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Abstract. We investigate in this paper the vanishing at s = 1 of the twisted L-functions
of elliptic curves E defined over the rational function field Fq(t) (where Fq is a finite field of
q elements and characteristic ≥ 5) for twists by Dirichlet characters of prime order ℓ ≥ 3,
from both a theoretical and numerical point of view. In the case of number fields, it is
predicted that such vanishing is a very rare event, and our numerical data seems to indicate
that this is also the case over function fields for non-constant curves. For constant curves,
we adapt the techniques of [Li18, DL21] who proved vanishing at s = 1/2 for infinitely many
Dirichlet L-functions over Fq(t) based on the existence of one, and we can prove that if there
is one χ0 such that L(E,χ0, 1) = 0, then there are infinitely many. Finally, we provide some
examples which show that twisted L-functions of constant elliptic curves over Fq(t) behave
differently than the general ones.

1. Introduction

Let E be an elliptic curve over Q with L-function L(E, s) =
∑

n ann
−s, and χ be a

Dirichlet character. Let L(E,χ, s) =
∑

n anχ(n)n
−s be the twisted L-function. By the Birch

and Swinnerton-Dyer conjecture, the vanishing of L(E,χ, s) at s = 1 should be related to the
growth of the rank of the Mordell-Weil group of E in the abelian extension of Q associated
to χ. Heuristics based on the distribution of modular symbols and random matrix theory
([DFK07, Conjecture 1.2], [MR]) have led to conjectures predicting that the vanishing of the
twisted L-functions L(E,χ, s) at s = 1 is a very rare event as χ ranges over characters of
prime order ℓ ≥ 3. For instance, it is predicted that there are only finitely many characters
χ of order ℓ > 5 such that L(E,χ, 1) = 0. Mazur and Rubin rephrased this in terms of
“Diophantine Stability”, and conjectured that if E is an elliptic curve over Q and K/Q is
any real abelian extension such that K contains only finitely many subfields of degree 2, 3, or
5 over Q, then the group of K-rational points E(K) is finitely generated. They also proved
that for each ℓ (under some hypotheses that can be shown to hold in certain contexts),
there are infinitely many cyclic extensions K/Q of order ℓ such that E(K) = E(Q) (and
then, assuming the Birch and Swinnerton-Dyer conjecture, such that the twisted L-functions
L(E,χ, s) associated to the extensions K/Q do not vanish) [MR18].
We remark that the case of vanishing of quadratic twists is very different from the higher

order case ℓ ≥ 3 considered in this work, as the L-function of E twisted by a quadratic
character of conductor D corresponds to the L-function of another elliptic curve ED, and
for half of the quadratic twists, L(E,χD, 1) = 1. Goldfeld has conjectured that half of the
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twists ED/Q have rank 0, and half have rank 1 (asymptotically) [Gol74]). Furthermore,
Gouvea and Mazur [GM91] have shown that the analytic rank of ED is at least two for
≫ X1/2−ϵ of the quadratic discriminants |D| ≤ X. It is conjectured that the number of
such discriminants |D| ≤ X should be asymptotic to CEX

3/4 logbE(X) [CKRS02], for some
constants CE and bE depending on the curve E. The case of nonabelian extensions K/Q of
degree d with Galois group Sd is also different from the abelian extensions of order ℓ ≥ 3: in
recent work, Lemke Oliver and Thorne [LOT21] showed that there are infinitely many such
extensions where rank(E(K)) > rank(E(Q)), for each d ≥ 2, and Fornea [For19] has shown
that for some curves E/Q, the analytic rank of E increases for a positive proportion of the
quintic fields with Galois group S5.

The vanishing (and non-vanishing) of twisted L-functions of elliptic curves is closely related
to the one-level density, which is the study of low-lying zeroes, or the average analytic rank.
This was studied over number fields and functions fields, for quadratic and higher order
twists. For quadratic twists, it is possible to prove results on the one-level density strong
enough to deduce that a positive proportion of twists with even (respectively odd) analytic
rank do no vanish (respectively vanish of order 1) at the central critical point [HB04, CL22].
The one-level density, or average rank, of higher order twists for elliptic curves L-functions
was studied by [Cho] over number fields and [MS, CL22] over function fields. Quadratic
twists of elliptic curve over functions fields were also studied by [BFKRG20] who obtained
results on the correlation of the analytic ranks of two twisted elliptic curves. The behavior
of the algebraic rank of elliptic curves in cyclic extensions of Q was investigated by Beneish,
Kundu, and Ray [BKR].

We investigate in this article the vanishing at s = 1 of the twisted L-functions of elliptic
curves E defined over the rational function field Fq(t),

1 for twists by Dirichlet characters of
prime order ℓ ≥ 3, from both a theoretical and numerical point of view. It is natural to ask if
the recent results of Li [Li18] and Donepudi and Li [DL21], who have found infinitely many
instances of vanishing for L-functions of Dirichlet characters at s = 1/2, can be extended to
L-functions of elliptic curves twisted by Dirichlet characters. We find that this is the case
when E is a constant elliptic curve over Fq(t)

2, and we can produce infinitely many cases of
vanishing at the central critical point for characters of order ℓ provided we find one (Theorem
1.2). Then, the conjectures of [DFK07, MR21] do not hold in the special case of constant
elliptic curves, and we present specific numerical examples in Section 5.2.

We also study non-constant elliptic curves over Fq(t) where q is a power of a prime p ≥ 5,
say E : y2 = x3 + a(t)x + b(t), for some polynomials a(t), b(t) ∈ Fq[t]. The L-function of
E/Fq(t) is defined analogously as for E/Q, by an infinite Euler product over the primes of
Fq(t) (see (2.6)), but in this case, it follows from the work of Weil and Deligne that, after
setting u = q−s, L(E, s) = L(E, u), a polynomial in Z[u]. Similarly, the twisted L-function
L(E,χ, u) is a polynomial in Z[ζℓ][u], where χ is a Dirichlet character of order ℓ over Fq(t).
More details and all relevant definitions are given in Section 2.

We present in Section 5.3 computational results for the vanishing of numerous twists of two
base elliptic curves over Fq(t), the Legendre curve and a second curve, chosen to have good

1Throughout this article, we assume that Fq is a finite field of q elements and characteristic ≥ 5.
2Constant elliptic curves, i.e. elliptic curves over Fq considered as a curve over Fq(t), were studied by many

authors because of their special properties. In particular, Milne showed that the Birch and Swinnerton-Dyer
conjecture is true for constant elliptic curves [Mil68].
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reduction at infinity. The data seems to indicate that the conjectures of [DFK07, MR21] also
hold for non-constant elliptic curves over function fields, while presenting some unexpected
features. To our knowledge, this is the first data about the vanishing of L-functions of elliptic
curves twisted by characters of order ℓ ≥ 3, over function fields. The case of quadratic twists
of elliptic curves over function fields was considered by Baig and Hall [BH12] to test Goldfeld’s
conjecture in that context, and our numerical computations are similar.

The case of a constant curve E/Fq(t) is defined by taking an elliptic curve E0/Fq and
considering its base change to Fq(t), denoted by E = E0 ×Fq Fq(t). In this case, the roots of
L(E,χ, u) can be described in terms of the roots of the L-functions L(E0, u) and L(C, u),
where the L-functions are respectively associated to the elliptic curve E0/Fq and the ℓ-cyclic
cover C over P1

Fq
corresponding to the Dirichlet character χ (see Section 3). This allows us to

use a generalized version of the results of Li [Li18] and Donepudi–Li [DL21] about vanishing
of the Dirichlet L-functions L(χ, u) to obtain some vanishing for L(E,χ, u) at u = q−1. The
argument of [Li18, DL21] has two distinct parts, first finding one character χ0 such that
L(χ0, u0) = 0 for some fixed u0, and then sieving to produce infinitely many such characters.
The order of q mod ℓ is related to the presence/absence of ℓ-th roots of unity in Fq(t), which
makes the study of the characters of order ℓ delicate, and the authors of [Li18, DL21] restrict
to the Kummer case where q ≡ 1 mod ℓ. As we need to treat all the cases (in particular, we
often work over the finite field Fp where p is prime), we generalize their sieving beyond the
Kummer case. We also need to consider vanishing at any u0 where L(E0, u0) = 0, and not
only u0 = q−1/2 as in their work.

We recall that an algebraic integer α is called a q-Weil integer if |α| = q1/2 under every
complex embedding.

Theorem 1.1. Let ℓ be a prime and q be a prime power coprime to ℓ. Let u0 be a q-Weil
integer. Suppose there exists a Dirichlet character χ0 over Fq(t) of order ℓ and with conductor
of degree d0 such that L(χ0, u

−1
0 ) = 0. Then, there are at least ≫ q2n/d0 Dirichlet characters

χ of order ℓ over Fq(t) with conductor of degree bounded by n such that L(χ, u−1
0 ) = 0.

We prove the above theorem in Section 4. The next result is then a direct consequence of
Theorem 1.1, using the properties of constant elliptic curves discussed in Section 3.

Theorem 1.2. Let E0 be an elliptic curve over Fq, and let E = E0 ×Fq Fq(t). Suppose there
exists a Dirichlet character χ0 over Fq(t) of order ℓ and with conductor of degree d0 such
that L(E,χ0, q

−1) = 0. Then, there are at least ≫ q2n/d0 Dirichlet characters χ of order ℓ
over Fq(t) with conductor of degree bounded by n such that L(E,χ, q−1) = 0.

