1 : 0 : 0), (0 : 1 : 0), (1 : −1 : 0). The map to B′
is given by

(x1 : x2 : x3 : x4 : x5 : x6) = (X : Y : −uZ : −vZ : Z : −X − Y + (u+ v − 1)Z).
We have that C3/5,4 has a rational point (20 : 2 : 15), and in fact has infinitely

many rational points. Furthermore, B′(Q) is Zariski-dense in B′.
With some modest experimentation we have not been able to find a twist of B

over Q that did not have any rational points. This gives some mild circumstantial
evidence for a possibly negative answer to the following question.
Question 1.5. Does there exist a Burkhardt quartic B for which Ob(B) has index
2 and for which the rational points do not lie Zariski-dense?

This article is partially based on the masters thesis [Fil20] of the second author
written under supervision by the first.
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2. Background

2.1. Brauer groups and Brauer-Severi varieties. In what follows, we frequently
refer to the Brauer group Br(k) of a field k. There are many descriptions. It can be
described as the Galois cohomology group Br(k) = H2(k, ksep∗). Elements of Br(k)
also correspond to k-isomorphism classes of Brauer-Severi varieties: varieties that,
over ksep, are isomorphic to Pn for some n ≥ 0. We refer to [GS06] for details; here
we just review some standard terminology and result that we need in the rest of the
text.

The period of an element in Br(k) is its order under the group structure of Br(k).
We will only be dealing with elements of order dividing 2, i.e., we elements that lie
in Br(k)[2] = H2(k, µ2), where µp stands for the p-th roots of unity.

The index of an element ξ ∈ Br(k) is the smallest n such that there is an extension
L of degree n such ξ lies in the kernel of the restriction map Br(k)→ Br(L). Since a
Brauer-Severi variety V is isomorphic to Pn if and only if it has a rational point L it
is the smallest degree d such that there is a degree d extension L for which V has an
L-rational point. The period always divides the index. However, for fields of higher
cohomological dimension, such as R(s, t), the period can be strictly smaller than the
index.

Elements of Br(k) also correspond to Brauer-equivalence classes of central simple
algebras. The group law on Br(k) is induced by the tensor product on algebras. A
famous theorem by Merkurjev-Suslin states that Br(k)[2] is generated by quaternion
algebras. For a, b ∈ k∗ we write (a, b) for the quaternion algebra

(a, b) = k ⊕ ik ⊕ jk ⊕ ijk, with i2 = a, j2 = b, ij = −ji.

We also use (a, b) to denote its Brauer class in Br(k). The Brauer-Severi variety
belonging to (a, b) is the conic Q : z2−ax2−by2 = 0. Elements of Br(k)[2] of index at
most 2 are exactly the ones that can be represented by a single quaternion algebras,
i.e., the isomorphism classes of plane conics.

2.2. Obstructions for genus 2 curves. As is well-known, genus 2 curves and,
equivalently, abelian surfaces, can have different fields of moduli and fields of defi-
nition: for a non-algebraically closed field k, one may have an isomorphism class of
genus 2 curves over ksep that is stable under Gal(ksep/k), but does not contain any
curves defined over k.

This phenomenon can be made very explicit, see [Mes91]. A genus 2 curve is
geometrically determined by a degree 6 separated locus on a genus 0 curve. This
data can be specified over k by a plane conic Q and cubic curve C (in fact, a 2-
dimensional linear system of cubics) over k. The data only correspond to a genus 2
curve defined over k if Q is isomorphic to P1 over k, in which case an appropriate
genus 2 curve is obtained as a double cover of P1, ramified over the degree 6 locus.

The isomorphism class of a conic Q over k, a Brauer-Severi variety of dimension 1,
is an element of the Brauer group of k of index and period dividing 2. Writing M2
for the (coarse) moduli space of curves of genus 2, the construction above gives rise
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to a map
Ob: M2(k)→ Br(k)[2],

where a point α ∈M2(k) can be represented by a genus 2 curve defined over k if and
only if Ob(α) vanishes.

2.3. Principally polarized abelian surfaces and their Kummer surfaces. Let
X be a curve of genus 2 over a field k. Then Jac(X) is a principally polarized abelian
surface over k, and by the Torelli theorem, X can be recovered from Jac(X): There
is an injective morphism between moduli spaces M2 → A2.

