
COUNTING POINTS ON SMOOTH PLANE QUARTICS

EDGAR COSTA, DAVID HARVEY, AND ANDREW V. SUTHERLAND

Abstract. We present efficient algorithms for counting points on a smooth plane quartic
curve X modulo a prime p. We address both the case where X is defined over Fp and
the case where X is defined over Q and p is a prime of good reduction. We consider two
approaches for computing #X(Fp), one which runs in O(p log p log log p) time using O(log p)

space and one which runs in O(p1/2 log2p) time using O(p1/2 log p) space. Both approaches
yield algorithms that are faster in practice than existing methods. We also present average
polynomial-time algorithms for X/Q that compute #X(Fp) for good primes p 6 N in
O(N log3N) time using O(N) space. These are the first practical implementations of average
polynomial-time algorithms for curves that are not cyclic covers of P1, which in combination
with previous results addresses all curves of genus g 6 3. Our algorithms also compute
Cartier–Manin/Hasse–Witt matrices that may be of independent interest.

1. Introduction

Let X/Q be a smooth projective curve of genus g. The L-function L(X, s) =
∑

n>1 ann
−s

is a Dirichlet series that is defined by an Euler product
∏

p Lp(p
−s)−1, where Lp(T) is an

integer polynomial of degree at most 2g. For primes p of good reduction for X the polynomial
Lp(T) is the numerator of the zeta function

Zp(T) := exp

(∑
r>1

#X(Fpr)
T r

r

)
=

Lp(T)

(1− T)(1− pT)
(1.1)

of the reduction of X modulo p. The L-function L(X, s) and its coefficients an are the subject
of many outstanding conjectures, including the connection to automorphic forms predicted
by the Langlands program, generalizations of the Sato–Tate conjecture, the Lang–Trotter
conjecture, and the conjecture of Birch and Swinnerton-Dyer, as well as conjectures about
the zeros and special values of L(X, s). To numerically investigate these conjectures one
needs to compute the Dirichlet coefficients an for n up to some bound N that one would like
to make as large as possible, and at a minimum, larger than the square root of the conductor
of L(X, s) by a significant constant factor.

Since L(X, s) is defined by an Euler product, its coefficients an for n 6 N are determined
by the coefficients ape for prime powers pe 6 N , almost all of which are Frobenius traces

ap = p+ 1−#X(Fp)
at primes p of good reduction for X. From a computational perspective, the problem of
computing the integers an for n 6 N is overwhelmingly dominated by the cost of computing
Frobenius traces ap for good primes p 6 N , equivalently, counting points on X modulo primes
p 6 N of good reduction, which is the problem we consider here.

The first and third authors were supported by Simons Foundation grant 550033.
The second author was supported by the Australian Research Council (grant FT160100219).

1

There are two existing algorithms that can compute ap for good primes p 6 N in time Õ(N),
which is optimal up to logarithmic factors, since it is quasilinear in the size of the output. The
first is Pila’s generalization of Schoof’s algorithm [Sch85, Pil90, AH01], which can compute
each ap in time (log p)O(1), leading to a total time of N(logN)O(1). The second is Harvey’s
average polynomial-time algorithm [Har15], which can compute ap for good p 6 N in time
O(N log3N). Neither of these algorithms is meant to be practical for g > 1, but the second
has the distinct advantage that the implicit constant (which increases with g) is not in the
exponent of the complexity bound. For g = 1 both algorithms are practical, but the Õ(N5/4)
generic group algorithm described in [KS08] is faster for all practical values of N .

The case g = 2 is efficiently addressed by the practical implementation of Harvey’s algorithm
for hyperelliptic curves given in [HS14] and improved in [HS16]. Prior work has addressed the
case g = 3 in various special cases, including when X is hyperelliptic, either as a degree-2 cover
of P1 [HS16] or as a degree-2 cover of a pointless conic [HMS16], and when X is superelliptic,
including Picard curves and cyclic 4-covers of P1 [Sut20]. But the generic case of a smooth
plane quartic is not efficiently addressed by any prior work we are aware of.

In this article we consider three practical average polynomial-time algorithms for computing
the Frobenius traces ap of a smooth plane quartic X/Q at good primes p 6 N . As with
the average polynomial-time algorithms mentioned above, they all involve the computation
of partial products of a sequence of r × r integer matrices M0, . . . ,MN−1 reduced modulo
coprime integers m0, . . . ,mN−1 that include the primes p 6 N . This can be accomplished in
O(r2N log3N) time using O(r2N logN) space via an accumulating remainder tree, and one
can improve the constant factors in the time complexity and reduce the space complexity
to O(r2N) using the accumulating remainder forest described in [HS14, HS16]; see Theo-
rem 5.21 for a precise statement. As with other average polynomial-time algorithms, one
can alternatively use these matrices to count points modulo a particular prime p in two
ways: one runs in O(r2p log p log log p) time using O(r2 log p) space and the other runs in
O(r2p1/2 log2 p) time using O(r2p1/2 log p) space, assuming r = O(log p).

Our restriction to genus 3 curves effectively fixes r, so r2 becomes a constant factor that is
hidden in our complexity bounds. But r takes different values in each of the three algorithms
we present, and this has a significant impact on their relative running times. Constant factors
related to the size of the matrix coefficients size also play a role, but they are less significant;
see §6 for a detailed discussion and a performance comparison of the three algorithms.

Our algorithms compute the trace of Frobenius ap by computing the trace of the Cartier–
Manin matrix Ap ∈ F3×3

p of the smooth plane quartic Xp : f(x0, x1, x2) = 0 over Fp given by
reducing X modulo p. The precise definition of Ap is recalled in §2, but its entries consist of
nine particular coefficients of fp−1 and its trace is congruent to ap modulo p, which uniquely
determines ap for p > 144. The Cartier–Manin matrix provides additional information
about Xp, including the p-rank of its Jacobian and the reduction of Lp(T) modulo p, which
constrains Lp(T) to O(p1/2) possibilities. These possibilities can be distinguished in Õ(p1/4)
time using a probabilistic generic group algorithm working in the Jacobian of X; see [Sut07,
KS08, Sut09] for details of the algorithm and see [FOR08] for efficient implementation of
the group operation. This does not yield an average polynomial time for computing Lp(T)

for good p 6 N , it would have complexity Õ(N5/4), but for the practical range of N this
approach is faster in practice than using the average polynomial-time algorithm in [Har15],
which can compute Lp(T) for good p 6 N in O(N log3N) time.

2

The key differences among the three algorithms we consider lie in the relations that are
used to define the matrices Mi and the sizes of these matrices; in particular the value of r
may be 66, 28, or 16. The relations used in [Har15] are based on a deformation approach that
in the case of a plane quartic curve X := f(x0, x1, x2) = 0 introduces an auxiliary polynomial
g(x0, x1, x2) = x40 + x41 + x42 and derives relations between the coefficients that appear in the
terms of the binomial expansion of (f + tg)p−1, where t is an auxiliary parameter. These
relations yield 66× 66 matrices Mi. Rather than using the general algorithm given in [Har15],
which does not not require X to be smooth or even a curve (it can be any hypersurface),
one can use these matrices to directly compute the coefficients of fp−1 that appear in the
Cartier–Manin matrix Ap via [Har15, Thm. 4.1], as we explain in §5. With appropriate
optimizations the resulting algorithm is quite practical and faster than previous approaches,
as demonstrated by the timings in Table 1.

However, the main focus of this paper is deriving new relations that yield smaller matri-
ces Mi. In contrast to [Har15], which uses relations that involve coefficients of mth-powers
of the homogeneous polynomial F that defines X, where the parameter m may vary, here
we fix m. This forces us to impose nondegeneracy conditions on F that are not required in
[Har15], but it yields 28× 28 matrices, and the resulting algorithms for computing Cartier–
Manin matrices, either for a single prime p or all good p 6 N are substantially faster in
practice than those that use the 66× 66 matrices based on [Har15]. The relations we obtain
are not independent, and we develop tools that allow us to compress them. This yields
16×16 matrices of full rank with slightly larger coefficients that provides a further substantial
improvement in practical running times; see Tables 1–3.

