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Abstract. We show how the Weil pairing can be used to evaluate the assigned

characters of an imaginary quadratic order O in an unknown ideal class [a] ∈
cl(O) that connects two given O-oriented elliptic curves (E, ι) and (E′, ι′) =

[a](E, ι). When specialized to ordinary elliptic curves over finite fields, our
method is conceptually simpler and often faster than a recent approach due

to Castryck, Sotáková and Vercauteren, who rely on the Tate pairing instead.

The main implication of our work is that it breaks the decisional Diffie–Hellman
problem for practically all oriented elliptic curves that are acted upon by an

even-order class group. It can also be used to better handle the worst cases

in Wesolowski’s recent reduction from the vectorization problem for oriented
elliptic curves to the endomorphism ring problem, leading to a method that

always works in sub-exponential time.

1. Introduction

This paper is primarily concerned with the Decisional Diffie–Hellman prob-
lem (DDH) for ideal class groups acting on oriented elliptic curves through isoge-
nies. In order to state this problem precisely, we fix an order O in an imaginary
quadratic number field K along with an algebraically closed field k. A (primitive)
O-orientation on an elliptic curve E over k is an injective ring homomorphism
ι : O ↪→ End(E) that cannot be extended to a superorder O′ ) O in K. The set

È `O(k) = { (E, ι) |E an elliptic curve over k and ι an O-orientation on E }/ ∼=k,

if non-empty, comes equipped with a free action

(1) cl(O)× È `O(k) −→ È `O(k) : ([a], (E, ι)) 7−→ [a](E, ι)

by the ideal class group of O, see Section 2 for details. Now assume that a party,
say Eve, has unlimited access to samples from È `O(k)3 that are consistently of
either of the following two forms:(

[a](E, ι), [b](E, ι), [a][b](E, ι)
)

[a], [b]
$← cl(O),(

[a](E, ι), [b](E, ι), [c](E, ι)
)

[a], [b], [c]
$← cl(O),

for some fixed and publicly known (E, ι). Then Eve successfully solves DDH if she
can guess, with non-negligible advantage, from which of these two distributions her
triples were sampled.

The hardness of the decisional Diffie–Hellman problem is a natural security foun-
dation for cryptographic constructions based on ideal class group actions, which
trace back to the works of Couveignes [11] and Rostovtsev–Stolbunov [22, 26] and
which have attracted much attention lately, in the context of post-quantum cryp-
tography. Here, one lets k be an algebraic closure of a finite field, in which case
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all curves in È `O(k) can be defined over a common finite subfield of k. While the
initial focus was on ordinary elliptic curves, whose orientations ι are just ring iso-
morphisms, most of the latest work is concerned with supersingular elliptic curves,
whose endomorphism rings are orders in a quaternion algebra and therefore leave
room for a wide range of orientations. Here, we highlight supersingular elliptic
curves defined over a finite prime field Fp, which are naturally oriented by an order
in Q(

√
−p). The corresponding ideal class group actions underpin CSIDH [6] and

spin-offs such as [1, 15, 2, 19], and tend to yield more practical cryptosystems than
in the ordinary case. More generally oriented supersingular elliptic curves made
their first cryptographic appearance in the OSIDH protocol due to Colò and Ko-
hel [10]. To date, this protocol remains largely theoretical, but it has attracted a
good amount of recent interest, see e.g. [13, 21, 29].

Our paper revisits the recent work [8], which presents an efficient solution to DDH
for essentially all ordinary elliptic curves over finite fields whose endomorphism ring
has an even class number. In more detail, as soon as there exists a non-trivial
assigned character χ : cl(O) → {±1} of sufficiently small modulus m, the attack
from [8] allows Eve to compute χ([a]) merely from the knowledge of (E, ι) and
(E′, ι′) = [a](E, ι), i.e. without knowing [a] itself. This indeed suffices to break
DDH, since it allows her to check whether χ([c]) = χ([a])χ([b]), which is true for
[c] = [a][b], but for uniformly random [c] it fails with probability 1/2.

Unfortunately, the method from [8] is specific to ordinary curves: the attack
proceeds by extending the base field and navigating to the floors of the m-isogeny
volcanoes1 of (E, ι) and (E, ι′), with the goal of enforcing non-trivial cyclic rational
m∞-torsion, and then recovering the character value using two Tate pairing compu-
tations. Beyond ordinary curves, it is generally impossible to turn the rational m∞-
torsion cyclic using an isogeny walk, so this strategy fails. For supersingular elliptic
curves over Fp with p ≡ 1 mod 4 equipped with their natural Z[

√
−p]-orientation,

where it suffices to consider the assigned character of modulus m = 4, an ad-hoc
fix was given in [8, Thm. 10], but it is unclear how this fix would generalize.

Contribution. We give an alternative method for computing assigned character
values χ([a]) purely from (E, ι) and (E′, ι′) = [a](E, ι), using the Weil pairing rather
than the Tate pairing. Our approach deals with arbitrary orientations and works
over arbitrary fields. Moreover, it simplifies and often speeds up the attack from [8]
in the case of ordinary elliptic curves over finite fields, as it avoids the need for
navigating through isogeny volcanoes. It also naturally incorporates the previously
ad-hoc case of supersingular elliptic curves over prime fields.

The main result is easy enough to be stated right away; we recall that for an
odd prime divisor m | disc(O), the assigned character of modulus m is defined as

(2) χm : cl(O)→ {±1} : [a] 7→
(
N(a)

m

)
where it is assumed that [a] is represented by an ideal a of norm coprime with m
(see our conventions further down) and

( ·
m

)
is the Legendre symbol.

Theorem 1. Let O be an imaginary quadratic order and let (E, ι), (E′, ι′) be O-
oriented elliptic curves connected by an ideal class [a] ∈ cl(O). Let m | disc(O)
be an odd prime divisor different from char k and consider the assigned character

1Or rather 2-isogeny volcanoes in case m ∈ {4, 8}.