Associated to a principally polarized abelian surface A is its Kummer surface
Kum(A) = A/〈−1〉, obtained by identifying points with their inverses. The fixed
locus of the inversion map, the 2-torsion A[2], is 0-dimensional of degree 16 and maps
onto the singular locus of Kum(A). In addition, on of the singular points on Kum(A)
is distinguished: it is the image of the identity element of A.

If A = Jac(X), then Kum(A) admits a quartic model in P3 (a Kummer quartic),
and conversely, any quartic surface K in P3 with 16 nodal singularities and a distin-
guished node can be recognized as Kum(A) for some A over ksep. An explicit, classic
construction to do so goes as follows.

The projective dual K∗ of K is again a Kummer quartic surface. The 16 singulari-
ties of K∗ correspond to 16 tropes on K: planes that intersect K in a double-counting
conic. Each trope passes through 6 nodes and each node lies on 6 tropes, forming the
classical (166) Kummer configuration.

Note that K has a distinguished node and, by duality, K∗ has a distinguished
trope. It is a classic result that over an algebraically closed base field k, the surface
K is isomorphic K∗, but this shows that this need not hold if k is not algebraically
closed.

The trope on K∗ cuts out a plane conic with six marked points: the nodes the trope
passes through. Equivalently, we consider the tangent cone to K at the distinguished
node. The six tropes passing through it intersect the tangent cone in lines through
the node. Projection from the node yields a plane conic QK with six marked points.

If QK ' P1 then this data determines a genus 2 curve X (up to quadratic twist)
such that K = Kum(Jac(X)). For a Kummer surface K over k, we write Ob(K) for
the isomorphism class of QK in Br(k). Indeed, every point α ∈M2(k) corresponds to
a Kummer quartic surface Kα such that Ob(α) = Ob(Kα) and such that if Ob(α) = 0,
then Kum(Jac(Xα)) = Kα. This can be checked by considering a quadratic extension
L of k such that ResL(Ob(α)) = 0, construct Xα over L, and confirming that Kα can
be descended to k.

Proposition 2.1. Let K be a sufficiently general quartic Kummer surface with dis-
tinguished node. Then K has trivial automorphism group preserving the node.

Proof. As described above, we can recover, at least over an extension where Ob(K)
is trivial, a cover A→ K from K with its node. But then an automorphism K → K
lifts to at least a birational map A → A. This extends to an automorphism. A
sufficiently general A (in fact, an open part of A2) has automorphism group 〈±1〉,
but that means the induced automorphism on K is just the identity. �
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Remark 2.2. As is shown in [CQ05], for a point α ∈ A2(k) representing an abelian
variety Aα over ksep with an automorphism group larger than just µ2, the variety Aα
can be descended to a model over k. In that sense, Ob(α) = 0. However, in the case
where Aα is a product of elliptic curves, there are extra automorphisms from negation
on one of the factors. As a result, Kα inherits a non-trivial automorphism and the
isomorphism class of Kα over k is not uniquely determined by α. Indeed, there there
can be an obstruction Ob(K) in those cases that does not factor through Ob(α).

We can see this in the following way. Suppose that A is the Weil restriction of an
elliptic curve E over a quadratic extension L = k[

√
r], possibly split. The quotient

E → P1 by −1 induces a degree 4 map from A to the Weil restriction V of P1. If we
write

E(δ) : δy2 = f(x) = x3 + a2x
2 + a4x+ a6,

where δ ∈ L× prescribes a quadratic twist of E over L, then we can model V as a
quadric in P3 with affine model x2

0−rx2
1−z = 0, related to E(δ) by x = x0 +x1

√
r. We

can get a degree 16 model K(d) for Kum(A(δ)) in weighted 9-dimensional projective
space with coordinates

(1 : x0 : x1 : x2
0 : x0x1 : x2

1 : zx0 : zx1 : z2 : w),
with weights 1, . . . , 1, 2, which is a double cover of the degree 2 Segre embedding of
V , with additional equation

dw2 = NL/k(f(x0 + x1
√
r)),

where d = NL/k(δ). The right hand side is indeed quartic in x0, x1, z thanks to the
defining relation for V . We see that the isomorphism class of K(d) only depends on
the class of d in k×/k×2. On the other hand, we see that K(d) only admits a cover
by A(δ) if there is a non-zero solution to the norm equation u2

0 − ru2
1 = du2

2, i.e., if a
conic is isomorphic to P1.