Our algorithms for smooth plane quartics are not as fast as those that have been developed
for genus 3 curves of a special form, such as hyperelliptic or superelliptic curves; see Table 4 for
a comparison. Nevertheless, for general genus 3 curve the algorithms we present substantially
extend the practical range of N one may consider. This played a key role in [FKS21, FKS22]
where a preliminary version of our algorithm was used to compute Sato–Tate distributions,
and in computing the L-functions of the nonhyperelliptic genus 3 curves tabulated in [Sut19].

We conclude this introduction with an outline of the paper. After briefly recalling the
definition of the Cartier–Manin matrix and some of its properties in Section 2, we devote
Sections 3 and 4 to developing the recurrences that determine the matrices Mi used by our
algorithms; the main result used to define the 28×28 matrices Mi appears in Lemma 4.4, and
the result that allows us to compress them to 16× 16 matrices appears in Lemma 3.13. The
algorithms themselves are presented in Section 5, along with an analysis of their complexity,
and Section 6 compares the performance of our algorithms to each other and to existing
approaches for counting points on smooth plane quartics, as well as to previously developed
average polynomial-time algorithms for hyperelliptic and superelliptic genus 3 curves.

2. The Cartier matrix of a smooth plane curve

In this section we recall the definition of the Cartier matrix of a smooth plane curve,
following [Sut20]. Let k be a perfect field of characteristic p > 0, let K be a function field
of transcendence degree one with field of constants k, and let ΩK denote its module of
differentials, which we identify with its module of Weil differentials via [Sti09, Def. 4.17] and
[Sti09, Rm. 4.3.7]. Let x ∈ K be a separating element, so that K/k(x) is a finite separable
extension, and let Kp denote the subfield of pth powers. Then (1, x, . . . , xp−1) is a basis for K

3

as a Kp-vector space, and every z ∈ K has a unique representation of the form

z = zp0 + zp1x+ · · ·+ zpp−1x
p−1,

with zi ∈ K. Each rational differential form ω = zdx can then be written uniquely as

ω = (zp0 + zp1x+ · · · zpp−1xp−1)dx.

The (modified) Cartier operator C : ΩK → ΩK is then defined by

C(ω) := zp−1dx.

It maps regular differentials to regular differentials and thus restricts to an operator on
the space ΩK(0) := {ω ∈ ΩK : ω = 0 or div(ω) > 0}, which is a k-vector space whose
dimension g is the genus of K. See [Sti09, Ex. 4.12-17] for these and other standard facts
about the Cartier operator.

Definition 2.1. Let ~ω := (ω1, . . . , ωg) be a basis for ΩK(0) and define aij ∈ k via

C(ωj) =

g∑
i=1

aijωi.

The Cartier–Manin matrix of K (with respect to ~ω) is the matrix A := [aij] ∈ kg×g.

If X/k is a smooth projective curve with function field K, we also call A the Cartier–Manin
matrix of X. This matrix is closely related to the Hasse–Witt matrix B of X, which is defined
as the matrix of the p-power Frobenius operator acting on H1(X,OX) with respect to some
basis. As explained in [AH19], the matrices A and B are related by Serre duality, and for a
suitable choice of basis one finds that B = [apij]

T. In the case of interest to us k = Fp is a
prime field and the Cartier–Manin and Hasse–Witt matrices are simply transposes, hence
have the same rank and characteristic polynomials. But we shall follow the warning/request
of [AH19] and call A the Cartier–Manin matrix, although one can find examples in the
literature where A is called the Hasse–Witt matrix (see [AH19] for a list).

Following Stöhr–Voloch [SV87] we write K as k(x)[y]/(F), where x ∈ X is a separating
element and y is an integral generator for the finite separable extension K/k(x) with minimal
polynomial F ∈ k[x][y]. We now define the differential operator

∇ :=
∂2p−2

∂xp−1∂yp−1
,

which maps x(i+1)p−1y(j+1)p−1 to xipyjp and annihilates monomials not of this form; it thus
defines a semilinear map ∇ : K → Kp. Writing Fy for ∂

∂y
F ∈ k[x, y], for any h ∈ K we have

C
(
h
dx

Fy

)
=
(
∇(F p−1h)

)1/p dx
Fy
, (2.2)

by [SV87, Thm. 1.1]. If we choose a basis for ΩX(0) using regular differentials of the form h dx
Fy
,

we can compute the action of the Cartier operator on this basis via (2.2). To construct such
a basis, we use differentials of the form

ωk` := xk−1y`−1
dx

Fy
(k, ` > 1, k + ` 6 deg(F)− 1). (2.3)

4

Writing F (x, y)p−1 =
∑

i,j F
p−1
ij xiyj (defining F p−1

i,j ∈ k for all i, j ∈ Z), for k, ` > 1 we have

∇

(∑
i,j>0

F p−1
ij xi+k−1yj+`−1

)
=
∑
i,j>1

F p−1
ip−k, jp−`x

(i−1)py(j−1)p. (2.4)

Now F p−1
ip−k, jp−` is nonzero only when (i+j)p−(k+`) 6 (p−1) deg(F), and k+` 6 deg(F)−1,

so we can restrict the sum on the RHS to i+ j 6 deg(F)− 1. From (2.2) and (2.4) we obtain

C(ωk`) =
∑
i,j>1

(
F p−1
ip−k, jp−`

)1/p
ωij. (2.5)

When X is a smooth plane curve the complete set of ωij defined in (2.3) is a basis for ΩK(0)
and we can read off the entries of the Cartier–Manin matrix A of X directly from (2.5).
Following the convention in [Sut20], we order our basis ω := (ωij) for Ωk(0) in increasing
order by j and then i, so that ω = (ω11, ω21, . . . , ω12, . . .), and we view the Cartier–Manin
matrix as acting on the column vector ωT, so that we may express (2.5) as C(ωT) = AωT.

If X : f(x0, x1, x2) = 0 is a smooth plane quartic curve with f(0, 1, 0) 6= 0 (an assumption
that will hold under non-degeneracy constraints we impose on X), then we may write its
function field as k(x)[y]/(F (x, y)) with x = x0/x2 and y = x1/x2 so that its Cartier–Manin
matrix with respect to the basis in (2.3) is

A =

f
p−1
p−1, p−1, 2p−2 fp−12p−1, p−1, p−2 fp−1p−1, 2p−1,p−2

fp−1p−2, p−1, 2p−1 fp−12p−2, p−1, p−1 fp−1p−2, 2p−1,p−1

fp−1p−1, p−2, 2p−1 fp−12p−1, p−2, p−1 fp−1p−1, 2p−2,p−1

 , (2.6)

where fp−1i,j,k denotes the coefficient of the term xi0x
j
1x

k
2 in f(x0, x1, x2)

p−1.
An essential property of the Cartier–Manin matrix is the identity

det(I − TA) ≡ Lp(T) mod p, (2.7)

where Lp(T) is the numerator of the zeta function of X defined in (1.1); see [Katz73, Thm. 3.1]
and [Man65, Thm. 1]. In particular, we have trA ≡ ap mod p, where ap is the trace of
Frobenius. The Weil bounds imply |ap| 6 2g

√
p, which allows us to derive #X(Fp) = p+1−ap

from trA for all p > 16g2 = 144 (for g = 3).

Remark 2.8. All of our algorithms compute #X(Fp) = p+ 1−ap by computing the Cartier–
Manin matrix A and lifting trA ∈ Z/pZ to the unique ap ∈ Z with |ap| 6 6

√
p when p > 144.

For p 6 144 we are happy to count points naïvely via (6.1).