Then, to guarantee that a constant elliptic curve E/Fq(t) has infinitely many twists of
order ℓ such that L(E,χ, u) vanishes at q−1, it suffices to find one. Using the results of
Section 3, this can be rephrased in terms of finding curves C/Fq which are ℓ-cyclic covers
of P1

Fq
and such that L(E0, u) divides L(C, u), and we investigate this question numerically

in Section 5.2, where we find isogeny classes of elliptic curves E0 over different prime fields
such that L(E,χ, q−1) = 0 for characters χ of prime order ℓ = 3, 5, 7, 11. One observation
from the data is the existence of supersingular curves defined over primes fields Fp which
admit a degree ℓ cyclic map to P1 ramifying at 4 points where p ≡ −1 mod ℓ. The existence
of such curves does not follow from previous results on the topic and one may hope to prove
this statement following the strong evidence presented in Table 1.
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It is natural to ask if the same dichotomy (no instances of vanishing or infinitely many cases
of vanishing) also holds for non-constant elliptic curves over Fq(t), but there is no reason to
believe it would be the case. The ideas leading to the proof of Theorem 1.2 for constant curves
do not apply to the general case, as the change of variable trick used to produce infinitely
many extensions where E acquires points would send points on E to points on a different
elliptic curve when E is not constant. However, there are results of that type for an elliptic
curve E over Q due to Fearnley, Kisilevsky, and Kuwata [FKK12], where the authors prove
that if there is one cyclic cubic field K such that E(K) is infinite, then there are infinitely
many, and there are always infinitely many such K when E(Q) contains at least 6 points. On
the non-vanishing side, Brubaker, Bucur, Chinta, Frechette and Hoffstein [BBC+04] use the
method of multiple Dirichlet series to prove that if there exists a single non-vanishing order
ℓ twist of an L–function associated to a cuspidal automorphic representation of GL(2,AK),
then there are infinitely many.

The structure of this article is as follows: we define in Section 2 the L-functions attached
to Dirichlet characters and elliptic curves over Fq(t), and we recall their properties. We
discuss in Section 3 the case of L-functions of constant elliptic curves. We describe the ℓ-
cyclic covers of P1

Fq
and their characters in Section 4, for all cases (not only the Kummer case

q ≡ 1 mod ℓ) using the work of Bary-Soroker and Meisner [BSM19], and we then generalize
the sieves of [Li18, DL21] to those general ℓ-cyclic covers. We then use those results to prove
Theorems 1.1 and 1.2. Finally, we describe our computations in Section 5.1, and we present
our numerical data in Sections 5.2 and 5.3.
Acknowledgments. The authors would like to thank Patrick Meisner for helpful discus-
sions, and the anonymous referees for helpful comments that greatly improved the exposition
of this paper. This work is supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC Discovery Grant 155635-2019 to CD, 335412-2013 to ML), by
the Fonds de recherche du Québec - Nature et technologies (Projet de recherche en équipe
300951 to CD and ML), and by the Centre de recherches mathématiques and the Insti-
tut des sciences mathématiques (CRM-ISM postdoctoral fellowship to WL). Some of the
computations were checked using the computational software MAGMA.

2. Dirichlet characters, elliptic curves and L-functions over Fq(t)

2.1. Dirichlet characters of order ℓ. Let ℓ be a prime not dividing q. We review here
the theory of Dirichlet characters of order ℓ over Fq(t) and their L-functions. We refer the
reader to [DFL] and [BSM19] for more details.

Let nq be the multiplicative order of q modulo ℓ. We say that we are in the Kummer
case if nq = 1 and in the non-Kummer case otherwise. We also say that a monic irreducible
polynomial P ∈ Fq[t] is nq-divisible if nq | degP .
We fix once and for all an isomorphism Ω from the ℓ-th roots of unity in F∗

qnq to µℓ, the
ℓ-th roots of unity in C∗.
We first define the ℓ-th order residue symbol

χP : Fq[t]/(P ) → µℓ,

for P an irreducible nq-divisible monic polynomial in Fq[t]. It is clear that the ℓ-th residue
symbols χP can be defined only for the nq-divisible primes P , since we must have ℓ | qdegP−1:
indeed, unless nq | deg(P ), the order of the group of non-zero elements in the residue field
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FP = Fq[t]/(P ) is not divisible by ℓ, and therefore it does not contain any non-trivial ℓ-th
root of unity.

For any a ∈ Fq[t], if P | a, then χP (a) = 0, and otherwise χP (a) = α, where α is the
unique ℓ-th root of unity in C∗ such that

a
qdeg(P )−1

ℓ ≡ Ω−1(α) mod P.(2.1)

If F ∈ Fq[t] is any monic polynomial supported only on nq-divisible primes, writing F =
P e1
1 · · ·P es

s with distinct primes Pi, we define

χF = χe1
P1

· · ·χes
Ps
.

Then, χF is a character of order dividing ℓ with conductor P1 · · ·Ps. Conversely, the primitive
characters of order ℓ and conductor P1 · · ·Ps, where the Pi are nq-divisible primes, are given
by taking all choices 1 ≤ ei ≤ ℓ − 1. Then, the conductors of the primitive characters are
the square-free monic polynomials F ∈ Fq[t] supported on nq-divisible primes, and for each
such conductor, there are (ℓ − 1)ω(F ) such characters, where ω(F ) is the number of primes
dividing F .

We can also write each primitive character of order ℓ with conductor F as

χF = χF1χ
2
F2

· · ·χℓ−1
Fℓ−1

(2.2)

corresponding to a decomposition F = F1 · · ·Fℓ where the Fi’s are square-free and coprime.
For any Dirichlet character χ, we say that χ is even if its restriction to Fq is trivial;

otherwise, we say that χ is odd.
Dirichlet characters are also defined at the prime at infinity P∞. The following statement

clarifies how to compute χ(P∞).

Lemma 2.1. Let F be a monic squarefree polynomial in Fq[t], and χ be a Dirichlet character
on Fq[t] of order ℓ with conductor F .
If q ̸≡ 1 mod ℓ, then χ does not ramify at infinity, χ(P∞) = 1, and χ is even.
If q ≡ 1 mod ℓ, let χ = χF1χ

2
F2

· · ·χℓ−1
Fℓ−1

as in (2.2). Then,

χ ramifies at P∞ ⇐⇒ ℓ ∤ deg(F1F
2
2 · · ·F ℓ−1

ℓ−1 ) ⇐⇒ χ is odd, and

χ(P∞) =

{
1 ℓ | deg(F1F

2
2 · · ·F ℓ−1

ℓ−1 ),

0 ℓ ∤ deg(F1F
2
2 · · ·F ℓ−1

ℓ−1 ).

Proof. We first discuss under which conditions the characters are odd or even. Let P be an
nq-divisible prime. We remark that for a ∈ F∗

q,

(2.3) χP (a) = Ω

(
a

qdeg(P )−1
ℓ

)
= Ω

(
a

deg(P )(qnq−1)
nqℓ

)
.

Indeed, writing deg(P ) = nqk, we have

qdeg(P ) − 1

ℓ
=

qnqk − 1

ℓ
=

qnq − 1

ℓ
(1 + qnq + · · ·+ qnq(k−1))

and we use the fact that 1 + qnq + · · ·+ qnq(k−1) ≡ k mod ℓ.
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Then by applying multiplicativity to equation (2.3), we find

χF (a) = Ω

(
a

deg(F1F
2
2 ···Fℓ−1

ℓ−1
)(qnq−1)

nqℓ

)
,

If nq = 1, then χ is trivial on Fq iff ℓ | deg(F1F
2
2 · · ·F ℓ−1

ℓ−1 ).
Now suppose that nq > 1. Then, ℓ ∤ (q − 1), and in fact, (ℓ, q − 1) = 1 since ℓ is prime.

Now we have that both ℓ | (qnq − 1) and (q − 1) | (qnq − 1). It follows that (q − 1) | qnq−1
ℓ

.
Since a ∈ F∗

q, we have

χF (a) = Ω

(
a

deg(F1F
2
2 ···Fℓ−1

ℓ−1
)(qnq−1)

nqℓ

)
= 1,

and therefore χF is an even character.
The statement that P∞ does not ramify in the non-Kummer case follows from the fact

that the cyclic field extension associated to χF can only ramify at primes of degree divisible
by nq > 1 and P∞ is a prime of degree 1. In the Kummer case, the character χF is
associated with the cyclic cover yℓ = F1F

2
2 · · ·F ℓ−1

ℓ , and there is ramification at P∞ iff
ℓ ∤ deg(F1F

2
2 · · ·F ℓ−1

ℓ−1 ), and χF (P∞) = 0 in this case. If χF does not ramify at P∞, then

χF (P∞) = 1 since we are only considering the case in which F1F
2
2 · · ·F ℓ−1

ℓ−1 is monic. □

2.2. L-functions of Dirichlet characters. Let χ be a Dirichlet character, and let L(χ, u)
be the Dirichlet L-function defined by

L(χ, u) =
∏
P

(1− χ(P )udegP )−1,

where the product includes the prime at infinity.
We define δχ by

(2.4) δχ :=

{
0 when χ is even,

1 when χ is odd,

and we remark from Lemma 2.1 that χ(P∞) = 1− δχ.
For a primitive character χ of conductor F , it follows from the work of Weil [Wei71] that

L(χ, u) is a polynomial of degree deg(F )− 2 + δχ and satisfies the functional equation

L(χ, u) = ωχ (
√
qu)deg(F )−2+δχ L(χ, 1/(qu)).(2.5)

The sign of the functional equation is

ωχ =


G(χ)
|G(χ)| when χ is even,

√
q

τ(χ)
G(χ)
|G(χ)| when χ is odd,

where if χ odd,

τ(χ) =
∑
a∈F∗

q

χ(a)e2πitrFq/Fp (a)/p,
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and for any χ, G(χ) is the Gauss sum

G(χ) =
∑

a mod F

χ(a)eq

( a

F

)
.

Here eq is the exponential defined by Hayes [Hay66] for any b ∈ Fq((1/T )):

eq(b) = e
2πitrFq/Fp (b1)

p ,

where b1 is the coefficient of 1/T in the Laurent expansion of b. We refer the reader to [DFL]
for a proof of those results.

2.3. L-functions of elliptic curves over Fq(t). Let E be an elliptic curve over Fq(t). Let
P be a prime of Fq(t), i.e P = P (t) ∈ Fq[t] is a monic irreducible polynomial or P = P∞,
the prime at infinity. If P is a prime of good reduction, then the reduction of E (which we
also denote by E) is an elliptic curve over the finite field FP = Fq[t]/(P ) ∼= FqdegP (where
F∞ ∼= Fq since the prime at infinity has degree 1), and

#E(FP ) = qdegP + 1− aP , aP = αP + αP , |αP | =
√

qdegP .