ON DDH FOR CLASS GROUP ACTIONS ON ORIENTED ELLIPTIC CURVES 3

χm : cl(O) → {±1} of modulus m. Then O admits a generator σ (i.e. O = Z[σ])
of norm coprime to m, and for any such σ there exist points P ∈ E[m], P ′ ∈ E′[m]
such that ι(σ)(P ) is not a multiple of P , and likewise for P ′. Moreover

χm([a]) =
( a
m

)
with a = logem(P,ι(σ)(P )) em(P ′, ι′(σ)(P ′)), regardless of the choice of such σ, P, P ′.

The condition that σ is a generator of O can be relaxed to σ ∈ O \ (Z + mO). A
proof of Theorem 1, along with its adaptations covering assigned characters with
even modulus, can be found in Section 3. Since these results apply to arbitrary
fields, they may be of independent theoretical interest.

Applications and implications. From a cryptographic viewpoint, the most im-
portant consequence is that DDH should be considered broken by classical com-
puters for essentially all elliptic curves over finite fields that are oriented by an
imaginary quadratic order O with even class number; see Section 4 for a more
in-depth discussion.

As a more surprising application, we prove in Section 5 that the new method
allows to significantly improve reductions between computational problems under-
lying isogeny-based cryptography. On one hand, we have the problem of com-
puting endomorphism rings of supersingular elliptic curves. It is of foundational
importance to the field, as its presumed hardness is necessary for the security of
essentially all isogeny-based cryptosystems [17, 7, 16]. Oriented versions of this En-
domorphism Ring Problem were introduced in [29]. On the other hand, many
cryptosystems relate directly to the presumably hard inversion problem for the ac-
tion of the class group cl(O) on oriented supersingular curves: the Vectorization
Problem. It was proved in [29] that the vectorization problem reduces to the en-
domorphism ring problem in polynomial time in the length of the instance and in
#(cl(O)[2]). Unfortunately, the dependence on #(cl(O)[2]) means that the reduc-
tion is, in the worst case, exponential in the size of the input, since #(cl(O)[2])
could be as large as d1/ log log d, where d = disc(O). We improve this result, by
proving in Section 5 that there is a reduction from the vectorization problem to
the endomorphism ring problem that, in the worst case, is subexponential in the
length of the input.

Conventions. Throughout, all ideal classes [a] ∈ cl(O) are assumed to be repre-
sented by an ideal a of norm coprime with p disc(O), where p = max{1, char k}.
Such a representative always exists, see e.g. [12, Cor. 7.17]. For an O-oriented ellip-
tic curve (E, ι) and a point P ∈ E, we will sometimes write σ(P ) instead of ι(σ)(P )
if ι is clear from the context. Likewise, for [a] ∈ cl(O) we will sometimes write [a]E
for the first component of [a](E, ι).

Paper organization. Section 2 provides background: it gives the full list of as-
signed characters of an imaginary quadratic order and it recalls how its ideal class
group acts on oriented elliptic curves. Our main Section 3 contains a proof of
Theorem 1, as well as statements and proofs of the even-modulus counterparts.
Section 4 discusses the algorithmic aspects of these results, along with their impli-
cations for the decisional Diffie–Hellman problem. Finally, in Section 5 we present
our improved reduction from the vectorization problem for oriented elliptic curves
to the endomorphism ring problem.
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2. Background

2.1. Assigned characters. The following is a very brief summary of the relevant
parts of [12, I.§3 & II.§7], to which we refer for more details. From genus theory,
we know that each order O in an imaginary quadratic field comes equipped with an
explicit list of group homomorphisms cl(O)→ {±1}, called the assigned characters,
whose joint kernel is cl(O)2. Writing

disc(O) = −2fd = −2fmf1
1 m

f2
2 · · ·mfr

r

for distinct odd prime numbers m1, . . . ,mr and exponents f ≥ 0, f1, . . . , fr ≥ 1,
this list consists of

χm1
, . . . , χmr if f = 0,

χm1
, . . . , χmr , δ if f = 2 and d ≡ 1 mod 4,

χm1
, . . . , χmr if f = 2 and d ≡ 3 mod 4,

χm1 , . . . , χmr , δε if f = 3 and d ≡ 1 mod 4,
χm1 , . . . , χmr , ε if f = 3 and d ≡ 3 mod 4,
χm1

, . . . , χmr , δ if f = 4,
χm1

, . . . , χmr , δ, ε if f ≥ 5.

Here χmi is defined as in (2) and

δ : cl(O)→ {±1} : [a] 7→ (−1)
N(a)−1

2 , ε : cl(O)→ {±1} : [a] 7→ (−1)
N(a)2−1

8 .

Observe that δε can be described in one go as

δε : cl(O)→ {±1} : [a] 7→ (−1)
(N(a)+2)2−9

2 .

We write µ ∈ {r, r + 1, r + 2} for the total number of assigned characters.
Because the joint kernel is cl(O)2, any character of cl(O) whose order divides 2

can be written as a product of pairwise distinct assigned characters. As it turns
out, there is a unique non-trivial combination that produces the trivial character:

(3) χf1 mod 2
m1

χf2 mod 2
m2

· · ·χfr mod 2
mr δ

d+1
2 mod 2εf mod 2 = 1.

Therefore, by combining assigned characters we obtain 2µ−1 distinct characters.
Necessarily, this quantity equals the cardinality of cl(O)/ cl(O)2 ∼= cl(O)[2].

Example 1. For a prime number p ≡ 1 mod 4, the ring Z[
√
−p] has two assigned

characters: δ and χp. By (3) these are in fact equal to each other, and nontrivial.
If p ≡ 3 mod 4 then Z[

√
−p] has only one assigned character, namely χp, and it is

trivial.
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We often make reference to the modulus m of an assigned character χ, which is
an important complexity parameter for our attack. This is simply defined to be mi if χ = χmi ,

4 if χ = δ,
8 if χ = ε, δε.