3. Setup

Throughout this section, R denotes one of the rings Z or Fp. Many of the results we use
hold in greater generality, but we make no attempt to generalize them beyond the cases of
interest to us here.

We write R[x±] for the Laurent polynomial ring R[x0, x
−1
0 , . . . , xn, x

−1
n] in n+ 1 variables.

We use multi-index notation: for v := (v0, . . . , vn) ∈ Zn+1, we write xv for the monomial
xv00 · · ·xvnn . For G ∈ R[x±] we write Gv for the coefficient of G at the monomial xv. We also
define the degree of v ∈ Zn+1 to be deg v := deg xv =

∑n
i=0 vi.

For ` ∈ Z, we write R[x±]` for the R-submodule of R[x±] generated by the monomials of
degree `. More generally, for any subset S ⊆ Zn+1, we define R[x±]S to be the R-submodule of

5

Laurent polynomials supported on S, consisting of all G ∈ R[x±] such that Gv = 0 for v /∈ S.
We typically use this notation in the case that S corresponds to a finite set of monomials,
all of the same degree. For G ∈ R[x±] we define G|S, the restriction of G to S, to be the
polynomial

∑
v∈S Gvx

v ∈ R[x±]S.
For any R-submodule M ⊆ R[x±], we put M` := M ∩ R[x±]`. In particular, let R[x]

denote the subring R[x0, . . . , xn]; then R[x]` is the submodule of homogeneous polynomials
of degree `, or the zero submodule if ` < 0. More generally, if I is a homogeneous ideal of
R[x], then I` is the R-submodule consisting of homogeneous polynomials of degree ` in I.
The monomials generating R[x]` are indexed by the set D` := {v ∈ Zn+1

>0 : deg v = `} of
cardinality #D` = dimRR[x]` =

(
`+n
n

)
for ` > 0, with D` = ∅ for ` < 0.

We denote by K the fraction field of R, which is either Q or Fp. All of the definitions for
R[x±] above may be extended in the obvious way to K[x±]. We write PnK = ProjK[x] for
projective n-space over K.

For the rest of the section we fix a homogeneous polynomial F ∈ R[x]d of degree d > 2.
We always assume that d 6= 0 in R; in particular, if R = Fp, then we require that p - d. Our
goal is to establish a framework for efficiently computing individual coefficients Fm

u := (Fm)u,
for a prescribed integer m > 0, without computing the entire polynomial Fm. Our strategy
will be to observe that Fm satisfies certain partial differential equations (see (3.7)), which
imply various relations between nearby coefficients of Fm.

Definition 3.1. For ` ∈ Z>0 and v ∈ Zn+1 we define D(v, `) := {v − w : w ∈ D`} ⊆ Zn+1.
The set D(v, `) may be thought of as an inverted simplex of size ` centered at v.

We will study the vectors of coefficients of Fm|D(v,`), for certain small integers ` and
v ∈ Zn+1 with deg v = dm + `. As we will see, the differential equations lead naturally to
relations among these vectors, for fixed m, as we vary v.

Remark 3.2. When n = 2 and F defines a smooth plane curve X in P2
Fp

of genus g =
(
d−1
2

)
,

the Cartier–Manin matrix ofX consists of g2 coefficients F p−1
u with u ∈ D(v, `) for g particular

choices of v of degree d(p− 1) + ` with ` = d− 3. It turns out to be more convenient to use
m = p− 2, as we will eventually want d(m+ 1) 6= 0 in Fp, and to use v of degree d(p− 2) + `
with ` = 2d− 2. For smooth plane quartics we have n = 2, d = 4, and ` = nd− n = 6, values
the reader may find useful to keep in mind.

Let IF be the homogeneous ideal 〈∂0F, . . . , ∂nF 〉 in K[x], where ∂i is the degree-preserving
differential operator ∂i := xi

∂
∂xi

. For ` ∈ Z, the K-vector space K[x]`/(IF)` is spanned by
the monomials {xβ : β ∈ D`}, so we may choose a subset B` ⊆ D` such that {xβ : β ∈ B`}
projects to a basis of K[x]`/(IF)`. For the rest of the discussion, we assume a choice for B`

has been fixed for each `. Note that for ` < d we have (IF)` = 0, in which case B` = D`.

Definition 3.3. Let b` := dimK K[x]`/(IF)` = #B` 6 #D`. For v ∈ Zn+1 we define the
set B(v, `) := {v − β : β ∈ B`} ⊆ D(v, `) ⊆ Zn+1. We also define the K-vector spaces
Dv,` := K[x±]D(v,`) and Bv,` := K[x±]B(v,`) ⊆ Dv,`.

We recall the following Hilbert series computation due to Macaulay [Ma1916].

Lemma 3.4. Let h0, . . . , hn be homogeneous polynomials in K[x], of positive degree with no
common zeros in PnK. For ` > 0, let

δ` := dimK K[x]`/〈h0, . . . , hn〉`.
6

Then, in Z[t] we have the identity∑
`>0

δ`t
` =

n∏
i=0

(1 + t+ · · ·+ tdeg hi−1).

Proof. See Theorem 58 in [Ma1916, pp. 64–66]. �

Recall that the discriminant ∆d(F) of F ∈ R[x]d is determined up to sign by the formula

∆d(F) = ±d((−1)n+1−(d−1)n+1)/d Resd−1

(∂F
∂x0

, . . . ,
∂F

∂xn

)
,

where Rese(h0, . . . , hn) is the resultant, the irreducible integer polynomial in the (n+ 1)
(
e+n
n

)
coefficients of h0, . . . , hn ∈ R[x]e that vanishes if and only if h0, . . . , hn have a common zero
in PnK and satisfies Rese(x

e
0, . . . , x

e
n) = 1; see [GKZ94, pp. 433–435] for details.

The hypersurface defined by F ∈ R[x]d is smooth if and only if ∂F/∂x0, . . . , ∂F/∂xn have
no common zeros in PnK , that is, if and only if ∆d(F) 6= 0. (Note that any common zero of
the ∂F/∂xi is automatically a zero of F by Euler’s identity d ·F =

∑
i ∂iF , since d 6= 0 in R.)

We say that F is nondegenerate if ∂0F, . . . , ∂nF have no common zeros in PnK . Nondegeneracy
of F is equivalent to requiring that the intersection of the hypersurface defined by F with
every set of coordinate hyperplanes is smooth (see [Bat93, Prop. 4.6], [CV09, Prop. 1.2]); this
implies that the hypersurface defined by F is smooth, but it is a stronger condition. If we let
Dd(S) := {v ∈ Dd : vi = 0 for i ∈ S} and define

∆∗d(F) :=
∏

S({0,...,n}

∆d

(
F |Dd(S)

)
, (3.5)

where the discriminants on the right are taken with respect to the variables not in S, then
we see that F is nondegenerate if and only if ∆∗d(F) 6= 0.

For n = 1 we have ∆∗d(F) = ±F0,dFd,0∆d(F) = ±F0,dFd,0 discF (t, 1), where disc denotes
the usual discriminant of a univariate polynomial in R[t]. For n = 2 we have

∆∗d(F) = ±F0,0,dF0,d,0Fd,0,0 discF (t, 1, 0) discF (t, 0, 1) discF (0, t, 1)∆d(F).

Let HF (t) :=
∑

`>0 b`t
` ∈ Z[t] denote the Hilbert series of the quotient ring K[x]/IF .

Corollary 3.6. If F ∈ R[x]d is nondegenerate then

HF (t) :=
∑
`>0

b`t
` =

(
1 + t+ · · ·+ td−1

)n+1
,

and we have
∑

`≡k mod d b` = dn for any integer k.