2.4. 3-Level structure. The 3-torsion on a principally polarized abelian surface A
is a 0-dimensional group scheme A[3] of degree 34, together with a perfect alternating
pairing A[3]× A[3]→ µ3.

Let Σ be such a group scheme, equipped with pairing. A 3-level structure on a
principally polarized abelian surface A is an isomorphism Σ→ A[3] compatible with
the pairings on either side. One such group scheme is Σ(1) = (Z/3Z)2 × (µ3)2, with
the pairing induced by the fact that (µ3)2 is the Cartier dual to (Z/3Z)2.

The automorphism group of Σ(1) is isomorphic to Sp4(F3). The twisting principle
(see [Mil80, III.4]) implies that the isomorphism class of Σ over k, being a twist of
Σ(1), is classified by the Galois cohomology set H1(k, Sp4(F3)).

We write Σ for (Σ− {0})/〈±1〉. It is a degree 40 scheme, together with a pairing
Σ× Σ → {0, 1}, determined by whether the corresponding representatives in Σ pair
trivially. The automorphism group Sp4(F3) acts on Σ, with the center (generated by
−1) acting trivially. Hence the action factors through PSp4(F3).

Remark 2.3. The pairing information on Σ can be almost captured by 40 subsets
of cardinality 4, from the 40 maximal isotropic subspaces of Σ. The group of permu-
tations preserving this incidence structure is PGSp4(F3), which contains PSp4(F3) as
an index 2 subgroup.
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Let A be an abelian surface with a 3-level structure Σ→ A. Since multiplication-
by-3 commutes with negation, it induces a well-defined map K → K, which we
call pseudo-multiplication by 3. The 3-level structure on A induces an isomorphism
between Σ∪0 and the fibre of the distinguished point. We call this a Kummer 3-level
structure on K. A Kummer surface has pseudo-multiplication maps, regardless of
whether Ob(K) is trivial. Hence we have a Kummer 3-level structure on it as well.

The possible Kummer 3-level structures are classified by H1(k,PSp4(F3)). Taking
cohomology of the short exact sequence

1→ µ2 → Sp4(F3)→ PSp(F3)→ 1

gives a map

H1(k, Sp4(F3))→ H1(k,PSp4(F3)) Ob−→ H2(k, µ2)

For a Kummer 3-level structure Σ we write Ob(Σ) for its class in H2(k, µ2).
By Proposition 2.1, we see that for a point α ∈ A2(k) for which Kα is sufficiently

general, we have thatKα and Σ are determined by α and hence that Ob(Kα) = Ob(Σ).
As explained in Remark 2.2, for α that correspond to products of elliptic curves,

the isomorphism class of the Kummer surface is only determined up to twist, but the
Kummer 3-level structure determines the twist Kα,Σ. In this case, it can be checked
that once again, Ob(Kα,Σ) = Ob(Σ).

2.5. Moduli spaces with 3-level structure. We write A2(Σ) for the moduli space
of principally polarized abelian surfaces A with 3-level structure Σ → A. Since the
(−1)-automorphism on Σ is the restriction of −1 on A, the isomorphism class of
A2(Σ) only depends on Σ, and therefore we write A2(Σ).

Indeed, from

H1(k, µ2)→ H1(k, Sp4(F3))→ H1(k,PSp4(F3))

we see that different Σ,Σ′ map to isomorphic Σ exactly when they are quadratic
twists, and taking quadratic twists of an Abelian variety A will correspondingly twist
its 3-torsion.

In particular, we see that the level-structure-forgetting morphism A2(Σ) → A2 is
Galois with automorphism group PSp4(F3). Hence, for any class Σ in H1(k,PSp4(F3))
we have a corresponding twist A2(Σ), which we can then consider as a moduli space
of Kummer surfaces with 3-level structure. The space comes with an obstruction map

Ob: B(k)→ Br(k); α 7→ Ob(Kα),

which is constant Ob(Σ).