Note that χ([a]) = χ([a′]) as soon as N(a) ≡ N(a′) mod m. Typically m is the
smallest positive integer with this property, but not always (e.g., as is the case for
mi = p in both examples above).

2.2. Class group action. We now recall how the ideal class group of O acts on
È `k(O). This is part of the theory of complex multiplication, which is classical for
k = C, while for k an algebraic closure of a finite field this was elaborated in [28,
§3.9-12]; see also [21] for the specifics of the supersingular case. For arbitrary k, we
refer to Milne’s course notes [20, §7].

If ι is an O-orientation on an elliptic curve E over k, then we can linearly
extend it to a map K ↪→ End0(E), where End0(E) = End(E) ⊗Z Q denotes the
endomorphism algebra. To each isogeny ϕ : E → E′ we can naturally attach an
embedding

(4) ιQ : K ↪→ End0(E′) : σ 7→ 1

degϕ
ϕ ◦ ι(σ) ◦ ϕ̂

whose restriction to the preimage O′ of End(E′) is an orientation that is called
the induced orientation, denoted by ϕ∗ι. We are primarily interested in isogenies
ϕ for which O′ = O, in which case ϕ is said to be horizontal with respect to ι.
Two O-oriented elliptic curves (E, ι), (E′, ι′) are called isomorphic if there exists a
isomorphism ϕ : E → E′ such that ι′ = ϕ∗ι.

The default way to construct a horizontal isogeny is by considering an invert-
ible ideal a ⊆ O of norm coprime to max{1, char k} and attaching to it the finite
subgroup

E[a] =
⋂
α∈a

ker ι(α).

Then the separable degree-N(a) isogeny ϕa : E → E′ with kernel E[a] is horizontal.
In particular E′ comes naturally equipped with an O-orientation ι′ = ϕa∗ι. The
pair (E′, ι′) is well-defined up to isomorphism and only depends on the class of a
inside cl(O); we write [a](E, ι) := (E′, ι′). This defines the map (1), which turns
out to be a free group action.

Remark 1. In many cases of interest, such as CM elliptic curves over C or ordinary
elliptic curves over finite fields, the action is transitive. In general this is not true,
where one subtlety is reflected in [21, Prop. 3.3]; see also the example in [21, §3.1]
and the proof of [24, Thm. 4.5]. This has no consequences for the current paper,
since we are working in a single orbit, namely that of the starting curve (E, ι).

3. Evaluating characters using the Weil pairing

In this section we prove Theorem 1 and discuss its analogues for the assigned
characters δ, ε, δε. In all cases it is assumed that p = max{1, char k} is coprime to
the modulus of the character under consideration. If p is an odd prime then χp,
if it appears in the list of assigned characters, can be computed from the other
characters using the relation (3); see for instance Example 1 where we had χp = δ.
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If p = 2 then the same conclusion holds for δ, ε or δε, because in even characteristic
at most one of these three characters can appear in the list of assigned characters.2

3.1. Preliminaries.

Lemma 1. Let O be an imaginary quadratic order and let m be an odd prime
number. Then O = Z[σ] for some σ ∈ O of norm coprime to m.

Proof. Let τ ∈ O be a generator of O, suppose of norm divisible by m. Then for
any k ∈ Z,

N(τ + k) = N(τ) + k(tr(τ) + k) ≡ k(tr(τ) + k) mod m.

Since m ≥ 3 we can thus always find k ∈ Z such that m - N(τ + k). �

Lemma 2. Let O be an imaginary quadratic order of even discriminant. Then
O = Z[σ] for some σ ∈ O of odd norm.

Proof. Let τ ∈ O be a purely imaginary generator ofO, e.g. τ =
√

disc(O)/4, where
disc(O) is the discriminant of O. Then N(τ + 1) = N(τ) + tr(τ) + 1 = N(τ) + 1,
hence we can take σ = τ or σ = τ + 1. �

Lemma 3. Let O be an imaginary quadratic order, let (E, ι) be an O-oriented
elliptic curve over k, let m 6= char k be a prime number, and let σ ∈ O be a
generator. Then there exists a P ∈ E[m] such that ι(σ)(P ) is not a multiple of P .

Proof. The endomorphism ι(σ) of E induces an Fm-linear map E[m] → E[m].
Suppose to the contrary that every P ∈ E[m] is an eigenvector. This can only
happen if the map has the full m-torsion E[m] as an eigenspace. Thus there exists
λ ∈ Z such that E[m] ⊆ ker(ι(σ−λ)). It then follows that ιQ((σ−λ)/m) ∈ End(E),
and hence that σ−λ ∈ mO by the fact that ι is a primitive embedding, i.e. it cannot
be extended to a strict superorder of O. Since Z + mO ( O this contradicts the
assumption that σ generates O. �

3.2. Evaluating the characters χm. We now prove Theorem 1.

Proof of Theorem 1. The existence of σ, P, P ′ follows from Lemma 1 and Lemma 3.
The endomorphism ι(σ) of E induces an Fm-linear map E[m] → E[m]. Since
m | disc(O) = tr(σ)2 − 4N(σ) and m - N(σ), its characteristic polynomial has a
non-zero double root, say α ∈ F×m. Consequently, we can extend to a basis P0, P of
E[m] for which the matrix of σ is in upper-triangular form

(
α β
0 α

)
for some β ∈ F×m.

With respect to this basis any Q ∈ E[m] that is not an eigenvector of σ is of the
form Q = λP0 + µP where µ 6= 0. We see that

em(Q, σ(Q)) = em(λP0+µP, (αλ+βµ)P0+αµP ) = em(P, βP0)µ
2

= em(P, σ(P ))µ
2

,

showing that em(P, σ(P )) is independent of the choice of P , up to raising to powers
that are non-zero squares modulo m. Then, of course, the same conclusion applies
to em(P ′, σ(P ′)).