Proof. The first claim follows from Lemma 3.4. For the second, fix k ∈ Z and let ζ be a
primitive dth root of unity. We have

d−1∑
i=0

HF (ζ i)ζ−ki =
d−1∑
i=0

∑
`>0

b`ζ
(`−k)i = d

∑
`≡k mod d

b`,

and also
d−1∑
i=0

HF (ζ i)ζ−ki =
d−1∑
i=0

(1 + ζ i + · · ·+ (ζ i)d−1)n+1ζ−ki = dn+1.

Comparing these two expressions yields the desired result. �
7

Let m > 0 and consider the system of differential equations for G ∈ K[x±]dm given by

∂i(FG) = (m+ 1)(∂iF)G, i = 0, . . . , n. (3.7)

The scalar multiples of Fm are solutions to (3.7). Note that the Euler identity
n∑
i=0

∂i(FG) = d(m+ 1)FG = (m+ 1)
n∑
i=0

(∂iF)G (3.8)

implies that one of these n+ 1 equations is redundant, so for many purposes we may treat it
as a system of only n equations.

We now show that (3.7) defines a system of linear equations on the coefficients of G. For
any w ∈ Zn+1 of degree dm+ d, equating coefficients in (3.7) for the monomial xw gives rise
to the system of linear equations

wi
∑
t∈Dd

FtGw−t = (m+ 1)
∑
t∈Dd

tiFtGw−t, i = 0, . . . , n. (3.9)

Via (3.8) we may view this as a system of n equations in #Dd unknowns Gu for u ∈ D(w, d).
More generally, for any ` > d and v ∈ Zn+1 of degree dm+ ` we may consider the system

of linear equations involving the coefficients Gu for u ∈ D(v, `), obtained by including the
equations (3.9) for each w ∈ D(v, `− d). Here we are using the fact that D(v, `) is the union
of the sets D(w, d) as w ranges over D(v, `− d). Explicitly, these equations are given by

(vi − si)
∑
t∈Dd

FtGv−s−t = (m+ 1)
∑
t∈Dd

tiFtGv−s−t, s ∈ D`−d, i = 0, . . . , n. (3.10)

Via (3.8) we view this as a system of n#D`−d equations in #D` unknowns Gu for u ∈ D(v, `).

Definition 3.11. Let Ev,` denote the K-vector subspace of Dv,` = K[x±]D(v,`) consisting of
those Laurent polynomials G ∈ Dv,` satisfying the system (3.10).

Note that Ev,` is only defined when deg v is of the form dm+ ` for some m > 0. The value
of m is implicitly defined by v and `: we always have m = (deg v − `)/d, so a choice of v
and ` determines a choice of m.

Since Fm satisfies the original differential equations (3.7), we see immediately that

Fm|D(v,`) ∈ Ev,`.

We also have the following basic result concerning inclusions of sets of the form D(v, `).

Lemma 3.12. Let `, `′ > d and let v, v′ ∈ Zn+1 have degrees dm+ ` and dm+ `′ respectively.
Assume that D(v, `) ⊆ D(v′, `′). Then the restriction map Dv′,`′ � Dv,`, G 7→ G|D(v,`), maps
Ev′,`′ into Ev,`.

Proof. The equations defining Ev,` are a subset of those defining Ev′,`′ . �

In the remainder of this section we develop further properties of the vector spaces Ev,`. In
particular, we compute their dimension and give explicit bases for certain cases of interest.

Lemma 3.13. Let ` > d, and let v ∈ Zn+1 be of degree dm+ `. Consider the K-linear map

πv,` :Dv,` Bv,` ⊕Dv,`−d,

G G|B(v,`) +
(
FG
)
|
D(v,`−d).

8

The map πv,` may be represented by a matrix whose entries lie in R and are independent of v.
Moreover, there exists a nonzero constant λ` ∈ R and a K-linear map

ψv,` : Bv,` ⊕Dv,`−d Dv,`

such that the composition
ψv,` ◦ πv,` : Dv,` → Dv,`

restricts to scalar multiplication by (m+ 1)λ` on Ev,`. The map ψv,` may be represented by a
matrix whose entries are R-linear combinations of 1, v0, . . . , vn and m, which we may view as
polynomials in R[v,m] = R[v0, . . . , vn,m] of degree at most 1.

Note that when using matrices to represent maps such as πv,` and ψv,`, we always work
with respect to the obvious monomial bases. For example, the columns of πv,` are indexed
by D`, and its rows are indexed by the concatenation of B` and D`−d. For this purpose we
assume that some ordering of the monomials of each degree has been chosen, such as the
lexicographical ordering.

Remark 3.14. One may think of πv,` as “compressing” a vector of length #D` into a vector of
length #B`+#D`−d. If the input vector lies in the subspace Ev,`, i.e., satisfies the appropriate
differential equations, then no information is lost in the compression, and ψv,` “decompresses”
the result to recover the original vector (multiplied by a certain scalar).

Proof. We observe that πv,` may be represented by a matrix in which the rows corresponding
to Bv,` have entries in {0, 1}, and the entries of the rows corresponding to Dv,`−d are either
zero or of the form Fu for some u ∈ Dd with (FG)v−w =

∑
u∈Dd

FuGv−w−u for w ∈ D(v, `−d).
This matrix is the same for every v ∈ Zn+1 of degree dm+ `.

We now explain how to construct ψv,`. Our task is to construct a formula that recovers a
polynomial G ∈ Ev,` from knowledge of G|B(v,`) and (FG)|D(v,`−d).

First, it follows from the definition of B` that for any u ∈ D` we may write

λ`x
u =

n∑
i=0

hu,i∂iF +
∑
β∈B`

cu,βx
β, (3.15)

for some λ`, cu,β ∈ R (λ` 6= 0) and hu,i ∈ R[x]`−d. (For u ∈ B` ⊆ D` we may take hu,i = 0,
cu,u = λ`, and cu,β = 0 for β 6= u.)

Now suppose that G ∈ Ev,`. Multiplying both sides of (3.15) by (m+ 1)G and equating
coefficients of xv yields

(m+ 1)λ`Gv−u =
n∑
i=0

∑
s∈D`−d

(m+ 1)(hu,i)s
(
(∂iF)G

)
v−s + (m+ 1)

∑
β∈B`

cu,βGv−β

for each u ∈ D`. By assumption G satisfies (3.10), so

(m+ 1)((∂iF)G)v−s = (∂i(FG))v−s = (vi − si)(FG)v−s (3.16)

for all s ∈ D`−d and i = 0, . . . , n. Therefore, for each u ∈ D`,

(m+ 1)λ`Gv−u =
n∑
i=0

∑
s∈D`−d

(vi − si)(hu,i)s(FG)v−s + (m+ 1)
∑
β∈B`

cu,βGv−β. (3.17)

9

The right hand side of (3.17) involves the coefficients of FG on D(v, ` − d) and the
coefficients of G on B(v, `), so we may use this expression to define ψv,`. Explicitly, for
H ∈ Bv,` and J ∈ Dv,`−d we define ψv,`(H + J) ∈ Dv,` via

ψv,`(H + J)v−u :=
n∑
i=0

∑
s∈D`−d

(vi − si)(hu,i)sJv−s + (m+ 1)
∑
β∈B`

cu,βHv−β. (3.18)

It is clear that the entries of the corresponding matrix are polynomials of degree at most 1 in
v0, . . . , vn,m with coefficients in R. By construction, if G ∈ Ev,`, then (3.17) implies that

ψv,`(πv,`(G))v−u = ψv,`

(
G|B(v,`) +

(
FG
)
|
D(v,`−d)

)
v−u

=
n∑
i=0

∑
s∈D`−d

(vi − si)(hu,i)s(FG)v−s + (m+ 1)
∑
β∈B`

cu,βGv−β

= (m+ 1)λ`Gv−u

for u ∈ D`. Thus ψv,` ◦ πv,` restricts to scalar multiplication by (m+ 1)λ` on Ev,`. �

Definition 3.19. We define Wv,` := Bv,` ⊕ Bv,`−d. For ` < 2d this is the codomain of πv,`
and the domain of ψv,`, since B(v, `− d) = D(v, `− d) for `− d < d.