3. Representation-theoretic description of the Burkhardt quartic
threefold

For now, we fix the 3-level structure Σ = Σ(1) = (Z/3Z)2 × (µ3)2 and the form
Γ of Sp4(F3) over k that is its automorphism group. The group affords two faithful
irreducible 4-dimensional representations: ρ4 and its dual ρ∨4 the complex conjugate.
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χi χi(A1) χi(A2) χi(A3)
ρ4 −4 2ζ + 1 3ζ + 2
ρ∨4 −4 −2ζ − 1 −3ζ − 1
ρ5 5 0 −3ζ − 1
ρ∨5 5 0 3ζ + 2
ρ10 10 −1 −3ζ − 5
ρ∨10 10 −1 3ζ − 2
χ7 −20 0 7
ρ20 20 1 2
χ9 −20 0 3ζ − 5
χ10 −20 0 −3ζ − 8
χ11 −20 2ζ + 1 6ζ + 1
χ12 −20 −2ζ − 1 −6ζ − 5
χ13 30 −1 3
ρ30 30 0 −9ζ − 6
ρ∨30 30 0 9ζ + 3

Table 1. Characters of Sp4(F3) up to 30

Explicit generators for ρ4 are

A1 =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ,

A2 = 1
3


3ζ 0 0 0
0 ζ + 2 ζ + 2 −ζ + 1
0 ζ + 2 ζ − 1 −ζ − 2
0 −ζ + 1 −ζ − 2 ζ + 2

 ,

A3 = 1
3


2ζ + 1 −2ζ − 1 0 ζ + 2
ζ − 1 2ζ + 1 0 −ζ + 1

0 0 3ζ + 3 0
ζ + 2 2ζ + 1 0 2ζ + 1

 .

It induces a projective representation of Γ = Γ/〈−1〉, which is a form of PSp4(F3).
It can be described as the automorphism group of a Witting configuration in M = P3,
consisting of 40 points and 40 planes, such that each point lies in 12 planes and each
plane passes through 12 points.

Table 1 lists the characters of Sp4(F3) up to degree 30, together with the character
values at the generators. Of particular note is that the characters of degree up to 10
are almost completely determined by their degree: there are at most two of each, in
which case one is the complex conjugate of the other.

A simple character computation, or an explicit computation with the given gener-
ators A1, A2, A3, shows that S2ρ4 = ρ10, which is a representation of Γ. This shows
us that on the second Veronese embedding v2 : M → P9, the projective action of Γ is
induced by a linear representation of Γ itself.
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Further character computations show that S4ρ4 = ρ5⊕ρ30 and S2ρ10 = ρ5⊕ρ30⊕ρ20.
Indeed, the image of v2 is described by a 20-dimensional space of quadrics on P9,
corresponding to ρ20. The representation ρ5 gives rise to a rational map π : M 99K P4,
defined by a linear system of degree 4 and dimension 4 that vanishes on the Witting
configuration in M . Alternatively, we can consider it as a linear system of quadratic
forms on P9, via v2. In fact, a further character computation shows that we can
recover ρ10 from ρ5 via

∧2 ρ5 = ρ∨10.
For Γ = 〈A1, A2, A3〉 as defined above, we can write (t1 : t2 : t3 : t4) for the

coordinates on M . The linear system corresponding to ρ5 as a component of S4ρ4 is
generated by

Y0 = 3t1t2t3t4,
Y1 = t1(t32 + t33 − t34),
Y2 = −t2(t31 + t33 + t34),
Y3 = t3(−t31 + t32 + t34),
Y4 = t4(t31 + t32 − t33)

With this description of π, the image in P4 is dense in

B : y0(y3
0 + y3

1 + y3
2 + y3

3 + y3
4) + 3y1y2y3y4 = 0.

Hence, we recover the Burkhardt quartic threefold.
Intersection of B with its hessian He(B) yields a locus that over ksep consists of

40 planes, called j-planes. The action of Γ on these is conjugate to the action of
PSp4(F3) on the cyclic subgroups of Σ of order 3. These are in bijection with Σ. The
pairing information is also reflected in the j-plane configuration: planes that pair
trivially meet in a line and others meet in a point.