Let
LP (E, u) := 1− aPu+ qdegPu2 = (1− αPu)(1− αPu)

be the L-function of E/FP .
If P is a prime of bad reduction, we define

LP (E, u) = (1− aPu),

where aP = 0, 1,−1 depending on the type of bad reduction (additive, split multiplicative,
and non-split multiplicative respectively).

Let NE be the conductor of E, which is the product of the primes of bad reduction with
the appropriate powers.3 Let ME (respectively AE) be the product of the multiplicative
(respectively additive) primes of E. Then NE = MEA

2
E.

The L-function of E is defined by

(2.6) L(E, u) :=
∏
P ∤NE

LP (E, udegP )−1
∏
P |NE

LP (E, udegP )−1.

It is proven by Weil [Kat02, BH12] that L(E, u) is a polynomial of degree4 degNE − 4 for
any non-constant elliptic curve defined over the rational function field Fq(t) and it satisfies
the functional equation

(2.7) L(E, u) = ωE (qu)deg(NE)−4L(E, 1/(q2u)),

where ωE = ±1 is the sign of the functional equation. We refer the reader to [Bru92,
Appendix] and [BH12] for more details.

Let χ be a Dirichlet character of order ℓ and conductor F , and suppose that (F,NE) = 1.
If χ is odd, we also assume that E has good reduction at P∞ (since the prime at infinity is
not included in the conductor of the Dirichlet character, we need this additional condition to

3We emphasize that we include the prime at infinity in the conductor of the elliptic curve (if the curve
has bad reduction at infinity of course). Our conductor is an effective divisor, written multiplicatively.

4The formula for the degree of L(E, u) implies in particular that there are no non-constant elliptic curves
over Fq(t) with conductor of degree smaller than 4, which can be thought of as the analogue to the fact that
there are no elliptic curves over Q with conductor smaller than 11.
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ensure that the places where χ ramifies and the places of bad reduction for E are disjoint).
The L-function of E twisted by χ is defined by

L(E,χ, u) :=
∏
P ∤NE

(1− χ(P )αPu
deg(P ))−1(1− χ(P )αPu

deg(P ))−1

×
∏
P |NE

(1− χ(P )aPu
deg(P ))−1.(2.8)

Let K be the cyclic field extension of degree ℓ of Fq(t) corresponding to χ. Then,

L(E/K, u) = L(E, u)
ℓ−1∏
i=1

L(E,χi, u).(2.9)

It follows from the Riemann Hypothesis that

L(E/K, u) =
B∏
j=1

(
1− qeiθju

)
.

Since (Fχ, NE) = 1 and E has good reduction at P∞ when χ is odd, (2.9) and Theorem 2.2
(stated and proven below) imply that B = ℓ(degNE − 4) + 2(ℓ− 1)(degF + δχ).
It is well-known that L(E,χ, u) satisfies a functional equation from the work of Weil

[Wei71]. The explicit formula for the sign of the functional equation is contained in [Wei71]
in a very general context, but we need a precise formula for the numerical computations, so
we deduce it below from the work of Tan and Rockmore [Tan93, TR92].

Theorem 2.2. Let ℓ be a prime, χ a primitive Dirichlet character of conductor F and order
ℓ, and let E be a non-constant elliptic curve with conductor NE such that (NE, F ) = 1. If
P∞ | NE, we also assume that χ is even. The L-function L(E,χ, u) is a polynomial of degree

n := degNE + 2degF − 4 + 2δχ,

where δχ is given by (2.4). Each L(E,χ, u) satisfies the functional equation

(2.10) L(E,χ, u) = ωE⊗χ (qu)n L(E,χ, 1/(q2u)),

where ωE⊗χ is the sign of the functional equation for L(E,χ, u), given by

ωE⊗χ = ω2
χ ωE χ(NE).

Proof. The sign of the functional equation (and the functional equation itself) can be deduced
from the modularity of elliptic curves over function fields. We follow [Tan93, TR92] who use
modular symbols over function fields. They consider different normalizations, so we explain
here how to adjust their work to get the result that we need. Let K = Fq(t). For any place
v, let Ov be the associated ring of integers. If N =

∑
v Nvv is an effective divisor over K, let

Γ0(N) =

{(
a b
c d

)
=

((
av bv
cv dv

))
v

∈
∏
v

GL2(Ov) : c ≡ 0 mod N

}
.

Let AK be the ring of adeles over K. Then A∗
K embeds in GL2(AK) as diagonal matrices.

Also GL2(K) embeds in GL2(AK) by the diagonal map.
A C-valued function on GL2(AK) is called a modular function of level N if it satisfies that

f(γτκ) = f(τ) for all τ ∈ GL2(AK), γ ∈ GL2(K), and κ ∈ A∗
K · Γ0(N). It is a fundamental
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result that if E is a non-constant elliptic curve over K, then there is a normalized cuspidal
modular function f of level NE such that the L-function of E is the L-function of f . This
also holds for the twisted L-functions. To make that statement precise, and use it to get
the functional equation, we will follow the notation of [Tan93, TR92], where the L-functions
are normalized differently (and we will go back to our L-function at the end). Let f be
the normalized cuspidal modular function corresponding to E, χ a Dirichlet character of
conductor coprime to NE and we define as [Tan93, (1.10)]

Lf (χ, s) =
∑
M

cf (M)χ(M)

|M |s−1
,

where M runs through all effective divisors, χ is naturally extended over effective divisors,
and the cf (M) are the normalized coefficients obtained from the Fourier expansion of f .
This is also true when χ is a quasi-character, which for our purposes is the product of a
Dirichlet character and a map χs given by χs(M) = |M |−s.

We now use the modular symbols Θf,D to get the functional equation. The modular
symbols Θf,D are elements of the group ring R[WD], where WD = K∗\A∗

K/UD is the Weil
group of a divisor D of K, and R is a ring containing all the Fourier coefficients of f . We
refer to [Tan93] for all the relevant definitions. The modular symbols are used to interpolate
special values of the twisted L-functions, and we have [Tan93, Proposition 2],

(2.11) Lf (χ, 1) = τ−1
χ χ(Θf,D),

where τχ is a Gauss sum. Using quasi-characters, we also have

(2.12) Lf (χ, s) = Lf (χχs−1, 1) = τ−1
χχs−1

(χχs−1)(Θf,D).

Using the Atkin–Lehner involution wNE
, we have when (D,NE) = 1 (including at P∞)

[Tan93, Proposition 3]

(2.13) Θf,D = Θt
wNE

(f),D NE,

where t is the involution on R[WD] sending
∑

w∈WD
aww to

∑
w∈WD

aww
−1.

Applying a quasi-character χ to Θ =
∑

w∈WD
aww results in χ(Θ) =

∑
w∈WD

awχ(w), while

applying χ together with the involution t results in χ(Θt) =
∑

w∈WD
awχ

−1(w) = χ−1(Θ).
We apply χχs−1 to (2.13), and we combine it with (2.12) to get

Lf (χ, s) =τ−1
χχs−1

(χχs−1)(Θf,D)

=τ−1
χχs−1

(χχs−1)(Θ
t
wNE

(f),D) χ(NE)|NE|−(s−1)

=
τχ−1χ1−s

τχχs−1

LwNE
(f)(χ

−1χ1−s, 1)χ(NE)|NE|−(s−1)

=
τχ−1χ1−s

τχχs−1

LwNE
(f)(χ

−1, 2− s)χ(NE)|NE|−(s−1).

The third line above follows from using (2.11) with f replaced by wNE
(f) and χχs−1 replaced

by (χχs−1)
−1, together with the observation that the involution t has the effect of inverting

the character. Using the fact that f is an eigenvector for the self-dual Atkin–Lehner operator,
we have wNE

(f) = ωEf , where ωE = ±1 is the sign of the functional equation (2.7), and
then LwNE

(f)(χ
−1, 2− s) = ωELf (χ

−1, 2− s).
9



To compute the Gauss sums associated with the quasi-characters, we use [TR92, (2.2.3)]

τχχs = qs(degD−2)τχ,

where τχ is the Gauss sum of the Dirichlet character χ of conductor D. Replacing above,
this gives

(2.14) τχLf (χ, s) = ωEτχ−1χ(NE)q
(1−s)(deg(NE)+2 deg(D)−4)Lf (χ

−1, 2− s),

where [Tan93, (3.4)] is a particular case (for s = 1). The twisted L-function of the elliptic
curve is given by

L(E,χ, s) =
∑
M

cf (M)|M |χ(M)

|M |s
= L(E,χ, u)

for u = q−s. The functional equation can be obtained by noticing that Lf (χ, s) = L(E,χ, s),
and replacing in (2.14). This leads to

τχL(E,χ, s) = ωEτχ−1χ(NE)q
(1−s)(deg(NE)+2 deg(D)−4)L(E,χ−1, 2− s).

Using u = q−s, we finally get

(2.15) L(E,χ, u) = ωE⊗χ(qu)
(deg(NE)+2 deg(D)−4)L(E,χ−1, 1/(q2u)),

where

ωE⊗χ =

(
τχ

|D|1/2

)2

ωEχ(NE).

In order to get exactly the statement of the theorem, we need to take into account the dif-
ference of notation between [Tan93] and this paper. When χ is odd and there is ramification
at P∞, the conductor D of (2.15) is P∞D′, where D′ ∈ Fq[t], and so D′ is the definition of
the conductor in this paper. Adjusting the formula to make it compatible with our notation,
we get for all cases

L(E,χ, u) = ωE⊗χ(qu)
(deg(NE)+2 deg(D)−4+2δχ)L(E,χ−1, q2u−1),

which is the functional equation (2.10). Finally, we remark that τχ
|D|1/2 is by definition the

sign of the functional equation of L(χ, u), since it is the product of the same local Gauss
sums because (D,NE) = 1, and we have ωE⊗χ = ω2

χωEχ(NE).
□

Remark 2.3. When E is a constant elliptic curve, we prove in the next section that L(E,χ, u)
satisfies the same functional equation with n = 2degF − 4 + 2δχ and ωE⊗χ = ω2

χ. This is
consistent with the fact that such E has good reduction at all primes of K, and therefore
NE = 0.