Corollary 3.20. Let d 6 ` < 2d and v ∈ Zn+1 of degree dm+ `. Assume that m 6= −1 in R.
Then

dimK Ev,` 6 dimKWv,` = b` + b`−d, (3.21)
and if F is nondegenerate then we have dimK Ev,` 6 dn.

When equality holds in (3.21) we may restrict the domain of πv,` and the codomain of ψv,`
to obtain K-linear isomorphisms

πEv,` : Ev,` →Wv,`, ψEv,` : Wv,` → Ev,`.

Proof. As noted above, the hypothesis ` < 2d ensures that the codomain of πv,` and domain of
ψv,` are both equal toWv,`. Let λ` be as in Lemma 3.13. Since (m+1)λ` 6= 0 in R, Lemma 3.13
implies that the map πv,` is injective when restricted to Ev,` (since scalar multiplication by
(m+ 1)λ` is injective), and the first inequality follows. The equality in (3.21) is simply the
observation that dimKWv,` = #B(v, `) + #B(v, `− d) = #B` + #B`−d = b` + b`−d. If F is
nondegenerate, then by Corollary 3.6 we have b` + b`−d 6

∑
`′≡` mod d b`′ = dn.

Suppose now that equality holds in (3.21), so dimK Ev,` = dimKWv,`. Let πEv,` : Ev,` →Wv,`

be the restriction of πv,` to Ev,`. As shown in the previous paragraph, πEv,` is injective,
and by comparing dimensions we see that it is an isomorphism onto Wv,`. Then, since
ψv,` ◦πEv,` : Ev,` → Dv,` is injective (by Lemma 3.13) it follows that ψv,` is injective. The image
of ψv,` contains Ev,` (again by Lemma 3.13), and by comparing dimensions we find that its
image is equal to Ev,`. Restricting the codomain of ψv,` then yields the desired isomorphism
ψEv,` : Wv,` → Ev,`. �

Corollary 3.22. Let n = 2, ` ∈ {2d − 2, 2d − 1}, and v ∈ Zn+1 of degree dm + `. Then
dimK Ev,` > d2, and if F is nondegenerate and m 6= −1 in R, then dimK Ev,` = b` + b`−d = d2.

Proof. Recall that Ev,` is defined by a system of n#D`−d equations in #D` unknowns. Its
dimension is therefore at least #D` − n#D`−d =

(
`+n
n

)
− n

(
`−d+n
n

)
, which is precisely d2 for

10

n = 2 and ` ∈ {2d−2, 2d−1}, in which case dimK Ev,` > d2. If additionally F is nondegenerate
and m 6= −1 in R, then Corollary 3.20 and Corollary 3.6 imply that dimK Ev,` 6 b`+b`−d 6 d2,
so we conclude that dimK Ev,` = b` + b`−d = d2. �

Remark 3.23. Corollaries 3.20 and 3.22 explain why we use m = p−2 rather than m = p−1
when computing Cartier–Manin matrices: we want (m+1)λ` to be nonzero in characteristic p.

Remark 3.24. We expect that generalizations of Corollary 3.22 for n > 2 also hold, that is,
dim Ev,` = dn for F nondegenerate and ` large enough. However, a simple dimension count
no longer shows that πv,` is surjective, more is needed.

4. Shifting coefficients

To simplify the exposition we now specialize to the case n = 2. As in the previous section,
R is Z or Fp, K is its fraction field, R[x±] is the Laurent polynomial ring in n + 1 = 3
variables x0, x1, x2, R[x] is the subring R[x0, x1, x2], and we work with a fixed homogeneous
polynomial F ∈ R[x]d of degree d > 1 and a positive integer m such that d(m+ 1) 6= 0 in R
(we will take m = p− 2 when R = Fp). We assume throughout that F is nondegenerate, i.e.,
that ∆∗d(F) 6= 0 (see (3.5) for the definition of ∆∗d(F)).

Let e0, e1, e2 be the standard basis for Z3. In this section we consider how to shift a solution
to (3.10) from D(v, `) to D(v + ei − ej, `), for ` = 2d− 2 and v ∈ Z3 of degree dm+ `, where
i, j ∈ {0, 1, 2} with i 6= j. Our goal is to construct a “shift” map

τv,i,j : Dv,` → Dv+ei−ej ,`,

illustrated in the top row of Figure 1, with two key properties:
(1) For any G ∈ Dv,`, the coefficients of G and τv,i,j(G) should agree on the intersection

D(v, `)∩D(v+ ei− ej, `) = D(v− ej, `− 1), up to multiplication by a known nonzero
scalar. The region D(v − ej, `− 1) is indicated by the dotted lines in Figure 1.

(2) τv,i,j should restrict to a map

τEv,i,j : Ev,` → Ev+ei−ej ,`,

i.e., if G ∈ Dv,` satisfies the differential equations on D(v, `), then the shifted polyno-
mial τv,i,j(G) satisfies the equations on D(v + ei − ej, `).

It will be convenient to reformulate the first condition as follows. For any `′ > 1, w ∈ Z3 and
k ∈ {0, 1, 2} let

Pw,`′,k : Dw,`′ � Dw−ek,`′−1
denote the restriction map G 7→ G|D(w−ek,`′−1) induced by the inclusion D(w − ek, `′ − 1) ⊆
D(w, `′). Then condition (1) is equivalent to requiring Pv+ei−ej ,`,i ◦ τv,i,j : Dv,` → Dv−ej ,`−1 to
be a nonzero scalar multiple of Pv,`,j : Dv,` → Dv−ej ,`−1.

Remark 4.1. Later we will apply this framework to G = Fm|D(v,`). It is easy to compute
Fm|D(v,`) when v is near dmek, i.e., at the corners of the simplex. By repeatedly applying
the τv,i,j maps, we may shift this solution to obtain Fm|D(v,`) for a given target value of v.
For certain carefully chosen v, the components of these vectors will in turn yield the entries
of the Cartier–Manin matrix of the smooth plane quartic defined by F , when d = 4, ` = 6
and m = p− 2. These shifts are illustrated in Figure 2.

11

xv+e1−(`+1)e1 xv+e1−(`+1)e0

xv+e1−(`+1)e2

xv+e1−(`+1)e1 xv+e1−(`+1)e0

xv+e1−(`+1)e2

xv+e1−(`+1)e1 xv+e1−(`+1)e0

xv+e1−(`+1)e2

τv,i,j

φv,i Pv+ei,`+1,j

Figure 1. Illustration of the maps φv,i and τv,i,j for d = 4, ` = 6, i = 1, j = 0.
The common domain D(v, `) of τv,i,j and φv,i is represented by the white and
gray dots enclosed in the upper left triangle (the dots represent a monomial
basis). The codomain D(v + ei − ej, `) of τv,i,j is represented by the subset
of white, gray, and black dots enclosed in the upper right triangle, and the
codomain D(v + ei, `+ 1) of φv,i is the entire bottom triangle, which contains
both D(v, `) and D(v + ei − ej, `). As shown in the proof of Lemma 4.4, the
coordinates in the codomain of φv,i represented by the black dots are determined
by the coordinates represented by the gray dots.

By composing φv,i with the projection Pv+ei,`+1,j : Dv+ei,`+1 � Dv+ei−ej ,` we obtain the
desired map τv,i,j, as shown in the following commutative diagram:

Dv,` Dv+ei−ej ,` .

Dv+ei,`+1

τv,i,j

φv,i Pv+ei,`+1,j

(4.2)

See Figure 1 for an illustration of this diagram in the case d = 4.

Ev,` Ev+ei−ej ,` .