There is a synthetic description of the modular interpretation of B, see [Cob17,
Hun96]. Let α be a point in B \ He(B). We write P (4−d)

α for the degree d polar of
B at α. Then P

(3)
α ∩ P (2)

α is a cone over a plane conic Qα, and the cubic P (1)
α cuts

out a degree six locus on Qα. In fact, the enveloping cone at α of P (1)
α yields a cone

over a dual Kummer surface K∗α, with P
(3)
α projecting to the distinguished trope.

The j-planes project to tangent planes of K∗α and hence yield points on its dual Kα,
marking a Kummer 3-level structure Σ on Kα. It follows that Ob(α) = Ob(Σ).

The rational map π : M 99K B has generic degree 6 and also has a modular inter-
pretation: outside He(B) it corresponds to the choice of an odd theta-characteristic,
or, equivalently, a Weierstrass point on the genus 2 curve of which Aα is the Jaco-
bian. In recognition of the work Maschke did on these spaces [Mas89], it is sometimes
referred to as the Maschke P3.

As discussed before, for each ξ ∈ H1(k,Γ) we get a different Kummer 3-level struc-
ture Σ(ξ), and a corresponding form Γ(ξ). Note that thanks to Hilbert 90, any repre-
sentation ρ : Γ→ GLn gives rise to a corresponding representation ρ(ξ) : Γ(ξ) → GLn.

That means that Γ(ξ) affords representations corresponding to ρ5, ρ10, ρ20. In par-
ticular, we get a twist B(ξ) ⊂ P4, together with a 3-dimensional Brauer-Severi variety
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M (ξ) ⊂ P9 and a degree 6 rational map π(ξ) : M (ξ) → B(ξ). Note that M (ξ) is isomor-
phic to P3 precisely when the action of Γ(ξ) can be lifted to a 4-dimensional linear rep-
resentation, i.e., when ξ can be lifted to H1(k,Γ). It follows that the isomorphism class
of M (ξ) ⊂ P9 as a Brauer-Severi variety is the image Ob(Σ(ξ)) = Ob(ξ) ∈ H2(k, µ2).

3.1. Proof of Theorem 1.1.
Part (a): : As described above, the automorphism group Aut(B) of B is some form

of PSp4(F3)). Thus, by Hilbert 90, there is a representation ρ10 of Aut(B),
giving a linear projective action of Aut(B) on P9. Similarly, the decomposition
S2ρ10 = ρ5 ⊕ ρ30 ⊕ ρ20 yields a Aut(B)-stable 19-dimensional linear system
of quadrics on P9 defining a 3-dimensional Brauer-Severi variety M ⊂ P3,
together with a covariant map π : M → P4 from ρ5. Its image then yields
a quartic model for B. Over ksep, this model differs from B(1) by a linear
transformation, so B also has a singular locus of dimension 0 and degree 45.

Part (b): : We have already constructed the map π above. Base changing to ksep

does not change its generic degree, and there it agrees with the standard
expression of the Maschke P3 over B.

Part (c): : By definition, Ob(B) is the class of the Brauer-Severi variety M . From
the cohomological description, it is clear that Ob(B) ∈ H2(k, µ2) = Br(k)[2],
so its period divides 2. Since M is a Brauer-Severi variety of dimension 3,
its endomorphism ring is a 16-dimensional central simple algebra. But that
means it is a tensor product of at most two quaternion algebras, so it can be
split by the composite of splitting fields of each of the quaternion algebras,
which gives extension of degree at most 4.

Remark 3.1. The moduli interpretation of B extends to products of elliptic curves
as well: the blow-up of each of the 45 nodal singularities of B yields a component of
the locus of A2(3) corresponding to products of elliptic curves. Indeed, PSp3(F3) has
a unique conjugacy class of index 45 subgroups, which are the stabilizers of decom-
positions of its standard representation into non-isotropic 2-dimensional subspaces.

The tangent cone of a node s on B is a cone over a non-singular quadric V ⊂ P3.
Each node lies on eight j-planes, which map to four lines of each ruling on V . A
choice of point α on V marks a distinguished point and one line from each ruling by
intersection with the tangent plane. Each 4-tuple of lines cut out by j-planes cuts
out the locus of a 3-division polynomial on one of the lines which, together with the
marked intersection point, determines a ksep-isomorphism class of an elliptic curve.
As explained in Remark 2.2, this determines an elliptic Kummer surface up to twist,
and Σ somehow encodes which one. We have not found a direct way of reading off
the full information of the Kummer surface in this situation, but on general principles
we know its obstruction will be Ob(Σ).