3. L-functions of constant elliptic curves over Fq(t)

By class field theory, Dirichlet characters of order ℓ over Fq(t) correspond to cyclic exten-
sions K/Fq(t) of order ℓ, where K = Fq(C) is the function field of a projective smooth curve
C defined over Fq. We call such a curve a ℓ-cyclic cover of P1

Fq
, or simply a ℓ-cyclic cover.

10



Let C be a ℓ-cyclic cover of P1
Fq

of genus g, and let K = Fq(C) be the corresponding

extension of Fq(t). The zeta function of C can be expressed as

Z(C, u) = Z(u)L(C, u) =

2g∏
j=1

(1− βju)

(1− u)(1− qu)
,(3.1)

where |βj| = q1/2 for 1 ≤ j ≤ 2g, and

Z(u) =
1

(1− u)(1− qu)
.

We also have

L(C, u) =
ℓ−1∏
i=1

L(χi, u),

where the χi are the characters of order ℓ associated to the extension K/Fq(t).
Let E0 be an elliptic curve over Fq with L-function

L(E0, u) = (1− α1u)(1− α2u).

Theorem 3.1. Let E = E0 ×Fq Fq(t), and let C,K and α1, α2, and the βj’s be as above.
Then,

L(E/K, u) = Z(C, α1u)Z(C, α2u)(3.2)

=

∏
1≤i≤2
1≤j≤2g

(1− αiβju)

∏
1≤i≤2

(1− αiu)(1− αiqu)
.

Moreover, L(E,χ, u) = L(χ, α1u)L(χ, α2u), and writing

L(χ, u) =
∏

1≤j≤2g/(ℓ−1)

(1− γju),

then

L(E,χ, u) =
∏

1≤i≤2
1≤j≤2g/(ℓ−1)

(1− αiγju).

Proof. We refer the reader to [Mil68, Section 3] and to [Oes90, Section 3.2] for the general
proof. To illustrate the ideas, we prove (3.2) when K = Fq(t). Since #E0(Fqn) = qn + 1 −
αn
1 − αn

2 , if P is a prime, then

#E(FP ) = #E0(FP ) = qdeg(P ) + 1− α
deg(P )
1 − α

deg(P )
2 .
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Since all the primes are of good reduction, we have

L(E/Fq(t), u) = L(E, u) =
∏
P

(
1− (α

deg(P )
1 + α

deg(P )
2 )udeg(P ) + qdeg(P )u2 deg(P )

)−1

=
∏
P

(
1− α

deg(P )
1 udeg(P )

)−1(
1− α

deg(P )
2 udeg(P )

)−1

=
1

(1− α1u)(1− qα1u)(1− α2u)(1− qα2u)

=Z(α1u)Z(α2u). □

Remark 3.2. From the above result, it is easy to get the functional equation for L(E,χ, u)
when E is a constant curve, using the functional equation of L(χ, u) given by (2.5). Let
m = degu L(χ, u) = 2g/(ℓ − 1). In the notation of Section 2, we have m = 2g/(ℓ − 1) =
degF − 2 + δχ, and

L(E,χ, u) = L(χ, α1u)L(χ, α2u) = ωχ (
√
qα1u)

m L(χ, 1/qα1u)ωχ(
√
qα2u)

m L(χ, 1/qα2u)

= ω2
χ(q

2u2)mL(χ, α2/(q
2u))L(χ, α1/(q

2u))

= ω2
χ (qu)

2m L(E,χ, 1/(q2u)) = ω2
χ (qu)

2 degF−4+2δχ L(E,χ, 1/(q2u))

Corollary 3.3. Let E = E0 ×Fq Fq(t), and let χ be a Dirichlet character over Fq(t) with
associated curve C and function field K = Fq(C) respectively. Then, L(E/K, q−1) = 0 if
and only if L(C, α−1

1 ) = L(C, α−1
2 ) = 0,

Proof. From equation (3.2) in Theorem 3.1, L(E/K, q−1) = 0 if and only if there is one
βj = q/α1 = α2 or βj = q/α2 = α1, where the βj’s are given by (3.1), and both α−1

1 and α−1
2

are roots of L(C, u), because of the functional equation of L(C, u). □

4. Cyclic extensions of degree ℓ over Fq(t)

We prove in this section the following result which extends the result of [DL21] to general
q and ℓ (removing the restrictions q ≡ 1 mod ℓ and yℓ = F (t) with ℓ | degF ).

Proposition 4.1. Let ℓ be an odd prime. Fix an ℓ-cyclic cover C0 over P1
Fq

with conductor

of degree d0. Then there are at least ≫ q2n/d0 ℓ-cyclic covers C over P1
Fq

with conductor of
degree bounded by n admitting a non-constant map from C to C0.

The proof of this result is fairly long and will require several intermediate steps.

4.1. General ℓ-cyclic covers over P1
Fq
. The affine equations of ℓ-cyclic covers over P1

Fq
are

well-known in the Kummer case q ≡ 1 mod ℓ, which is the case treated in [DL21]. In this
case, such a cover C over P1

Fq
has an affine equation yℓ = F1F

2
2 · · ·F ℓ−1

ℓ−1 , where Fi ∈ Fq[t]
are square-free and pairwise co-prime of degree di. The conductor of the ℓ-cyclic cover is
F1 · · ·Fℓ−1 and by the Riemann–Hurwitz formula, the genus of C is ℓ−1

2
(d1 + · · ·+ dℓ−1 − 2)

if ℓ | (d1 + 2d2 + · · ·+ (ℓ− 1)dℓ−1) and
ℓ−1
2
(d1 + · · ·+ dℓ−1 − 1) otherwise. In this later case,

there is ramification at infinity since ℓ ∤ (d1 + 2d2 + · · ·+ (ℓ− 1)dℓ−1) by Lemma 2.1.
To treat the general case and prove Proposition 4.1, we use the work of Bary-Soroker and

Meisner [BSM19], who explicitly give the affine equations of general ℓ-cyclic covers over P1
Fq
.

We summarize their results in this section.
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As before, let nq be the multiplicative order of q modulo ℓ. As seen in Section 2, the
conductors of the ℓ-cyclic covers of P1

Fq
(or of Dirichlet characters of order ℓ) are monic

square-free polynomials in Fq[t] supported on nq-divisible primes. In order to count all the
ℓ-cyclic covers, or characters of order ℓ, with such conductors, let

Fq,ℓ :={F ∈ Fq[t] : F = P e1
1 · · ·P es

s , nq | degPi, 1 ≤ ei ≤ ℓ− 1},
where the Pi are monic irreducible nq-divisible polynomials in Fq[t].

Let ϕq be the Frobenius automorphism of Fq. Then, ϕq acts on f(t) ∈ Fqnq [t] by acting
on the coefficients, and we define

Nnq(f) := fϕq(f)ϕ
2
q(f) · · ·ϕnq−1

q (f) ∈ Fq[t].

Notice that Nnq(f) has degree nq deg(f), which is always divisible by nq.
By hypothesis, each prime Pi in the factorization of F ∈ Fq,ℓ splits as a product of nq

primes in Fqnq [t], and we can write any F ∈ Fq,ℓ as

F = F1 · · ·Fnq , Fi ∈ Fqnq [t], ϕq(Fi) = Fi+1 1 ≤ i ≤ nq − 1, ϕq(Fnq) = F1.(4.1)

In other words, for F ∈ Fq,ℓ, F = Nnq(Fi) for any i. Since F1 determines Fi for all i, it
suffices to work with F1. Let

F (1)
q,ℓ = {F1 ∈ Fqnq [t] : Nnq(F1) ∈ Fq,ℓ}.

Thus, F1 ∈ F (1)
q,ℓ when F ∈ Fq,ℓ. We also have

(4.2) F1 = f1f
2
2 · · · f ℓ−1

ℓ−1 ,

where the fi ∈ Fqnq [t] are pairwise co-prime and square-free.
For any vector v = (v1, . . . , vnq) ∈ V = {0, 1, 2, . . . , ℓ− 1}nq , and any F ∈ Fq,ℓ written as

in (4.1), let Fv = Fv1
1 · · ·Fvnq

nq . For 0 ≤ k ≤ nq − 1, let vk = ([qk]ℓ, [q
k−1]ℓ, . . . , [q

k+1−nq ]ℓ),
where [α]ℓ ≡ α (mod ℓ) and 0 ≤ [α]ℓ ≤ ℓ − 1, in other words, [α]ℓ indicates the reduction
modulo ℓ of α. Thus, we have vk ∈ V . Let ζℓ ∈ Fqnq be a fixed primitive ℓth root of unity.
For any F ∈ Fq,ℓ, let CF be the curve over Fq with affine model

CF :
ℓ−1∏
j=0

(
y −

nq−1∑
k=0

ζjq
k

ℓ
ℓ
√
Fvk

)
= 0.(4.3)

Notice that there is no canonical choice for ℓ
√
Fvk

, but the above equation is still well defined,
since the factors include all the Galois conjugates.

In the Kummer case nq = 1, Fv0 = F1 = F , and CF has affine model yℓ = F (t). In the
case ℓ = 3 and q ≡ 2 mod 3, F = F1F2 and by (4.3), CF has equation

CF :

(
y − 3

√
F1F2

2 −
3

√
F2
1F2

) (
y − ζ3

3

√
F1F2

2 − ζ23
3

√
F2
1F2

)
×
(
y − ζ23

3

√
F1F2

2 − ζ3
3

√
F2
1F2

)
= 0

⇐⇒ y3 − 3F1F2y − F1F2(F1 + F2) = 0,

which is defined over Fq. In general, CF is birationally equivalent to yℓ = Fv0 over Fq. More
explicit versions of (4.3) are given in Section 4.3, including a precise formula for the case
nq = 2.
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Proposition 4.2. [BSM19, Proposition 2.14] Let B = {b ∈ F∗
qnq/(F∗

qnq )ℓ}. There is a
(ℓ − 1)-to-1 correspondence between Fq,ℓ × B and the ℓ-cyclic covers of Fq(t), and then a
1-to-1 correspondence between Fq,ℓ ×B and the characters of order ℓ over Fq(t).