Ev+ei,`+1

τEv,i,j

φEv,i PEv+ei,j

(4.3)

12

The first step in defining τv,i,j is to construct an “extension” map φv,i : Dv,` → Dv+ei,`+1

that extends G from D(v, `) to the larger set D(v+ei, `+1). This is carried out in Lemma 4.4
below. The idea is to explicitly solve the system (3.10) for the unknown coefficients of φv,i(G),
i.e., for the monomials in D(v + ei, ` + 1) \D(v, `). These are shown as the black dots in
Figure 1.

We remind the reader that n = 2, d > 1, ` = 2d − 2, d(m + 1) is nonzero in R, and
∆∗d(F) 6= 0. In particular, ∆∗d(Fxi=0) 6= 0, since the latter is a factor of ∆∗d(F); see (3.5).

Lemma 4.4. Let v ∈ Z3 be of degree dm+ `, let i ∈ {0, 1, 2}, and let θi := ±∆∗d(Fxi=0) 6= 0.
There exists a K-linear map

φv,i : Dv,` → Dv+ei,`+1

such that Pv+ei,`+1,i ◦φv,i = (vi + 1)θi · idDv,`
, and such that if vi + 1 6= 0 in R then φv,i(Ev,`) ⊆

Ev+ei,`+1.
The map φv,i may be represented by a

(
2d+1
2

)
×
(
2d
2

)
matrix whose entries are R-linear

combinations of 1, v0, v1, v2 and m, which may be viewed as linear polynomials in R[v,m] =
R[v0, v1, v2,m].

Remark 4.5. The sign of θi is not canonically determined; it depends on choices made
during the following proof (such as the choice of j and k). An explicit formula for θi, as the
determinant of a certain Sylvester matrix, is given in (4.11).

Proof. We are given as input G ∈ Dv,`, and we wish to extend it to some G̃ ∈ Dv+ei,`+1. We
first set G̃w := Gw for w ∈ D(v, `). Let

S := D(v + ei, `+ 1) \D(v, `).

Our task is to show how to define the missing coefficients G̃w for w ∈ S in such a way that
G̃ ∈ Ev+ei,`+1 whenever G ∈ Ev,`. These 2d coefficients are indicated by the black dots in
Figure 1. We can alternatively write S as

S =
{

(v + ei)− (cej + (2d− 1− c)ek) : 0 6 c 6 2d− 1
}

where j and k are chosen so that {j, k} = {0, 1, 2} \ {i}.
According to (3.10), G̃ lies in Ev+ei,`+1 if and only if

((v + ei)h − sh)
∑
t∈Dd

FtG̃v+ei−s−t = (m+ 1)
∑
t∈Dd

thFtG̃v+ei−s−t (4.6)

for all s ∈ D`+1−d and h = 0, 1, 2. Consider the subset of equations in (4.6) corresponding to
those s with si > 1, i.e., for those s = s′ + ei with s′ ∈ D`−d:

(vh − s′h)
∑
t∈Dd

FtG̃v−s′−t = (m+ 1)
∑
t∈Dd

thFtG̃v−s′−t, s′ ∈ D`−d, h = 0, 1, 2.

These equations only involve G̃w for w ∈ D(v, `), and in fact are exactly the equations
defining Ev,`. If G ∈ Ev,`, then G̃ automatically satisfies these equations, since we already
arranged that G̃w = Gw for w ∈ D(v, `). The remaining equations correspond to those
s ∈ D`+1−d = Dd−1 for which si = 0, i.e., to s ∈ E where

E := {aej + (d− 1− a)ek : 0 6 a 6 d− 1}.
13

Consequently, for G̃ to lie in Ev+ei,`+1, it suffices to choose G̃w for w ∈ S so that (4.6) holds
for all s ∈ E and h = 0, 1, 2. Moreover, we recall that one value of h is redundant, thanks to
the Euler identity (3.8). Taking h = i and h = j, this system of 2|E| = 2d equations is given
explicitly by

(vi + 1)
∑
t∈Dd

FtG̃v+ei−s−t = (m+ 1)
∑
t∈Dd

tiFtG̃v+ei−s−t, s ∈ E,

(vj − sj)
∑
t∈Dd

FtG̃v+ei−s−t = (m+ 1)
∑
t∈Dd

tjFtG̃v+ei−s−t, s ∈ E.
(4.7)

Let us manipulate these equations to put them into a more useful form. For each s,
multiply the second equation by vi + 1, subtract vj − sj times the first equation, and divide
by m+ 1 6= 0, to obtain the system

(vi + 1)
∑
t∈Dd

FtG̃v+ei−s−t = (m+ 1)
∑
t∈Dd

tiFtG̃v+ei−s−t, s ∈ E,∑
t∈Dd

(
(vi + 1)tj − (vj − sj)ti

)
FtG̃v+ei−s−t = 0, s ∈ E.

(4.8)

The system (4.8) is equivalent to (4.7), provided that vi + 1 6= 0. Now we rearrange so that
the terms with ti = 0 appear on the left hand side:

(vi + 1)
∑
t∈Dd
ti=0

FtG̃v+ei−s−t =
∑
t∈Dd
ti 6=0

(
(m+ 1)ti − (vi + 1)

)
FtG̃v+ei−s−t, s ∈ E,

(vi + 1)
∑
t∈Dd
ti=0

tjFtG̃v+ei−s−t =
∑
t∈Dd
ti 6=0

(
(vj − sj)ti − (vi + 1)tj

)
FtG̃v+ei−s−t, s ∈ E.

(4.9)

We may rewrite the system (4.9) in matrix form as follows.
• The coefficients G̃w on the left hand side are exactly the unknowns of interest: writing
t = bej + (d− b)ek for 0 6 b 6 d and s = aej + (d− 1− a)ek for 0 6 a 6 d− 1, we see
that w = v+ ei− s− t = (v+ ei)− cej − (2d− 1− c)ek ∈ S for c = a+ b. Let y ∈ K2d

represent this vector of unknowns, with yc = G̃v+ei−cej−(2d−1−c)ek for 0 6 c 6 2d− 1.
• The coefficients G̃w on the right hand side are shown as the gray dots in Figure 1. These
coefficients are already known, i.e., all such w lie in D(v, `), so that G̃w = Gw. Indeed,
if t = t′+ei for t′ ∈ Dd−1, then w = v+ei−s−t = v−s−t′ ∈ D(v, (d−1)+(d−1)) =

D(v, `). Let z ∈ K(2d
2) be the vector consisting of all Gw for w ∈ D(v, `), for some

convenient ordering of D(v, `).
• Let F̄b := Fbej+(d−b)ek for 0 6 b 6 d; these are the coefficients Ft appearing on the left
hand side of (4.9). Let A be the 2d× 2d matrix (over R) given by

A =

F̄0 F̄1 F̄2 · · · · · · F̄d
.

F̄0 F̄1 F̄2 · · · · · · F̄d
0 F̄1 2F̄2 · · · · · · dF̄d

.
0 F̄1 2F̄2 · · · · · · dF̄d

.

14

The columns correspond to the unknowns yc for 0 6 c 6 2d− 1. The first group of d
rows corresponds to the first equation in (4.9), and the second group to the second
equation. The rows in each group are indexed by a = 0, . . . , d− 1, corresponding to
the values of s ∈ E via s = aej + (d− 1− a)ek.
• Let Mv,m be the 2d ×

(
2d
2

)
matrix encoding the linear combinations on the right

hand side of (4.9). The columns of Mv,m correspond to the known values Gw for
w ∈ D(v, `), and the rows to the 2d equations. More explicitly, in the first d rows,
indexed by a = 0, . . . , d − 1, we place the value (m + 1)ti − (vi + 1) in the column
corresponding to v + ei − s− t for each t = t′ + ei, t′ ∈ Dd−1. Similarly, in the last d
rows, we place the values (vj − sj)ti − (vi + 1)tj in suitable positions. The entries of
Mv,m may be regarded as linear polynomials in R[v,m].