4. Period-index questions about obstructions

4.1. Proof of Theorem 1.2.
Part (a): Note that the isomorphism classes of Burkhardt quartics as well as of

Kummer 3-level structures are classified by H1(k,PSp4(F3)). The synthetic
description furthermore gives a way, given a point α on B\He(B), to construct
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a Kummer surface Kα with the requisite level structure. In particular, we can
do so at the generic point, to get a universal family over an open part of B.

Part (b): As we noted, for a Kummer 3-level structure Σ on a quartic Kummer
surface, we have Ob(Σ) = Ob(K). Furthermore, we have Ob(B) = Ob(Σ).

Part ((c)): By [BN18, Proposition 2.8], the choice of j-plane allows the construction
of a cubic genus 1 curve together with a cubic map to P1, such that Cα is the
discriminant curve of the cubic extension. This directly determines a model
of Cα over k, so there is no obstruction for Cα and therefore Ob(B) = 1.

Part (d): Note that Ob(Σ) = Ob(B) is the class of the Maschke M associated to B.
Hence, if it is trivial then M ' P3, and π : P3 → B yields a unirational map.
The image π(P3(k)) is then Zariski-dense. Points in the image correspond to
Jacobians of genus 2 curves with a marked Weierstrass point, i.e., curves that
admit a quintic affine model.

Part (e): If α ∈ B(k) \ He(B)(k), then Ob(B) = Ob(Kα) is represented by a conic
Qα, and hence is of index at most 2. Hence, if Ob(B) is of index 4 then any
rational point on B must lie in He(B). By (c) we know that for the field
of definition L of any j-plane, the restriction of Ob(B) to L is trivial. If the
index of Ob(B) is 4, then it follows that L has degree at least 4 and hence that
any rational point on He(B) must lie on at least four j-planes, the conjugates.
But the only points that lie on more than two j-planes are the singular points
of B. Furthermore, by Remark 3.1 we see that the special fiber of the blow-up
of B at any one of these singularities has a modular interpretation as well. By
Remark 2.2 we see that any rational point on it would lead to a representative
of Ob(B) of index at most 2, which would contradict that its index is 4.

4.2. Proof of Example 1.3. Part (a) follows because over finite fields Br(k) = 0 and
for infinite fields there are abelian varieties with 3-torsion structure (Z/3Z)2 × (µ3)2.

For Part (b) we let σ1, σ4 ∈ k[x1, . . . , x6] be the elementary symmetric functions
of degrees 1 and 4 respectively. Then B′ : σ1 = σ4 = 0 is also a Burkhardt quartic
threefold, lying in the hyperplane σ1 = 0 inside P5. We have α = (40 : −30 : −8 :
−5 : 3 : 0) ∈ B′(Q) and Qα is isomorphic to the plane conic 3x2 + y2 + z2 = 0. This
conic is not isomorphic to P1 over Q.

For Part (c) we take k = R(s, t), a bivariate function field. We take a twist of B(1)

that is isomorphic to B(1) over k(
√
s,
√
t), by setting

y0 = z0

y1 = z1 + z2
√
s+ z3

√
t+ z4

√
st

y2 = z1 − z2
√
s+ z3

√
t− z4

√
st

y3 = z1 + z2
√
s− z3

√
t− z4

√
st

y4 = z1 − z2
√
s− z3

√
t+ z4

√
st.

This yields the model B′′ as stated.
Note that Ob(B′′) is an element of period 2 and that it trivializes upon base change

to k(
√
s,
√
t). Also note that B′′ is actually defined over k[s, t] and has good reduction

outside st = 0. It follows that Ob(B) ∈ Br(k[s, s−1, t, t−1]). This group is generated
by (−1,−1), (−1, s), (−1, t), (s, t).
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We note that the product of restriction maps

Br(k)→ Br(k(
√
s))× Br(k(

√
t))× Br(k(

√
st))

is injective on Br(k[s, s−1, t, t−1]). We compute the restriction to Br(k(
√
s)) by spe-

cializing to s = 1. The intersection with z3 = z4 = 0 yields a genus 0 curve on B′′,
with the point α = (16 : −31 : 9 : 0 : 0) outside He(B′′) = 0. We find that Qα is equiv-
alent to tX2 + Y 2 +Z2 = 0, and therefore that the restriction of Ob(B′′) to k(

√
s) is

(−1, t). Symmetry implies that Ob(B′′) = (−1, t)⊗(−1, s)⊗(s, t) = (−1, s)⊗(−s, t).
We describe two ways to show that this class is of index four.