2If (E, ι) is an O-oriented elliptic curve over an algebraically closed field k with char k = 2,
then 25 - disc(O). Indeed, if we would have 25 | disc(O) then E is necessarily supersingular,
hence it concerns y2 + y = x3, the unique supersingular elliptic curve in characteristic 2. Its

endomorphism ring is isomorphic to the ring of Hurwitz quaternions H, and it is easy to check that
every embedding O ↪→ H can be extended to an embedding O′ ↪→ H with disc(O′) = disc(O)/4.
See [21, Prop. 3.2] for a generalization of this observation.
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Recall our convention from the introduction, namely that we assume that the
norm of a, which equals the degree of the corresponding isogeny ϕ = ϕa : E → E′,
is coprime to m. In particular, P0 6∈ kerϕ. By definition of the class group action
ι′ = ϕ∗ι satisfies

ι′(σ)(ϕ(P )) =

(
1

degϕ
ϕι(σ)ϕ̂

)
(ϕ(P )) = ϕ(ι(σ)(P )) = βϕ(P0) + αϕ(P ),

showing that ϕ(P ) is not an eigenvector for ι′(σ) acting on ([a]E)[m]. So we see
that em(ϕ(P ), ι′(σ)(ϕ(P ))) is obtained from em(P ′, ι′(σ)(P ′)) by raising it to a
non-zero square mod m. To conclude, we observe that

em(ϕ(P ), ι′(σ)(ϕ(P ))) = em(ϕ(P ), ϕ(ι(σ)(P ))) = em(P, ι(σ)(P ))degϕ. �

3.3. Evaluating δ, ε or δε. We now present the analogues of Theorem 1 for the
even-modulus characters δ, ε and δε. We first focus on δ.

Proposition 1. Assume char k 6= 2. Let O be an imaginary quadratic order of
discriminant −4 · d where d ≡ 0, 1 mod 4, and let (E, ι), (E′, ι′) be O-oriented
elliptic curves over k connected by an ideal class [a] ∈ cl(O). Then O admits an
odd-norm generator σ, and for any such σ there exist points P ∈ E[4], P ′ ∈ E′[4]
such that ι(σ)(2P ) 6= 2P and ι′(σ)(2P ′) 6= 2P ′. Moreover

(5) δ([a]) = (−1)
a−1
2 ,

with a = loge4(P,ι(σ)(P )) e4(P ′, ι′(σ)(P ′)), for any such choice of σ, P, P ′.

Proof. The existence of σ, P, P ′ follows from Lemma 2 and Lemma 3. Note that
the assumption on the discriminant of O shows that the character δ indeed exists,
and that this implies that N(σ) ≡ 1 mod 4 (since the principal ideal class [(σ)] lies
in the kernel of δ). By upper-triangularizing the action of σ on E[2] as in the proof
of Theorem 1, we see that there exists a P0 ∈ E[4] such that the matrix Mσ of σ
acting on E[4] with respect to the basis P0, P is of the form

Mσ ≡
(

1 1
0 1

)
mod 2.

Since N(σ) ≡ 1 mod 4 this means that Mσ is of the form either
(
α β
0 α

)
or
(
α β
2 −α

)
with α, β odd. Any Q with the property that σ(2Q) 6= 2Q is of the form λP0 + µP
where µ is odd. If Mσ is of the first form we get

e4(Q, σ(Q)) = e4(λP0 + µP, (αλ+ βµ)P0 + αµP ) = e4(P, βP0)µ
2

= e4(P, σ(P ))µ
2

.

If Mσ is of the second form we again get

e4(Q, σ(Q)) = e4(λP0 + µP, (αλ+ βµ)P0 + (2λ− αµ)P )

= e4(P, βP0)µ
2

e4(P, P0)2(λαµ−λ
2) = e4(P, σ(P ))µ

2

where the last equality uses that λ, µ, α are odd. From µ2 ≡ 1 mod 4 it follows that
e4(P, σ(P )) does not depend on the choice of P . Then, of course, the same is true
for e4(P ′, σ(P ′)).

By our convention we assume that the norm of a, and hence the degree of the
corresponding isogeny ϕ = ϕa : E → E′, is odd. In particular, 2P0 6∈ kerϕ and

ι′(σ)(ϕ(2P )) =

(
1

degϕ
ϕι(σ)ϕ̂

)
(ϕ(2P )) = ϕ(ι(σ)(2P )) = ϕ(2P0) + ϕ(2P )
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is different from ϕ(2P ). Thus we find that e4(P ′, σ(P ′)) equals

e4(ϕ(P ), ι′(σ)(ϕ(P ))) = e4(ϕ(P ), ϕ(ι(σ)(P ))) = e4(P, ι(σ)(P ))degϕ

which concludes the proof. �

Next, we discuss the modulus-8 characters ε and δε:

Proposition 2. Assume char k 6= 2, let O be an imaginary quadratic order of
discriminant disc(O) ≡ −2fd with d odd and f ≥ 3, and consider O-oriented
elliptic curves (E, ι), (E′, ι′) over k connected by an ideal class [a] ∈ cl(O). Assume
that ε, resp. δε, appears among the assigned characters of O. Then O admits an
odd-norm generator σ, and for any such σ there exist points P ∈ E[8], P ′ ∈ E′[8]
such that ι(σ)(4P ) 6= 4P and ι′(σ)(4P ′) 6= 4P ′. Moreover ε([a]), resp. δε([a]), can
be computed as

ε([a]) = (−1)
a2−1

8 , resp. δε([a]) = (−1)
(a+2)2−9

8 ,

with a = loge8(P,ι(σ)(P )) e8(P ′, ι′(σ)(P ′)) and for any such choice of σ, P, P ′.