We restrict in this paper to characters with monic conductors, and it then suffices to work
with the set Fq,ℓ.

Lemma 4.3. With notation as above, assume nq > 1. Then for each 0 ≤ k ≤ nq − 1, we
have ℓ | deg(Fvk

).

Proof. By construction,

deg(Fvk
) =

nq∑
j=1

vk,j deg(Fj) =

nq∑
j=1

vk,j deg
(
ϕj−1

(
f1f

2
2 · · · f ℓ−1

ℓ−1

))
≡

nq∑
j=1

qk+1−j

ℓ−1∑
h=1

h deg(ϕj−1(fh)) ≡
ℓ−1∑
h=1

h deg(fh)

nq∑
j=1

qk+1−j mod ℓ.

Since nq > 1,
nq∑
j=1

qk+1−j =
qk+1−nq(qnq − 1)

q − 1
≡ 0 mod ℓ. □

4.2. From one to infinitely many ℓ-cyclic covers. Given an ℓ-cyclic cover C0, we can
build ℓ-cyclic covers C with a non-constant map to C0 by a change of variables, as done in
[DL21, Lemma 3.2] for the Kummer case when ℓ | degF . We can detect the curves CF with
F ∈ Fq,ℓ using the following lemma.

Lemma 4.4. Let f ∈ Fqnq [t]. Then, Nnq(f) is square-free iff f = p1 · · · ps where the pi are
such that Nnq(pi) are distinct nq-divisible primes of Fq[t].

Proof. If f = p1 · · · ps, where the pi are such that Nnq(pi) are distinct nq-divisible primes of
Fq[t], then it is clear that Nnq(f) = Nnq(p1) · · ·Nnq(ps) is square-free.
Now assume that Nnq(f) = Nnq(p1) · · ·Nnq(ps) is square-free. Then it is clear that the

Nnq(pi) are distinct primes in Fq[t]. Finally, they are nq-divisible, since they are the result
of taking the Nnq -norm. □

Definition 4.5. For a one-variable polynomial f(t) ∈ Fq[t], let f ∗(u, v) := vdeg(f)f(u/v)
denote the homogeneous polynomial in variables u, v resulting from the change of variables
t = u/v.

Lemma 4.6. Let F ∈ Fq,ℓ, with F1 ∈ F (1)
q,ℓ given by (4.1) and CF given by (4.3). As in

(4.2), we write F1 = f1f
2
2 · · · f ℓ−1

ℓ−1 , where fi ∈ Fqnq [t] are pairwise co-prime and square-free.

• Let h(t) be a non-constant polynomial in Fq[t] such that

Nnq(f1(h(t))f2(h(t)) · · · fℓ−1(h(t)))

is square-free. Then, (F ◦ h)(t) = Nnq(F1(h(t))) ∈ Fq,ℓ. Let CF◦h be given by (4.3).
Then,

CF◦h −→ CF

(t, y) 7→ (h(t), y)
14



is a non-constant map from CF◦h to CF .
• Assume that nq > 1. Let u(t), v(t) be non-constant polynomials in Fq[t] such that

Nnq

(
f ∗
1 (u, v) · · · f ∗

ℓ−1(u, v)
)

is square-free. Then G(t) = Nnq (F
∗
1(u(t), v(t))) ∈ Fq,ℓ. Let CG be given by (4.3).

Then

CG −→ CF

(t, y) 7→
(
u(t)/v(t), yv(t)− deg(Fv0 )/ℓ

)
is a non-constant map from CG to CF .

• Assume that nq = 1 and write degF = Aℓ − δ, where 0 ≤ δ ≤ ℓ − 1. Let u(t), v(t)
be non-constant polynomials in Fq[t] such that f ∗

1 (u, v)f
∗
2 (u, v) · · · f ∗

ℓ−1(u, v) is square-
free. Let g∗i = f ∗

i for i ̸= δ and g∗δ = vf ∗
δ . Then, g∗1(u, v)g

∗
2(u, v) · · · g∗ℓ−1(u, v) is also

square-free and G(t) = g∗1(u, v)g
∗
2(u, v)

2 · · · g∗ℓ−1(u, v)
ℓ−1 ∈ Fq,ℓ. Let CG : yℓ = G(t).

Then

CG −→ CF

(t, y) 7→
(
u(t)/v(t), yv(t)−A

)
is a non-constant map from CG to CF .

Proof. We prove the second and third point in the statement, as the first point is a conse-
quence of them. First consider the case where nq > 1. We replace t by u(t)/v(t) in equation
(4.3) and we get

ℓ−1∏
j=0

y −
nq−1∑
k=0

ζjq
k

ℓ

ℓ

√
F ∗
vk
(u, v)

vdeg(Fvk
)

 = 0.

Recall from Lemma 4.3 that for the non-Kummer case, ℓ | deg(Fvk
). Notice also that the

vk are all permutations of each other. In fact, vk+1 can be constructed from vk by shifting
each element one place to the right cyclically and using the fact that qnq ≡ 1 mod ℓ. Writing

A =
deg(Fvk

)

ℓ
, and making the change of variables Y = vAy, we finally have

ℓ−1∏
j=0

(
Y −

nq−1∑
k=0

ζjq
k

ℓ
ℓ

√
F ∗
vk
(u, v)

)
= 0,

which is CG for G(t) = Nnq (F
∗
1(u(t), v(t))).

We now consider the Kummer case. We replace t by u(t)/v(t) in yℓ = F (t) to get

vAℓyℓ = vδF ∗(u, v) = g∗1(u, v)g
∗
2(u, v)

2 . . . g∗ℓ−1(u, v)
ℓ−1,

and with the change of variables Y = vAy, we get

Y ℓ = g∗1(u, v)g
∗
2(u, v)

2 . . . g∗ℓ−1(u, v)
ℓ−1,

which is CG for G(t) = g∗1(u, v)g
∗
2(u, v)

2 . . . g∗ℓ−1(u, v)
ℓ−1. □

Then Lemma 4.6 translates the conditions for finding curves CG with a map to CF to
detecting when Nnq

(
f ∗
1 (u, v) · · · f ∗

ℓ−1(u, v)
)
is square-free. We can now proceed to the proof

of Proposition 4.1.
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Proof of Proposition 4.1. Our proof follows the argument of [DL21], but without restricting
to the particular case where nq = 1 and ℓ | degF . We concentrate on the parts of their
argument where using the general setting explained above introduces some changes, and we
just refer to their article for the parts of their argument that can be directly used.

Let F = F0 be as in Lemma 4.6 and let C0 = CF0 be the curve (4.3). Let d0 be the
degree of the conductor. We now give a lower bound for the number of ℓ-cyclic covers with
conductor of degree smaller than n that can be obtained by the process of Lemma 4.6 applied
to F0, by using the square-free sieve over Fq[t].

Let

P(n) = {(D1, . . . , Dℓ−1) ∈ (Fqnq [t])ℓ−1 : D1, . . . , Dℓ−1 pairwise co-prime, monic, square-free,

F1 = D1 · · ·Dℓ−1
ℓ−1 ∈ F (1)

q,ℓ , deg (D1 · · ·Dℓ−1) ≤ n}
= {(D1, . . . , Dℓ−1) ∈ (Fqnq [t])ℓ−1 : D1, . . . , Dℓ−1 monic, Nnq(D1 · · ·Dℓ−1) square-free,

deg (D1 · · ·Dℓ−1) ≤ n},

where the second line follows from Lemma 4.4.
By the above discussion, each tuple (D1, . . . , Dℓ−1) ∈ P(n) gives rise to the ℓ-cyclic cover

CF where F1 = D1D
2
2 · · ·Dℓ−1

ℓ−1 and F = Nnq (F1). The conductor is Nnq(D1 · · ·Dℓ−1) of

degree ≤ nqn, and then the genus is such that g ≤ ℓ−1
2
(nqn− 2).

We write F0
1 = f1f

2
2 · · · f ℓ−1

ℓ−1 where fi ∈ Fqnq [t] and Nnq(F
0
1) = F0. Notice that d0 =

deg(Nnq(f1 · · · fℓ−1)) = nq(deg(f1) + · · · + deg(fℓ−1)). We count the number of distinct
(D1, . . . , Dℓ−1) ∈ P(n) such that there exists (u, v) ∈ Fq[t]

2 with

(4.4) D1(t) = f ∗
1 (u(t), v(t)), . . . , Dℓ−1(t) = f ∗

ℓ−1(u(t), v(t)).

We then need to detect when Nnq(D1 · · ·Dℓ−1) is square-free. Let G(u, v) denote the
homogeneous polynomial such that

Nnq(f
∗
1 (u, v) · · · f ∗

ℓ−1(u, v)) = G(u, v).

We now apply a result of Poonen [Poo03] which counts the number of square-free values
of G(u, v) as u, v runs over polynomials in Fq[t], as given in [DL21] in a form suitable for our
application.

Proposition 4.7. [Poo03, Theorem 8.1] [DL21, Proposition 3.4] Let P be a finite set of
primes in Fq[t], B be the localization of Fq[t] by inverting the primes in P , K = Fq(t),
f ∈ B[x1, . . . , xm] be a polynomial that is square-free as an element of K[x1, . . . , xm] and for
a choice of x ∈ Fq[t]

m, we say that f(x) is square-free in B if the ideal (f(x)) is a product of
distinct primes in B. For b ∈ B, define |b| = |B/(b)| and for b = (b1, . . . , bn) ∈ Bn, define
|b| = max |bi|. Let

Sf := {x ∈ Fq[t]
m : f(x) is square-free in B},

µSf
:= lim

N→∞

|{b ∈ Sf : |b| < N}|
Nm

.