First, one can simply enumerate all the classes of index at most two, since they will
be of the form (a, b), where a, b lie in the multiplicative group generated by {−1, s, t}.
Given that (a, a) = (−1, a), we see there are

(7
2

)
+ 1 choices, but many represent

equivalent classes. The classes that are not covered (and hence must be of index
four) are

(−1,−1)⊗ (s, t), (−1,−1)⊗ (s,−t), (−1,−1)⊗ (−s, t), (−1, s)⊗ (−s, t).
Alternatively, one use that a biquaternion algebra is of index four if and only if its
Albert form is anisotropic, see [Lam73, Albert’s Theorem 4.8]. In fact, Albert’s origi-
nal example [Alb32, Theorem 1] applies directly to (s, s)⊗ (t, st), which is equivalent
to our algebra.

If follows from Theorem 1.2(e) that all rational points of B′′ lie in the singular
locus. The only rational point there is (1 : −1 : 0 : 0 : 0).

In order to show that the desingularization of B′′ has no rational points at all, we
can also directly look at the blow-up. The tangent cone to B′′ at (1 : −1 : 0 : 0 : 0)
is the affine cone over the quadric

su2
0 + tu2

1 + stu2
2 − 3u2

3 = 0,
which is indeed easily checked to have no k-rational points.

4.3. Proof of Proposition 1.4. First note that B′ has 15 rational singularities,
constituting the orbit of (1 : −1 : 0 : 0 : 0 : 0) under the action of S6 on the
coordinates. These singularities form 20 triples of collinear points. The lines lie in
He(B′) ∩ B′. For instance, the singularities (1 : −1 : 0 : 0 : 0 : 0), (1 : 0 : 0 : 0 : 0 :
−1), (0 : 1 : 0 : 0 : 0 : −1) lie on the line L345 = x3 = x4 = x5 = σ1 = 0. We consider
the 2-dimensional linear system of planes Vu,v in σ1 = 0 containing this line, defined
by

Vu,v : x3 − ux5 = x4 − vx5 = σ1 = 0.
The intersection Vu,v ∩B′ decomposes into the line and the plane cubic Cu,v stated in
the proposition. It is straightforward to check that the singularities give rise to three
collinear flexes on Cu,v. By choosing one of those flexes as zero-section, we see that
Cu,v is an elliptic threefold with 3-torsion. This yields a birational elliptic fibration
on B′. In fact, the different choices of triples of collinear singularities on B′ gives us
20 such fibrations.

In order to establish density of rational points on B′ we use a standard trick com-
bining these multiple fibrations.

It is straightforward to check that V3/5,4 passes through the point P0 = (20 : 2 :
−9 : −60 : 15 : 32) ∈ B′(Q) and that it yields a non-torsion point on C3/5,4. Since
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the rational points on the line x3 = x4 = x5 = σ1 = 0 are definitely dense, this gives
that rational points on B′ are dense in the intersection of B′ with the plane spanned
by P0 and L345.

Next, we pick the fibration generated by planes through L245 : x2 = x4 = x4 = σ1 =
0. The fibers that intersect the plane above form a one-dimensional family of elliptic
curves, of which a Zariski-dense set passes through an extra rational point. Only
finitely many of these are torsion, so most of those fibers have infinitely many rational
points themselves. This yields Zariski,density of rational points in B′ intersected by
the 3-space spanned by P0, L345 and L245.

We repeat this trick once more using the fibration generated by planes through
L145 : x1 = x4 = x5 = σ1. The multi-section obtained by intersecting with the 3-space
above is generically non-torsion, so there is a proper sublocus where it reduces to
torsion of order, say, at most 12 (the largest that can occur over Q). The result above
shows there is a Zariski-dense set of fibers that have an extra rational point arising
from this multi-section, and it follows a Zariski-dense subset has positive rank. This
yields Zariski-density of rational points on B′.
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