Proof. As in the previous proof, the existence of σ, P, P ′ follows from Lemma 2
and Lemma 3. The main difference with the foregoing proofs is that if Q ∈ E[8]
is another point satisfying σ(4Q) 6= 4Q, then e8(Q, σ(Q)) relates more subtly to
e8(P, σ(P )). Namely, we will argue that

(6) e8(Q, σ(Q)) ∈
{
e8(P, σ(P )), e8(P, σ(P ))N(σ)

}
,

and then of course the same again applies to e8(P ′, σ(P ′)). This will then lead to
the conclusion that

e8(P ′, σ(P ′)) ∈
{
e8(P, σ(P ))degϕ, e8(P, σ(P ))N(σ) degϕ

}
,

which is indeed sufficient, since the principal ideal class [(σ)] has trivial character
values. More explicitly, if ε exists then we must have N(σ) mod 8 ∈ {1, 7}, while if
δε exists then we have N(σ) mod 8 ∈ {1, 3}.

In order to prove (6), note that

tr(σ)2 + 4 ≡ tr(σ)2 − 4 ·N(σ) = disc(O) ≡ 0 mod 8,

so that tr(σ) ≡ 2 mod 4. It follows that the characteristic polynomial of σ modulo
4 is X2 + 2X + N(σ), hence we can extend to a basis P0, P of E[8] such that the
matrix of ι(σ) acting on E[8] is of the form

Mσ ≡



(
α β

0 α

)
mod 4 if N(σ) ≡ 1 mod 4,(

α β

2 α

)
mod 4 if N(σ) ≡ 3 mod 4,

with α, β odd. It follows that

M2
σ ≡



(
1 2

0 1

)
mod 4 if N(σ) ≡ 1 mod 4,(

3 2

0 3

)
mod 4 if N(σ) ≡ 3 mod 4.
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In any case we can record that

(7) e8(P, σ2(P ))2 = e8(P, P0)4 = −1.

Now, with respect to the basis P, σ(P ), the matrix of ι(σ) acting on E[8] is con-
gruent to ( 0 1

1 0 ) mod 2. Any other Q = λP +µσ(P ) such that σ(4Q) 6= 4Q thus has
exactly one of λ, µ odd. We now proceed to showing (6). If µ is odd then we can
write σ(Q) = λ′P + µ′σ(P ) with λ′ odd, so since

e8(Q, σ(Q))N(σ) = e8(σ(Q), σ2(Q))

we may reduce to the case where λ is odd (and µ is even). For odd λ, we have

e8(Q, σ(Q)) = e8(λ−1Q, σ(λ−1Q))λ
2

= e8(λ−1Q, σ(λ−1Q)),

hence we may further reduce to the case where λ = 1. Now note that

e8(P + µσ(P ), σ(P ) + µσ2(P )) = e8(P, σ(P ))e8(σ(P ), σ2(P ))µ
2

e8(P, σ2(P ))µ

= e8(P, σ(P ))e8(P, σ(P ))4
µ2

4 N(σ)e8(P, σ2(P ))2
µ
2

= e8(P, σ(P )) · (−1)
µ2

4 · (−1)
µ
2

= e8(P, σ(P )),

where in the third equality we used (7). �

Remark 2. IfO is an imaginary quadratic order of discriminant disc(O) ≡ 0 mod 25,
then both ε and δε and hence δ = (δε)ε exist, so that N(σ) ≡ 1 mod 8. In this
case there is a well-defined group homomorphism γ : cl(O) → (Z/8Z)× : [a] 7→
N(a) mod 8 through which δ, ε, δε factor. This is the only situation where one can
get finer-than-binary modular information about N(a) from [a]; the above proof
shows that we can recover γ([a]) at once as loge8(P,ι(σ)(P )) e8(P ′, ι′(σ)(P ′)).

Remark 3. In the statements of Theorem 1, Proposition 1 and Proposition 2, the
condition that σ is a generator of O can in fact be relaxed to σ ∈ O \ (Z +mO) if
m is odd and to σ ∈ O \ (Z + 2O) if m is even, without modifying the proofs.

Wrapping up, we have given justification for the following general recipe for
evaluating an assigned character χ : cl(O) → {±1} of modulus m coprime to
max{1, char k} in an unknown ideal class [a] connecting two given O-oriented curves
(E, ι) and (E′, ι′). We assume to be working over a field F ⊆ k such that the curves
E,E′ and the endomorphisms in ι(O), ι′(O) are all defined over F .

(1) Find a generator σ of O of norm coprime with m.
(2) Base-change to the smallest extension F ⊇ F over which all points in E[m]

are defined; necessarily, then also all of E′[m] is defined over F .
(3) Find a point P ∈ E(F) such that E[m] = 〈P, ι(σ)(P )〉 and compute ζ =

em(P, ι(σ)(P )).
(4) Likewise, find a point P ′ ∈ E′(F) such that E′[m] = 〈P ′, ι′(σ)(P ′)〉 and

compute ζ ′ = em(P ′, ι′(σ)(P ′)).
(5) Inside µm ⊆ F×, compute a = logζ ζ

′.

(6) If m is an odd prime then recover χ([a]) as
(
a
m

)
, else recover χ([a]) as

(−1)
a−1
2 , (−1)

a2−1
8 , (−1)

(a+2)2−9
8

depending on whether χ = δ, ε, δε, respectively.
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4. Complexity and consequences for DDH

Turning the above recipe into an actual algorithm comes with challenges that are
specific to F . Nevertheless, before going into a more detailed analysis of our main
case of interest, namely where F is a finite field, let us add some general comments
to the above steps:

(1) Very easy, by following the proof of Lemma 1 or Lemma 2.
(2) The degree of F/F is a divisor of the order of GL2(Z/mZ), which is O(m4).

(3–4) For m an odd prime, the proof of Theorem 1 shows that the set of m-torsion
points that are independent of their image under σ has size m2 −m. So it
suffices to try O(1) random points P ∈ E[m], compute ι(σ)(P ) and check
whether em(P, ι(σ)(P )) is a primitive mth root of unity.3

(5) Pollard-ρ type algorithms allow us to compute the discrete logarithm using
O(
√
m) operations in µm.