For each nonzero prime π of B, let cπ be the number of x ∈ (A/π2)m that satisfy f(x) = 0
in A/π2. The limit µSf

exists and is equal to
∏

π(1− cπ/|π|2m).
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We then apply Proposition 4.7 to G(u, v). Following [DL21, Remark 3.5], let B be the
localization of Fq[t] by the set of primes π with |π| ≤ deg(Nnq(f1 · · · fℓ−1)) = d0. This
guarantees that

µSG
= lim

N→∞

|{b ∈ Fq[t]
2, |b| ≤ N : G(b) is square-free in B}|

N2
> 0.

The curve CF associated to F = Nnq(D1D
2
2 · · ·Dℓ−1

ℓ−1) = F ∗
0 (u(t), v(t)) as in (4.4) has genus

bounded by ℓ−1
2
(d0 deg(u(t)/v(t))−2), and therefore, if we want to guarantee that the genus

of CF is less or equal than g, we can prescribe that

(4.5) deg(u(t)/v(t)) := max{deg u(t), deg v(t)} ≤ g + ℓ− 1

g0 + ℓ− 1
,

where g0 is the genus of CF0 .
Now we want to give an upper bound for the b = (u, v) ∈ Fq[t]

2 satisfying condition (4.5)
such that equation (4.4) is satisfied. Now take N = qn, with n = 2g

ℓ−1
+ 2, and we impose

the condition max{deg u, deg v} ≤ n/d0. Notice that

n

d0
=

2g + 2(ℓ− 1)

d0(ℓ− 1)
=

2g + 2(ℓ− 1)

(d0 − 2)(ℓ− 1) + 2(ℓ− 1)
=

g + ℓ− 1

g0 + ℓ− 1
,

and therefore condition (4.5) is satisfied. Applying Proposition 4.7, we get a positive pro-
portion of ≫ µN2/d0 = µq2n/d0 such that Nnq(D1 · · ·Dℓ−1) is square-free.
To conclude, for a fixed tuple (D1, . . . , Dℓ−1) we need to find an upper bound on the

number of pairs (u(t), v(t)) such that (4.4) is satisfied in order to correct a double counting.
Following a similar reasoning to [DL21], we bound this number by qn2qεn.
In total, for n sufficiently large, we have

≫ µqn(2/d0−ε)

elements in P(n) corresponding to ℓ-cyclic covers of P1
Fq

with conductor of degree bounded
by n that admit a non-constant map to C0. □

We then need a geometric condition for the vanishing of L(C, u) at some point u = u−1
0 ,

where C is a curve over Fq. This is given by the following theorem of Li [Li18, Section 2]
relating the existence of a rational map between curves to the divisibility of the L-functions.
The proof uses Honda–Tate theory, which states that every q-Weil number is an eigenvalue
of the geometric Frobenius acting on the ℓ-adic Tate module of a simple abelian variety over
Fq, which is unique up to isogeny. We refer the reader to [Li18, Section 2] for the details,
and the proof of the following theorem.

Theorem 4.8. Let u0 be a q-Weil number and let A0 be (the isogeny class of) the unique
simple Abelian variety over Fq having u0 as a Frobenius eigenvalue, as guaranteed by the
theorem of Honda–Tate. Let C be a curve over Fq. Then, L(C, u−1

0 ) = 0 if and only if there
exists a non-trivial map C → A0 if and only if L(A0, u) divides L(C, u).

Proof of Theorems 1.1 and 1.2. The proof of Theorem 1.1 follows directly from Proposition
4.1 and Theorem 4.8: let C0 be the ℓ-cyclic cover associated to χ0, i.e. L(C0, u

−1
0 ) = 0. By

Proposition 4.1 and Theorem 4.8, there are at least q2n/d0 ℓ-cyclic covers with conductor of
degree ≤ n such that L(C0, u) | L(C, u) =

∏ℓ−1
i=1 L(χi, u), and then at least q2n/d0 characters

of order ℓ and conductor of degree ≤ n such that L(χ, u−1
0 ) = 0.
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The proof of Theorem 1.2 follows directly from Corollary 3.3 and the above. Indeed, if
E = E0 ×Fq Fq(t) and there exists χ0 such that L(E,χ0, q

−1) = 0, then by Corollary 3.3,

L(Cχ0 , α
−1
1 ) = 0, and we reason as above. □

4.3. Explicit equation for ℓ-cyclic covers. We now give more information about the
equation (4.3), including a precise formula for nq = 2, using the work of Gupta and Zagier
[GZ93]. We used these general formulas for nq = 2 to obtain the equations for the curves
C1, C2 and C3 in Section 5.2.

Let ℓ be an odd prime number coprime to q, let ωℓ denote a complex ℓ-root of unity, and
let Rℓ,q denote a set of coset representatives of (Z/ℓZ)∗ modulo the cyclic subgroup ⟨q⟩.
Following [GZ93], we define the polynomial the complex polynomial

(4.6) Ψℓ,nq(y) =
∏

j∈Rℓ,q

(
y −

nq−1∑
k=0

ωjqk

ℓ

)
,

This is a polynomial of degree ℓ−1
nq

. Notice that for nq = 1, Ψℓ,1(y) gives the ℓth cyclotomic

polynomial and for nq = 2, Ψℓ,2(y) gives the ℓth real cyclotomic polynomial.
Gupta and Zagier prove various results regarding the coefficients of Ψℓ,nq(y), and in par-

ticular, they recover a formula of Gauss:

(4.7) Ψℓ,2(y) =

ℓ−1
2∑

n=0

(−1)⌊
ℓ−1−2n

4 ⌋
(⌊

ℓ−1+2n
4

⌋
n

)
yn.

In the following result we relate the coefficients in the equation defining CF in (4.3) to those
of Ψℓ,nq . Together with the results of [GZ93], and (4.7) in particular, this allows us to
compute a more explicit formula for equation (4.3) in the case nq = 2.

Proposition 4.9. Let ℓ be an odd prime coprime to q and let Ψℓ,nq(y) be defined as in (4.6).
Let am be the coefficients of the following polynomial

(4.8) yℓ +
ℓ−1∑
m=0

amy
m := Ψℓ,nq(y)

nq(y − nq).

Then, am ∈ Z, and there exists certain coefficients bs0,...,snq−1 ∈ Fp ⊆ Fq such that the

equation defining CF in (4.3) can be written as
(4.9)

CF : yℓ+
ℓ−1∑
m=0

∑
0≤sk∑nq−1

k=0 sk=ℓ−m∑nq−1

k=0 qksk≡0 mod ℓ

bs0,...,snq−1F
1
ℓ

∑nq−1

k=0 sk[q
k]ℓ

1 F
1
ℓ

∑nq−1

k=0 sk[q
k−1]ℓ

2 · · ·F
1
ℓ

∑nq−1

k=0 sk[q
k+1−nq ]ℓ

nq ym = 0.

Furthermore, the bs0,...,snq−1 satisfy

(4.10)
∑
0≤sk∑nq−1

k=0 sk=ℓ−m∑nq−1

k=0 qksk≡0 mod ℓ

bs0,...,snq−1 = am,
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where the am are given by (4.8) and the equality takes place in Fp ⊆ Fq after reducing the
am modulo p (the characteristic of Fq).
In particular, for nq = 2, we have

(4.11) CF : yℓ +

ℓ−1
2∑

r=1

a2r−1(F1F2)
ℓ+1
2

−ry2r−1 − F1F2(F
ℓ−2
1 + Fℓ−2

2 ) = 0.

Before proceeding to the proof, we remark that the condition
∑nq−1

k=0 qksk ≡ 0 mod ℓ

implies that
∑nq−1

k=0 qk−jsk ≡ 0 mod ℓ (since (q, ℓ) = 1), and therefore each of the exponents
of the Fj in (4.9) is an integer. One can also see that the bs0,...,snq−1 are invariant by cyclic
permutation of the subindexes. Each of these cyclic permutations results in a permutation
in the exponents of the Fj. Thus, the final polynomial is symmetric in the Fj.

Proof. The initial step of the proof follows from the elementary fact that

Ψℓ,nq(y)
nq(y − nq) =

ℓ−1∏
j=0

(
y −

nq−1∑
k=0

ωjqk

ℓ

)
.

Since the above polynomial has coefficients in the algebraic integers Z, and is invariant under
Galois action, we conclude that Ψℓ,nq(y)

nq(y − nq) ∈ Z[y] and am ∈ Z.
Following some ideas from [GZ93], we consider more generally

fℓ,nq(A0, . . . , Anq−1) =
ℓ−1∏
j=0

(
1−

nq−1∑
k=0

ωjqk

ℓ Ak

)
,

and we remark again that this polynomial has coefficients in Z.
Taking the formal logarithm,

− log fℓ,nq(A0, . . . , Anq−1) =
ℓ−1∑
j=0

∞∑
m=1

(∑nq−1
k=0 ωjqk

ℓ Am

)m
m

=
ℓ−1∑
j=0

∞∑
m=1

1

m

∑
h0+···+hnq−1=m

hi≥0

(
m

h0, . . . , hnq−1

)
ω
∑nq−1

k=0 jqkhk

ℓ Ah1
0 · · ·Ahnq−1

nq−1

=
∞∑

m=1

1

m

∑
h0+···+hnq−1=m

hi≥0

(
m

h1, . . . , hnq

)
Ah0

0 · · ·Ahnq−1

nq−1

ℓ−1∑
j=0

ω
j
∑nq−1

k=0 qkhk

ℓ

and the innermost sum is zero unless
∑nq−1

k=0 qkhk ≡ 0 mod ℓ.
In conclusion, the only powers ofA0, . . . , Anq−1 appearing in the Taylor series of log fℓ,nq(A0, . . . , Anq−1)

and consequently in the Taylor series of fℓ,nq(A0, . . . , Anq−1) are of the form As0
0 · · ·Asnq−1

nq−1

such that

(4.12)

nq−1∑
k=0

qksk ≡ 0 mod ℓ.
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But the total degree of fℓ,nq is ℓ, and therefore 0 ≤ s0 + · · · + snq−1 ≤ ℓ. Putting this
information together, we obtain

(4.13) fℓ,nq(A0, . . . , Anq−1) = 1 +
ℓ−1∑
m=0

∑
0≤sk∑nq−1

k=0 sk=ℓ−m∑nq−1

k=0 qksk≡0 mod ℓ

bs0,...,snq−1A
s0
0 · · ·Asnq−1

nq−1 .