With these definitions, the system (4.9) may be expressed compactly as

(vi + 1)Ay = Mv,mz. (4.10)

The matrix A is the Sylvester matrix of Fxi=0,xk=1 and (∂jF)xi=0,xk=1 as degree d polyno-
mials in xj. By Proposition 1.8 in [GKZ94, p. 435] we have

detA = ±FdejFdekdiscxj Fxi=0,xk=1 = ±∆∗d (Fxi=0) 6= 0.

We may therefore solve the system explicitly as follows. Define

θi := detA, (4.11)

and let adj(A) ∈ R2d×2d denote the matrix satisfying adj(A)A = (detA)I. Multiplying (4.10)
by adj(A) on the left yields the solution

(vi + 1)θiy = adj(A)Mv,mz.

Note that the columns of adj(A)Mv,m correspond to monomials u ∈ D(v, `), and the rows
correspond to monomials w ∈ S ⊆ D(v + ei, ` + 1), i.e., the c-th row corresponds to
w = v + ei − cej − (2d− 1− c)ek for 0 6 c 6 2d− 1.

Finally we show how to define the matrix for the desired map φv,i : Dv,` → Dv+ei,`+1. For
w ∈ D(v + ei, `+ 1) and u ∈ D(v, `), the matrix entry (φv,i)w,u is given by

(φv,i)w,u =

{
(vi + 1)θiδw,u, if w ∈ D(v, `),

(adj(A)Mm,v)w,u, if w /∈ D(v, `),
(4.12)

where δw,u if w = u and 0 otherwise. �

Remark 4.13. One may attempt to apply the construction in the proof of Lemma 4.4 for
values of ` other than 2d − 2. This leads to a system of 2(` − d + 2) equations in ` + 2
unknowns. Ultimately, the reason we work with ` = 2d− 2 is that this is the smallest value
of ` for which there are at least as many equations as unknowns.

Remark 4.14. As observed in Lemma 3.12 the equations defining Ev,` are a subset of the
equations defining Ev+ei,`+1. In the setup of Lemma 4.4 this difference of equations has size 2d.

The condition ∆d(Fxi=0) 6= 0 ensures that these 2d equations are linearly independent.
Furthermore, if vi + 1 6= 0, then given G ∈ Ev,` there is a unique G̃ ∈ Ev+ei,`+1 such that
G̃|D(v,`) = (vi + 1)θiG. Thus when vi + 1 6= 0, we have φv,i(Ev,`) = Ev+e1,`+1.

15

For the remainder of this section we fix distinct i, j ∈ {0, 1, 2}. By composing the map
φv,i : Dv,` → Dv+ei,`+1 with the projection Pv+ei,j : Dv+ei,`+1 � Dv+ei−ej ,` we obtain the map

τv,i,j := Pv+ei,j ◦ φv,i : Dv,` → Dv+ei−ej ,`, (4.15)

and the diagram (4.2) as desired. We now check that τv,i,j has the desired properties. In
particular, if G ∈ Ev,`, then τv,i,j(G) ∈ Ev+ei−ej ,`, meaning that τv,i,j(G) satisfies the equations
on a shifted set of monomials.

Corollary 4.16. We have τv,i,j(Ev,`) ⊆ Ev+ei−ej ,` and the composition

Dv−ej ,`−1 Dv,` Dv+ei−ej ,` Dv−ej ,`−1
τv,i,j Pv+ei,j

is scalar multiplication by (vi + 1)θi, and τv,i,j is invertible when vi + 1 6= 0 in R.
The map τv,i,j may be represented by a

(
2d
2

)
×
(
2d
2

)
matrix whose entries are R-linear

combinations of 1, v0, v1, v2 corresponding to linear polynomials in R[v].

Proof. The first part follows by the definition of τv,i,j combined with Lemmas 4.4 and 3.12.
The last part also follows from Lemma 4.4, where we note that #D(v, `) = #D(v+ei−ej, `) =

#D` =
(
`+n
n

)
=
(
2d
2

)
for n = 2 and ` = 2d− 2. �

Let φEv,i : Ev,` → Ev+ei,`+1 be the restriction of φv,i : Dv,` → Dv+ei,`+1 and similarly define
τEv,i,j and P Ev,i. Because we have assumed that F is nondegenerate and m + 1 6= 0 in R,
applying Corollary 3.22 with ` = 2d− 2 and `+ 1 = 2d− 1 yields

dimKW` = dimK Ev,` = dimK Ev+ei,`+1 = dimK Ev+ei−ej ,` = d2. (4.17)

Since dimK Ev,` = dimKW`, by (4.17), Corollary 3.20 gives us bijections

πEv,` : Ev,` →Wv,`, ψEv,` : Wv,` → Ev,`, (4.18)

which are the restrictions of πv,` and ψv,`, respectively. We now consider the map

Tv,i,j := πEv+ei−ej ,` ◦ τ
E
v,i,j ◦ ψEv,` : Wv,` −→Wv+ei−ej ,`. (4.19)

In other words, the map Tv,i,j re-expresses the shifting map τEv,i,j in terms of a basis for Wv,`.
We are interested in applying chains of such maps Tv+•,i,j, thus for any s > 0 we define

T sv,i,j :=
∏
s>k>0

Tv+k(ei−ej),i,j = Tv+(s−1)ei−(s−1)ej ,i,j ◦ · · · ◦ Tv+ei−ej ,i,j ◦ Tv,i,j, (4.20)

where the product is taken over decreasing values of k starting from s − 1; note that the
symbol s in T sv,i,j is a superscript, not an exponent.

Corollary 4.21. Let s be a positive integer. We have

T sv,i,j = (m+ 1)s−1λs−1` πEv+sei−sej ,` ◦

(∏
s>k>0

τEv+k(ei−ej),i,j

)
◦ ψEv,`.

Furthermore, πEv+sei−sej ,` ◦
(∏

s>k>0 τ
E
v+k(ei−ej),i,j

)
◦ ψEv,` may be represented by d2 × d2 matrix

whose entries are polynomials in R[v,m] = R[v0, v1, v2,m] of degree at most s+ 1.
16

Proof. Lemma 3.13 implies ψEv+k(ei−ej),` ◦ π
E
v+k(ei−ej),` = (m+ 1)λ`idEv+k(ei−ej),`

for 0 6 k < s.
Applying this repeatedly yields

T sv,i,j :=
∏
s>k>0

Tv+k(ei−ej),i,j

=
∏
s>k>0

πEv+(k+1)(ei−ej),` ◦ τ
E
v+k(ei−ej),i,j ◦ ψ

E
v+k(ei−ej),`

= πEv+s(ei−ej),` ◦

(∏
s>k>0

τEv+k(ei−ej),i,j ◦ ψ
E
v+k(ei−ej),` ◦ π

E
v+k(ei−ej),`

)
◦ τEv,i,j ◦ ψEv,`

= (m+ 1)s−1 λs−1` πEv+sei−sej ,` ◦

(∏
s>k>0

τEv+k(ei−ej),i,j

)
◦ ψEv,`.

(4.22)

Lemma 3.13, Corollary 3.20, and Corollary 4.16 imply that the RHS can be represented as
the product of a scalar, a d2×

(
2d
2

)
matrix, s− 1 different

(
2d
2

)
×
(
2d
2

)
matrices, and a

(
2d
2

)
× d2

matrix, all of whose entries are linear polynomials in R[v,m]. The corollary follows. �

Corollary 4.21 combined with Lemma 3.13 yields the following corollary.

Corollary 4.23. Let s ∈ Z>0 and let G ∈ R[x]dm satisfy equation (3.7). Then,

T sv,i,j ◦ πEv,`
(
G|D(v,`)

)
= θsiλ

s
`(m+ 1)s

(
s∏

k=1

(vi + k)

)
πEv+s(ei−ej),`

(
G|D(v+s(ei−ej),`)

)
.