(6) Trivial.

The main bonus we get from working over a finite field lies in (2). In this case the
degree of F/F equals the order of the Frobenius endomorphism πF acting on E[m].
While the order of GL2(Z/mZ) is O(m4), the order of a single element is O(m2).

Theorem 2. Let O = Z[σ] be an imaginary quadratic order and consider two O-
oriented elliptic curves (E, ι) and (E′, ι′) that belong to the same orbit under the
action of cl(O), say given in Weierstrass form and connected by an unknown ideal
class [a]. Assume that E,E′, ι(O), ι′(O) are all defined over a finite field Fq. Let
χ be an assigned character of O with modulus m coprime to q. There exists a
randomized algorithm for computing χ([a]) that is expected to use

(8) Õ(m4 log q)

bit operations and O(1) calls to ι(σ), ι′(σ).

Proof. If we write fE(x, y) for the defining Weierstrass polynomial of E and ΨE,m(x)
for its m-division polynomial, then the field F can be constructed as the splitting
field of the resultant rE,m(x) = resy(fE ,ΨE,m), whose degree is O(m2). The divi-
sion polynomial ΨE,m(x) can be computed recursively and the resultant rE,m(x)
can be factored using Cantor–Zassenhaus. Using fast arithmetic, this takes a com-
bined time of (8). Note that we obtain all points in E[m] as a by-product; once
we know F we can sample points from E′[m] faster. The Weil pairings can be
computed using Miller’s algorithm, taking O(logm) operations in F , and Pollard-ρ
takes an expected O(

√
m) operations in F , so these costs are dominated by (8),

again assuming fast arithmetic. Finally, while the norm of the given generator σ
may not be coprime with m, from the proofs of Lemma 1 and Lemma 2 we see
that we can instead work with σ + k, for some positive integer k bounded by m.
Since ι(σ+ k) = ι(σ) + [k], the overhead this causes is clearly absorbed by (8); and
similarly for ι′(σ + k). �

The effectivity of this algorithm co-depends on how easy it is to evaluate ι(σ)
and ι′(σ), which is a separate discussion that is captured by the notion of efficient
representations, see Section 5.1 and [30] for more details. One special but interesting

3Alternatively, one may opt for a more deterministic approach by computing and analyzing a
matrix of ι(σ) acting on E[m], in which case two evaluations of ι(σ) will do. Note however that

writing down a matrix of ι(σ) comes at the cost of computing some discrete logarithms.
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case is where ι(σ) equals πFq , or is easily derived from it, in which case this cost
can be estimated as

(9) Õ(m2 log2 q),

leading to an overall complexity of Õ(m4 log2 q). This case allows for comparison
with the Tate pairing attack from [8], which is seen to perform better by a factor
m [8, §5.1].4 The main reason is that, for the Tate pairing, it suffices to work over
a field F such that E admits an F-rational point of order m, rather than requiring
all m-torsion to be F-rational (in turn, this is because the Tate pairing admits
non-trivial self-pairing values, in contrast with the Weil pairing). The degree of
such an extension field is bounded by O(m), rather than by O(m2).

This comparison turns in favour of the Weil pairing as soon as E[m] ⊆ E(Fq),
where no field extension is needed. Note that, here, it makes more sense to measure
the cost of a call to ι(σ), ι′(σ) by the cost of evaluating (πFq − 1)/ms, where s is
maximal such that E[ms] ⊆ E(Fq); see [23, Lem. 1]. This can be done in time (8),
which now becomes the dominant cost of the attack. In this case, the asymptotics
for the Tate pairing are the same, but the Weil pairing attack is much simpler and
runs faster in practice, as no descent of the isogeny volcano is needed.

All this aside, let us re-emphasize that the Weil pairing approach works in far
greater generality: for arbitrary orientations and over any field admitting explicit
computation. A proof-of-concept implementation of the new method can be found
at https://github.com/KULeuven-COSIC/oriented_DDH.

Consequences for DDH. If cl(O) admits a non-trivial assigned character whose
modulus m is sufficiently small, say polynomially bounded by log disc(O), and if
it satisfies gcd(m, q) = 1, then we can use this character to distinguish between
random triples and Diffie–Hellman triples with probability 1/2, as explained in the
introduction. More generally, if it admits s ≥ 1 independent5 such characters, then
we can distinguish with probability 1− 1/2s.

Consequently, as soon as disc(O) has at least three distinct small odd prime
divisors or, more precisely, at least two small odd prime factors different from
p = charFq, we can consider the decisional Diffie–Hellman problem broken for
O-oriented elliptic curves over Fq. Heuristically, we expect that this applies to a
density 1 subset of all imaginary quadratic orders (when ordered by the absolute
value of their discriminant). This can be backed up using Mertens’ third theorem;
or see [27, III.§6] for more dedicated tools.

Remark 4. The above discussion takes into account the possibility that the field
characteristic p might appear among the small prime divisors of disc(O). However,
in cryptographic applications, this is a situation that one should avoid. Indeed,
in this case E and E′ are necessarily supersingular, and because p is small we
can compute End(E) and End(E′) by navigating through all O(p) nodes of the
supersingular isogeny graph. In view of the reduction from [29], which is revisited
in Section 5, this means that one is skating on very thin ice.

4Here and below, for simplicity, the height h ≈ valm(tr(πF )2−4#F) of the m-isogeny volcano

of E over F is estimated by O(1).
5This means that one cannot use the relation (3) to rewrite one of the characters in terms of

the others.

https://github.com/KULeuven-COSIC/oriented_DDH
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As discussed in [8, §6], one can thwart the attack by restricting the class-group
action to cl(O)2, or at least to a subgroup of cl(O) on which all assigned charac-
ters of small modulus have trivial evaluations. However, this may have practical
consequences in terms of key generation and key validation. Moreover, we do not
rule out that the attack can be modified to work for characters whose order is a
larger power of 2, e.g. in view of [3, 25]. Quantumly, it is known that 2r-torsion
subgroups, for any small fixed value of r, do not contribute to the hardness of
the vectorization problem anyway [5]. Therefore, we extend the recommendation
from [8, §6] to arbitrarily oriented elliptic curves, namely we suggest to only work
with orientations by imaginary quadratic orders whose class number is odd. We
are more careful with the recommendation from [8, §6] to restrict to the use of
maximal orders; indeed, non-maximal orders play an important constructive role
in the OSIDH protocol [10].