Reducing modulo p (the characteristic of Fq), making the change of variables

Ak =
ℓ
√
Fvk

y
=

1

y
F

[qk]ℓ
ℓ

1 F
[qk−1]ℓ

ℓ
2 · · ·F

[qk+1−nq ]ℓ
ℓ

nq ,

and multiplying by yℓ, we obtain equation (4.9). Identity (4.10) follows from comparing with
(4.8).

When nq = 2, we have q ≡ −1 mod ℓ. Equation (4.12) and condition
∑nq−1

k=0 sk = ℓ −m
reduce the choices of s0, s1 to two cases: either s0 = s1 and m ̸= 0 or (s0, s1) = (0, ℓ), (ℓ, 0)
and m = 0.

For the case s0 = s1, we can set A0 = A1 and reduce to the case of [GZ93, Theorem

3] to find the coefficients of each (A0A1)
s1 . We then replace A0 =

ℓ
√

F1F
ℓ−1
2

y
, A1 =

ℓ
√

Fℓ−1
1 F2

y

(or equivalently, we replace A0A1 by F1F2

y
), and obtain the coefficients am for m ̸= 0 from

the statement. In this case one can see from working with Ψℓ,2(y) that am = 0 for m even
different from 0.

The cases (s0, s1) = (0, ℓ), (ℓ, 0) only occur for the constant coefficient in (4.9) which is

(−1)ℓω
0+···+(ℓ−1)
ℓ (Aℓ

0 + Aℓ
1) = −(Aℓ

0 + Aℓ
1).

Replacing again A0 =
ℓ
√

F1F
ℓ−1
2

y
, A1 =

ℓ
√

Fℓ−1
1 F2

y
and multiplying by yℓ gives equation (4.11).

□

5. Numerical data

5.1. Description of the code. We want to compute L-functions L(E,χ, u) described by
(2.8), where χ is a character of conductor F . To simplify, we are choosing q = p to be prime.

Following Section 2, the L-functions are polynomials of degree n = degNE +2degF −4+
2δχ, and

L(E,χ, u) =
n∑

n=0

( ∑
f∈Mn

afχ(f)

)
un =

n∑
n=0

cnu
n,

where Mn is the set of monic polynomials of degree n in Fp[t].
Using the functional equation (2.10), we get

(5.1) cn = ωE⊗χ p2(n−⌊n/2⌋−1) cn−n, 0 ≤ n ≤ n,

and it suffices to compute ci for 0 ≤ i ≤ ⌊n/2⌋. 5

5It follows from (5.1) that we can compute numerically the sign of the functional equation by computing
cn/2 when n is even, and c⌊n/2⌋ and c⌊n/2⌋+1 when n is odd. We used this in the numerical data to compute
twists of the Legendre curve by odd characters, as in this case Theorem 2.2 does not apply. Of course, this
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We then need to compute the af appearing in (2.8), for deg f ≤ n/2. It follows from the
Euler product that afg = afag for (f, g) = 1, and for P ∈ Fp[t] and n ≥ 1,

aPn =

{
aPaPn−1 − paPn−2 , if P ∤ NE,

aPaPn−1 , if P | NE.

We now turn to the computation of the aP of a fixed curve E : y2 = x3+a(t)x2+b(t)x+c(t).
For P prime, we compute aP using

aP = −
∑

x∈Fp[t]
deg(x)<deg(P )

(
x3 + a(t)x2 + b(t)x+ c(t)

P

)
.

After we have computed all af for deg f ≤ (degNE + 2d − 4 + 2δχ)/2, we can evaluate
L(E,χ, u) for any Dirichlet character with conductor of degree d over Fp[t]. We go through
the characters of order ℓ and conductor degree d in the following way. Let np be the multi-
plicative order of p modulo ℓ as before. Let F ∈ Fp[t] be a polynomial of degree d supported
on np-divisible primes. We can enumerate all characters of order ℓ and conductor F by choos-
ing only one character per cyclic extension of order ℓ of Fp(t), since the L-functions of the
ℓ− 1 characters associated to the same extension K vanish together. Writing F = P1 · · ·Pk,
where the Pi are distinct np-divisible primes, and Pi = Pi,1 · · ·Pi,np over Fpnp (t), we consider
the (non-conjugate) characters of conductor F over Fp(t) given by

(5.2) χ(A) = χP1,1(A)
k∏

j=2

χ
aj
Pj,1

(A),

for aj ∈ {1, . . . , ℓ − 1}, and where each χPj,1
is the ℓth-power residue symbol modulo Pj,1

over Fpnp (t) defined in Section 2.

5.2. Vanishing of twists of constant curves: numerical data. Let E0 be an elliptic
curve over Fp with L(E0, u) = (1 − α0u)(1 − α0u), and let E = E0 ×Fp Fp(t). By (2.9),
L(E,χ, p−1) = 0 for some character χ associated to K/Fp(t) if and only if L(E/K, p−1) = 0,
and using the results of Section 3, this is equivalent to

L(E0, u) | L(Cχ, u) =
ℓ−1∏
j=1

L(χj, u).

By Theorem 1.2, once we have found one χ0 such that L(Cχ0 , α
−1
0 ) = 0, then there are

infinitely many, so we concentrate on finding χ0. We examined degree 2 factors of L(χj, u)
which arise as L(E0, u) for some E0 over Fp.
In particular, we considered the case where L(χ, u) has degree 2, which in the case of

even (respectively odd) characters means that the conductor of χ is a polynomial of degree
4 (respectively 3) in Fp[t]. Table 1 presents results for this case: for fixed values of ℓ and p,
we computed L(χ, u) for all characters such that L(χ, u) is a polynomial of degree 2, and we
listed all the cases that we found where L(χ, u) = L(E0, u) for some elliptic curve E0/Fp.
Notice that this means L(Cχ, u) = L(E0, u)

ℓ−1. Each entry in Table 1 may correspond to

requires cn/2 ̸= 0. When cn/2 = 0, we computed the next coefficient c(n/2)+1 to get the sign of the functional

equation. In all the cases considered, c(n/2)+1 was not zero (when cn/2 = 0), so this was enough.
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many characters χ. We did not count them, but our program keeps an instance for each
case. For example, the curve C1/F5 given by

y3 + (2t4 + 2t3 + t2 + 4t+ 4)y + (3t6 + 2t5 + 2t4 + 2t3 + t2 + t+ 3) = 0

has L-function L(C1, u) = (1 + 5u2)2; the curve C2/F59 given by

y5 + (54t4 + 18t3 + 34t2 + 18t+ 39)y3 + (5t8 + 23t7 + 44t6 + 20t5 + 35t4 + 30t3 + 17t2 + 33t+ 21)y

+ (57t10 + 18t9 + 24t8 + 58t7 + 14t6 + 9t5 + 41t4 + 17t3 + 38t2 + 48t+ 44) = 0

has L-function L(C2, u) = (1 + 59u2)4; and the curve C3/F13 given by

y7 + (6t4 + 6t3 + 6t2 + 12t+ 1)y5 + (t8 + 2t7 + 3t6 + 6t5 + t4 + 5t+ 4)y3+

(6t12 + 5t11 + 10t10 + 7t8 + 2t7 + 3t6 + 9t5 + 3t4 + 2t3 + 6t2 + t+ 4)y+

(11t14 + 6t13 + 12t12 + 10t11 + 5t10 + 8t9 + 6t8 + 2t7 + 2t6 + 10t5 + 7t4 + 12t3 + 3t2 + 3t+ 9) = 0

has L-function L(C3, u) = (1 + 13u2)6.
Of course, it would be interesting to prove some criteria which guarantees the existence

of a character of degree ℓ over Fp such that L(E0, u) divides L(χ, u). From the data, we
are led to believe that this could always be the case when np = 2 and L(E0, u) = 1 + pu2,
corresponding to the isogeny class of supersingular elliptic curves over Fp, but we currently
do not have a proof. We present further evidence for larger values of ℓ in Table 2. Since
this becomes more time-consuming, we only consider a thin family of the characters of order
ℓ, where aj = 1 for all j in (5.2). In some cases ((ℓ, p) = (13, 103), (17, 101), (31, 61), and
(37, 73)), we did not go over all characters in the thin family, we stopped after we found
L(χ, u) = (1 + pu2), so there might be other characters where L(χ, u) = (1 + apu + pu2).
In summary, the following is true for all the cases that we tested: for every ℓ, p such that
np = 2, there exists a character χ of order ℓ over Fp such that L(χ, u) = 1 + pu2.

Remark 5.1. There is a large amount of work in the literature on Newton polygons of cyclic
covers of P1, in particular on the existence of supersingular and superspecial curves. See for
example, [LMPT19b, LMPT19a, LMPT20]. But the existence of the curves we present in
this paper does not follow from previous work. In fact, the existence of supersingular curves
in families of cyclic covers which ramify at 4 points with growing degree ℓ is surprising from
a dimension counting perspective. More surprisingly, these curves are defined over the prime
field Fp.

5.3. Vanishing of twists of non-constant curves: numerical data. We now present
data for the vanishing of L(E,χ, p−1), where χ varies over characters of order ℓ over the
finite field Fp for some prime p, and where E is a non-constant curve. We used the Legendre
curve E1 : y

2 = x(x− 1)(x− t) and the curve E2 : y
2 = (x− 1)(x− 2t2 − 1)(x− t2).