Remark 5. It is interesting to view Theorem 2 against the classical decisional
Diffie–Hellman problem, namely for exponentiation in a group G = 〈g〉 of some
large prime order m. Note that exponentiation defines a free and transitive action
of (Z/mZ)× on the set of generators of G. The Legendre symbol

χ : (Z/mZ)× → {±1} : a 7→
( a
m

)
is the unique quadratic character, of modulus m, and if one could cook up an
efficient classical way for computing χ(a) merely from the knowledge of g and ga,
then this would clearly break DDH in this setting. This would be a spectacular
result; in general, to the best of our knowledge, we cannot do significantly better
than computing a using Pollard-ρ and then simply evaluating χ at a. This should
be compared to steps (5) and (6) from above. In other words, one could say that
classical DDH is not weakened by the existence of χ because its modulus is large.

5. Reductions to endomorphism ring computation

In this section, we prove that our main result Theorem 1 allows to signifi-
cantly improve reductions between computational problems underlying isogeny-
based cryptography. All results in this section that start with (ERH), such as
Theorem 3, assume the extended Riemann hypothesis — precisely, the Riemann
hypothesis for Hecke L-functions.

5.1. The supersingular endomorphism ring problem. We assume that the
field k is an algebraic closure of a finite field of characteristic p, and that p does
not split in O, nor does it divide the conductor of O. Then, the set È `O(k) is non-
empty and all curves in it are supersingular; we also denote this set by SSO(p) [21,
Prop. 3.2]. Recall that a curve E/k is supersingular if and only if its endomorphism
ring End(E) is isomorphic to a maximal order in the quaternion algebra

Bp,∞ =

(
−q,−p

Q

)
= Q + Qi+ Qj + Qij,

with the multiplication rules i2 = −q, j2 = −p, and ji = −ij, where q is a positive
integer that depends on p.

Given a supersingular elliptic curve E over k, the endomorphism ring problem
EndRing consists in computing four endomorphisms that form a basis of End(E).
There is flexibility in how these endomorphisms can be represented, but we always
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assume that it is an efficient representation. As in [30], we say that an isogeny
ϕ : E → E′ is given in an efficient representation if there is an algorithm to evaluate
ϕ(P ) for any P ∈ E(Fpr ) in time polynomial in the length of the representation of
ϕ and in r log(p). We also assume that an efficient representation of ϕ has length
Ω(log(deg(ϕ))).

This endomorphism ring problem is of foundational importance to isogeny-based
cryptography: it is presumed to be hard, and this hardness is necessary (and some-
times sufficient) for the security of essentially all isogeny-based protocols [17, 7, 16].
It does not, however, capture well the notion of orientation, which plays an impor-
tant role in many protocols. Therefore, the following oriented variants were intro-
duced in [29]. Computationally, an O-orientation ι is represented by a generator σ
of O (i.e., O = Z[σ]) together with an efficient representation of the endomorphism
ι(σ).

Problem 1 (O-EndRing). Given (E, ι) ∈ SSO(p), find a basis of End(E).

Problem 2 (O-EndRing∗). Given anO-orientable curve E, find a basis of End(E),
and an O-orientation of E with respect to this basis.

Clearly, O-EndRing reduces to O-EndRing∗.

5.2. Action inversion problems. Many cryptosystems relate, directly or more
subtly, to an inversion problem for the action of cl(O) on SSO(p). In essence, given
(E, ι) and (E′, ι′) in SSO(p), find a class [a] such that (E′, ι′) ∼= [a](E, ι) (or decide
that it does not exist). This is called the vectorization problem. It is too weak
for many practical purposes, because knowledge of the class [a] is not sufficient to
efficiently apply its action on any other O-oriented curve. Therefore, the following
stronger problem was introduced in [29].

Problem 3 (Effective O-Vectorization). Given three O-oriented supersin-
gular curves (E, ι), (E′, ι′), (F, ) ∈ SSO(p), find an O-ideal a (or decide that it
does not exist) such that (E′, ι′) ∼= [a](E, ι), and an efficient representation of
ϕa : (F, )→ [a](F, ).

The security of many cryptosystems directly reduces to this problem, such as
CSIDH [6], CSI-FiSh [1], CSURF [4], or other generalizations [9].

One can define a similar problem where no orientation is provided for E′. Then,
one cannot require (E′, ι′) ∼= [a](E, ι) anymore, but one can still ask for E′ ∼= [a]E.
The resulting Uber isogeny problem was introduced in [14].

Problem 4 (Effective O-Uber). Given two O-oriented curves (E, ι), (F, ) ∈
SSO(p) and an O-orientable curve E′, find an O-ideal a such that E′ ∼= [a]E, and
an efficient representation of ϕa : (F, )→ [a](F, ).

This Effective O-Uber problem is significantly harder than the Effective
O-Vectorization problem. In fact, most isogeny-based cryptosystems reduce to
an instance of Effective O-Uber [14], even cryptosystems such as SIDH [18]
which, at first sight, do not seem to involve any orientation.