We remark that E1 has conductor N1 = t(t − 1)P 2
∞, discriminant ∆1 = 16t2(t − 1), and

j-invariant j1 = 256(t2−t+1)3

t2(t−1)2
. Thus, it is smooth and non-constant and has bad reduction

at P∞. Since deg(N1) = 4, we conclude that L(E1, u) = 1. Since the algebraic rank is
bounded by the analytic rank (see [Tat95]) and this last one equals 0, we conclude that E1

has (algebraic) rank 0 over Fp(t).
22



ℓ p np L(χ, u) = 1 + apu+ pu2

3

5 2 0, 3

7 1 −2,−1, 1, 2, 4

11 2 −3, 0, 3, 6

13 1 −5,−4,−2,−1, 1, 2, 4, 5

17 2 −6,−3, 0, 3, 6

19 1 −8,−7,−5,−4,−2,−1, 1, 2, 4, 5, 7, 8

5

3 4 ∅
7 4 3

11 1 −2, 2, 3

13 4 −1, 4

19 2 0, 5

29 2 0

31 1 −2, 2, 3, 8

7
13 2 0

29 1 −2, 2, 5

11
23 1 ∅
43 2 0

13 5 4 ∅
61 11 4 ∅

Table 1. All instances of E0 for which there is a χ of order ℓ over Fp such
that L(χ, u) = L(E0, u) for some elliptic curve E0/Fp.

Similarly, E2 has conductor N2 = t(t−1)(t+1)(t2+1), discriminant ∆2 = 64t4(t−1)2(t+

1)2(t2 + 1)2, and j-invariant j2 = 1728(t4+1)3

t4(t−1)2(t+1)2(t2+1)2
. Thus, it is smooth and non-constant

and has good reduction at P∞. Since deg(N2) = 5, we have L(E2, u) = 1± pu, and the rank
of E2 over Fp(t) is at most 1. Let i be a primitive four root of unity in Fp, and consider the
point

P = ((1 + i)t2 + (1 + i)t+ 1, (−1 + i)t(t+ 1)(t− i))

in E2(K), where K = Fp(t)(i). One can see that the Néron–Tate height of P is positive,
and therefore P has infinite order (see the book of Shioda and Schütt [SS19] for a general
reference). As before, we use that the algebraic rank is bounded by the analytic rank [Tat95].
If p ≡ 1 mod 4, then K = Fp(t), and we conclude that E2 has (algebraic) rank exactly 1
over Fp(t). Therefore L(E2, u) = 1− pu. If p ≡ 3 mod 4, then K = Fp2(t), and K/Fp(t) is
a quadratic constant field extension. Therefore L(E/K, u) = 1− p2u, since degNE − 4 = 1.
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ℓ p np L(χ, u) = 1 + apu+ pu2

13 103 2 0

17
67 2 0

101 2 0

19 37 2 0

31 61 2 0

37 73 2 0

Table 2. More cases where there is a character χ of order ℓ over Fp such that
L(χ, u) = (1+ p2u). For the cases (ℓ, p) = (17, 67) and (19, 37), we considered
all characters in the thin family, and we did not find any other cases where
L(χ, u) = L(E0, u) except for L(E0, u) = (1 + p2u). For the other cases, we
stopped after finding χ such that L(χ, u) = (1+ p2u), and we did not find any
other L(E0, u) up to that point.

We also have

(5.3) L(E2/K, u2) = L(E2, u)L(−E2, u),

where
−E2 : −y2 = (x− 1)(x− 2t2 − 1)(x− t2).

We remark that we have L(E2, u
2) and not L(E2, u) in (5.3) because K/Fp(t) is a constant

field extension (see [Ros02, Chapter 8] for more details). When p ≡ 3 mod 4, the point
2P = (t2+1, it2) defined over Fp2(t) yields a (non-torsion) point P̃ = (t2+1, t2) defined over
Fp(t) on −E2. Thus the algebraic rank of −E2 over Fp(t) is 1 and L(−E2, u) = 1− pu. Now
(5.3) implies that L(E2, u) = 1 + pu. In conclusion, we have that

L(E2, u) =

{
1− pu if p ≡ 1 mod 4,

1 + pu if p ≡ 3 mod 4.

We present in Tables 3, 4, and 5 our results for twists of the Legendre curve with characters
of order 3, 5, and 7 respectively, and various ground fields Fp(t). For the curve given by
y2 = (x−1)(x−2t2−1)(x− t2), we present in Tables 7, 8, and 9 our results for twists of this
curve with characters of order 3, 5, and 7 respectively, and various ground fields Fp(t). We
have also tested higher order twists (ℓ = 11, 13 for E1 and ℓ = 11, 31, 71 for E2) but without
finding any vanishing. This data is presented in Tables 6 and 10.

Each table has the same format: the first three columns are the values of ℓ, p and np and
the fourth column is the degree d of the conductors of the characters of order ℓ over Fp(t)
considered (then, np always divides d). The L-functions L(E,χ, u) are then computed for
all χ of order ℓ over Fp(t) with conductor of degree d, and they are classified according to
their analytic rank, which is defined as rank(χ) = ran(E,χ) = ordu=q−1L(E,χ, u). Since
rank(χi) = rank(χj), we only count one power per character in our data. Then, the next
columns give the number of such χ where the analytic rank is 0, or 1, or 2, . . . The most
extensive computation that we did was for twists of order ℓ = 3 of the curve E2 for conductors
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of degree 8 over F5(t), where we needed to compute aP for primes of degree ≤ 8, which is
the most involved part of computing the twisted L-functions L(E2, χ, u) for characters with
conductors of degree 8. This took approximately 20 days on an Intel(R) Core(TM) i5-4300U
CPU. This is also the only case where we found a twist of analytic rank 3.

The data for the Legendre curve is very compatible with the conjectures of [DFK04] and
[MR21], as we have found no instances of vanishing for any character of order 7 or higher.
For the curve E2, we have found many instances of vanishing for characters of order 7, but
none for characters of higher order.

twist order p np deg conductor d rank 0 rank 1 rank 2

3

5 2

2 6 4 0

4 205 32 3

6 5784 260 16

8 302640 116 4

7 1

1 5 0 0

2 37 4 0

3 324 37 1

4 2935 73 0

Table 3. Twists of order 3 for the Legendre curve.

twist order p np deg conductor d rank 0 rank 1

5

7 4 4 585 3

11 1

1 9 0

2 199 0

3 3759 5

4 65143 11

19 2 2 170 1

Table 4. Twists of order 5 for the Legendre curve.
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twist order p np deg conductor d rank 0

7

5 6 6 2580

11 3 3 440

13 2
2 78

4 25116

23 3 3 4048

29 1

1 27

2 2512

3 179192

41 2 2 820

197 1 1 195

337 1 1 335

379 1 1 377

Table 5. Twists of order 7 for the Legendre curve. We have found no in-
stances of vanishing in this case.

twist order p np deg conductor d rank 0

11

5 5 5 624

23 1 1 21

43 2 2 903

67 1 1 65

89 1 1 87

13

5 4 4 150

29 3 3 8120

53 1
1 51

2 16678

Table 6. Twists of order 11 and 13 for the Legendre curve. We have found
no instances of vanishing in this case.
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twist order p np deg conductor d rank 0 rank 1 rank 2 rank 3

3

5 2

2 8 2 0 0

4 214 26 0 0

6 5780 280 0 0

8 149222 2136 20 2

7 1

1 4 0 0 0

2 30 2 0 0

3 264 22 2 0

4 2299 49 4 0

5 18670 240 2 0

6 148537 1343 32 0

11 2 2 53 0 1 0

13 1

1 8 0 0 0

2 122 12 0 0

3 2140 56 4 0

17 2 2 116 20 0 0

19 1
1 14 2 0 0

2 380 28 2 0

23 2 2 244 6 2 0

29 2 2 364 42 0 0

31 1
1 26 2 0 0

2 1190 24 6 0

103 1 1 100 0 0 0

109 1 1 104 0 0 0

151 1 1 146 2 0 0

Table 7. Twists of order 3 for the curve y2 = (x− 1)(x− 2t2 − 1)(x− t2).
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twist order p np deg conductor d rank 0 rank 1 rank 2

5

7 4 4 587 0 1

11 1

1 8 0 0

2 166 0 0

3 3064 0 0

19 2 2 170 0 0

29 2 2 388 18 0

31 1
1 28 0 0

2 1975 0 1

41 1 1 36 0 0

101 1 1 96 0 0

131 1 1 128 0 0

Table 8. Twists of order 5 for the curve y2 = (x− 1)(x− 2t2 − 1)(x− t2).

twist order p np deg conductor d rank 0 rank 1

7

5 6 6 2560 20

11 3 3 440 0

13 2
2 72 6

4 24984 132

29 1
1 24 0

2 2046 16

41 2 2 800 20

Table 9. Twists of order 7 for the curve y2 = (x− 1)(x− 2t2 − 1)(x− t2).
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twist order p np deg conductor d rank 0

11

5 5 5 624

23 1

1 20

2 2152

3 168448

43 2 2 902

67 1
1 64

2 22370

89 1 1 84

199 1 1 196

31 5 3 3 40

71 5 5 5 624

Table 10. Twists of order 11, 31, and 71 for the curve y2 = (x− 1)(x− 2t2−
1)(x− t2). We have found no instances of vanishing in this case.
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[Mil68] J. S. Milne, The Tate-Šafarevič group of a constant abelian variety, Invent. Math. 6 (1968),
91–105. MR 244264

[MR] Barry Mazur and Karl Rubin, Arithmetic conjectures suggested by the statistical behavior of
modular symbols, arXiv:1910.12798.

[MR18] Barry Mazur and Karl Rubin, Diophantine stability, Amer. J. Math. 140 (2018), no. 3, 571–616,
With an appendix by Michael Larsen. MR 3805014

[MR21] Barry Mazur and Karl Rubin, Arithmetic conjectures suggested by the statistical behavior of
modular symbols, Experimental Mathematics (2021).
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