5.3. Action inversion reduces to endomorphism ring. Strengthening and
generalizing a result of [7], it was proved in [29] that Effective O-Vectorization
reduces to O-EndRing, and that Effective O-Uber reduces to O-EndRing∗.
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Both reductions are in polynomial time in the length of the instance, and in
#(cl(O)[2]). Unfortunately, the dependence in #(cl(O)[2]) means that the reduc-
tion is, in the worst case, exponential in the size of the input, since #(cl(O)[2])
could be as large as d1/ log log d, where d = disc(O). The issue is the following:
given two oriented curves (E, ι) and (E′, ι′) as in the definition of Effective
O-Vectorization, the reductions first find a class [a]2 such that (E′, ι′) ∼= [a](E, ι).
Finding [a] from [a]2 is a square root computation. There are #(cl(O)[2]) square
roots of [a]2, but only one is the correct class [a]. In [29], one simply does an ex-
haustive search. Now, thanks to Theorem 1, there is a much more efficient way to
find the correct square root, which in the worst case is subexponential in disc(O).
This is the following proposition. Recall the L-notation

Lx(α) = exp
(
O
(
(log x)α(log log x)1−α

))
for subexponential complexities.

Proposition 3 (ERH). Given O of discriminant d, the factorization d =
∏ω(d)
i=1 `

ei
i ,

two O-oriented elliptic curves (E, ι), (E′, ι′) ∈ SSO(p), a basis of End(E), and
an ideal class [c]2 such that (E′, ι′) = [c](E, ι), one can find the ideal class [c] in
probabilistic polynomial time in the length of the input and in

min
(

2ω(d),min
i

(
`i | `i ≥ 2ω(d)−i

))
� min

(
Ld(1/2),#(cl(O)[2]), `ω(d)

)
.

Before proving it, let us recall the following proposition from [29].

Proposition 4 (ERH, [29, Proposition 9]). Given (E, ι) ∈ SSO(p), a basis of
End(E), and an O-ideal a, one can compute [a](E, ι) and an efficient representation
of ϕa : (E, ι)→ [a](E, ι) in probabilistic polynomial time in the length of the input.

Proof of Proposition 3. Let B > 0 be a bound to be tuned later. Consider the sets
of prime numbers

P1 = {` | ` is an odd prime factor of disc(O) and ` ≤ B}, and

P2 = {` | ` is an odd prime factor of disc(O) and ` > B}.

For each ` ∈ P1, compute χ`([c]) in time `O(1) using Theorem 2 and the fact
that (E′, ι′) = [c](E, ι). Now, with [3], one can compute square roots in cl(O)
in polynomial time, so we get an ideal a such that [a] and [c] differ by a two-
torsion factor. From [3], one also gets a basis of cl(O)[2], so we can ensure that
χ`([a]) = χ`([c]) for each ` ∈ P1. The number of remaining candidates for [a] = [c]
is 2#P2 . These can be enumerated and checked for correctness in polynomial time
using Proposition 4 and the provided basis of End(E). Overall, the running time is
polynomial in log p, log disc(O), B, and 2#P2 . The running time follows by choosing
B = min

(
2ω(d),mini

(
`i | `i ≥ 2ω(d)−i

))
. �

The main result of this section is the following theorem.

Theorem 3 (ERH, Effective O-Vectorization reduces toO-EndRing). Given

an order O of discriminant d, and the factorization d =
∏ω(d)
i=1 `

ei
i , three O-oriented

elliptic curves (E, ι), (E′, ι′), (F, ) ∈ SSO(p), together with bases of End(E),
End(E′) and End(F ), one can compute (or assert that it does not exist) an O-ideal c
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such that (E′, ι′) = [c](E, ι) and an efficient representation of ϕc : (F, )→ [c](F, )
in probabilistic polynomial time in the length of the input and in

min
(

2ω(d),min
i

(
`i | `i ≥ 2ω(d)−i

))
� min

(
Ld(1/2),#(cl(O)[2]), `ω(d)

)
.

Remark 6. This improves the result of [29, Thm. 2] in two ways. First, the worst
case is now subexponential: when d is primorial, the running time of [29, Thm. 2]
could reach about d1/ log log d, while it is now always at most Ld(1/2). Second,
Theorem 3 is now very efficient for a new important family of discriminants: when
almost all prime divisors of d are small, no matter how many there are. In particular,
primorial numbers (the worst case of [29, Thm. 2]) now benefit from a polynomial
time algorithm.

Proof. Thanks to Proposition 3, the proof is a straightforward adaptation of the
proof of [29, Thm. 2]. Suppose we are given (E, ι), (E′, ι′) ∈ SSO(p), together with
End(E) and End(E′). Consider the involution τp : SSO(p) → SSO(p) defined in

[29, Def. 7] as τp(E, ι) = (E(p), (φp)∗ῑ), where ῑ is the conjugate of ι (i.e., ῑ(α) = ι(α)

for any α ∈ O), and φp : E → E(p) is the Frobenius isogeny.
Then, per [29, Prop. 11], one can compute a and b such that τp(E, ι) = [a](E, ι)

and τp(E
′, ι′) = [b](E′, ι′) in polynomial time. From [29, Lem. 10], the ideal class of

c is one of the #(cl(O)[2]) square roots of [ab]. Therefore, the ideal c can be found
by Proposition 3 within the claimed running time. Finally, compute an efficient
representation of ϕc : (F, )→ [c](F, ) in polynomial time with Proposition 4. �

Corollary 1 (ERH). Given an order O of discriminant d, and the factorization d =∏ω(d)
i=1 `

ei
i , Effective O-Uber reduces to O-EndRing∗ in probabilistic polynomial

time in the length of the instance and in

min
(

2ω(d),min
i

(
`i | `i ≥ 2ω(d)−i

))
� min

(
Ld(1/2),#(cl(O)[2]), `ω(d)

)
.

Proof. Again, this is a straightforward adaptation of [29, Cor. 4]. Suppose we
are given (E, ι), (F, ) ∈ SSO(p) and an O-orientable elliptic curve E′. Solving
O-EndRing∗, one can find ε-bases of End(E), End(F ) and End(E′), and an O-
orientation ι′ of E′. The result follows from Theorem 3. �
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