Before stating the final result of this section, we remind the reader of our running assumptions:

• i, j ∈ {0, 1, 2} distinct;
• R = Z or Fp, n = 2, d > 1, ` = 2d− 2, m > 0, and d(m+ 1) 6= 0 in R;
• F ∈ R[x]d is nondegenerate, meaning ∆∗d(F) 6= 0 (see (3.5) for the definition of ∆∗d).

Theorem 4.24. Let p be a prime that is equal to the characteristic of R when R = Fp and
does not divide ∆∗d(F)d(m+ 1) when R = Z. Let s be a positive integer, and let G ∈ R[x]dm
satisfy equation (3.7). The following hold:

(a) If w ∈ Zn+1 of degree dm+ ` and v ≡ w mod p then the matrices representing T sv,i,j
and T sw,i,j agree modulo p.

(b) If vi ≡ 0 mod p and s = p− 1, then (m+ 1)sλs`θ
s
i

∏s
k=1(vi + k) ≡ −1 mod p and

T p−1v,i,j ◦ πEv,`
(
G|D(v,`)

)
≡ −πEv+(p−1)(ei−ej),`

(
G|D(v+(p−1)(ei−ej),`)

)
mod p.

When vj ≡ −1 mod p also holds, the matrix T p−1v,i,j is invertible modulo p and its inverse
is T p−1v+(p−1)(ei−ej),j,i.

Proof. For (a) note that T sv,i,j is representable as a matrix with entries in R[v]. For (b) we apply
Fermat’s little theorem and Wilson’s theorem to obtain

∏p−1
k=1(vi + k) ≡ (p− 1)! ≡ −1 mod p,

which together with Corollary 4.23 implies the first claim. For the second claim in (b), we
17

apply T p−1v+(p−1)(ei−ej),j,i to both sides of the first claim to obtain

T p−1v+(p−1)(ei−ej),j,i ◦ T p−1v,i,j ◦ πEv,`
(
G|D(v,`)

)
≡ −T p−1v+(p−1)(ei−ej),j,i◦ π

E
v+(p−1)(ei−ej),`

(
G|D(v+(p−1)(ei−ej),`)

)
mod p

≡ πEv,`

(
G|D(v,`)

)
mod p,

where the last equivalence follows from the first claim in (b), since vj ≡ −1 mod p implies
(v + (p− 1)(ei − ej))j ≡ 0 mod p, allowing us to apply the first claim to T p−1v+(p−1)(ei−ej),j,i. �

5. Computing Cartier–Manin matrices of a smooth plane quartic

LetX : f(x0, x1, x2) = 0 be a smooth plane quartic defined by a nondegenerate homogeneous
quartic f ∈ R[x0, x1, x2]4. In this section we give algorithms to compute the Cartier–Manin
matrix Ap of X when R = Fp, or the Cartier–Manin matrices Ap of the reductions of X
modulo primes p 6 N of good reduction up to a given bound N when R = Z.

We first consider the case R = Fp, where p is an odd prime, noting that for p = 2 the
Cartier–Manin matrix can be extracted directly from the coefficients of f = fp−1 via (2.6).
We will apply the infrastructure developed in §4 with F = f and m = p− 2. In particular,
we work with ` = 6 = 2d− 2 and dm+ ` = 4(p− 2) + 6 = 4p− 2 throughout.

Let us first sketch our algorithm by working backwards from our goal. The coefficients of
fp−1 that appear in the ith column of the matrix Ap in (2.6) lie in fp−1|D(v(i),2) for

v(1) := (p− 1, p, 2p− 1), v(2) := (2p, p− 1, p− 1), v(3) := (p− 1, 2p, p− 1); (5.1)

note that the v(i) are not symmetric because the indices in the columns of (2.6) are not. Now
Dv,2 = Bv,2, since 2 < 4 = d, so πv,6 has codomain Wv,6 and it suffices to compute

πv,6
(
fp−2|D(v,6)

)
= fp−2|B(v,6) + fp−1|B(v,2) ∈ Wv,6 (5.2)

for v = v(1), v(2), v(3). We now define

w(1) := (0, 2p− 1, 2p− 1), w(2) := (3p− 1, 0, p− 1), w(3) := (0, 3p− 1, p− 1), (5.3)

with w(1) = v(1)+(p−1)(e1−e0), w(2) = v(2)+(p−1)(e0−e1), and w(3) = v(3)+(p−1)(e1−e0).
Let Cp ∈ F16×16

p denote the matrix representing the linear operator

T p−1
w(1),0,1

: Ww(1),6 →Wv(1),6, (5.4)

determined by the nondegenerate polynomial f ∈ Fp[x0, x1, x2]4. By Theorem 4.24 (a), the
matrix Cp also represents

T p−1
w(3),0,1

: Ww(3),6 →Wv(3),6, (5.5)

since v(1) ≡ v(3) mod p and w(1) ≡ w(3) mod p, and by Theorem 4.24 (b), C−1p represents(
T p−1
v(2),0,1

)−1
≡ T p−1

w(2),1,0
: Ww(2),6 →Wv(2),6 (5.6)

since v(2)0 ≡ 0 mod p and v(2)1 ≡ −1 mod p and w(2) = v(2) + (p − 1)(e0 − e1). We can thus
use the matrix Cp and its inverse to traverse the three paths from the intermediate points w
depicted as blue dots on the exterior of triangle in Figure 2 to the target interior points v.

18

x4p−20 x4p−21

x4p−22

Figure 2. Illustration for p = 7. The target points v in the interior are shown
in black with v(1) at the top center, v(2) at the lower left, and v(3) at the lower
right. The intermediate points w are in blue, and the paths used to reach the
target points v are shown in gray.

To obtain the coefficients of fp−2|D(w,6) for w = w(1), w(2), w(3) we could apply a variation
of the method of §4 for n = 1 (each w has a zero entry we can ignore), but we prefer to use a
simpler approach that we illustrate for w = w(3). Let h(t) := f(0, 1, t). Then

hp−2(t) ≡ h(tp)h−2(t). (5.7)

If we put g(t) := h(t)2 =
∑8

i=0 ait
i and let

a0/g(t) =
∑
i>0

cit
i ∈ Fp[[t]], (5.8)

then we can compute (cs, cs−1, · · · , cs−7) as the first column of Qs
g, where

a0Qg :=

−a1 −a2 −a3 · · · −a8
a0 0 0 · · · 0
0 a0 0 · · · 0
...
0 · · · 0 a0 0

 , (5.9)

19

Computing Qs
g with s = p− 1 allows us to derive the

(
6+1
1

)
= 7 coefficients of fp−2|D(w,6) we

need using cs, . . . , cs−6; the other
(
6+2
2

)
−
(
6+1
1

)
= 21 coefficients correspond to monomials in

Fp[x±] that contain a negative exponent and are necessarily zero because fp−2 is a polynomial.
In terms of Figure 2, the computation we have just described corresponds to walking p− 1
steps along the gray path from the lower right corner of the triangle to the first blue dot on
the right edge (the 21 zero coefficients correspond to monomials outside the triangle).

The cases w = w(1), w(2) are treated similarly using suitable g(t) and s.

Algorithm 5.10. Given a nondegenerate f ∈ Fp[x0, x1, x2]4 and the corresponding matrix
Cp ∈ F16×16

p , compute the Cartier–Manin matrix of X : f(x0, x1, x2) = 0 as follows:

(1) Compute fp−2|D(w,6) for w = w(1), w(2), w(3) (the blue dots in Figure 2) using suitably
chosen g ∈ Fp[t] and Qs

g ∈ F8×8
p as described above:

(a) Compute the edge coefficients of fp−2|D(w(1),6) using g(t) := f(0, 1, t)2:(
fp−2
w(1)−je2−(6−j)e1

)
06j67

=
(
f(0,3,1)f(0,4,0)

−2Qp−1
g + f(0,4,0)

−1Q2p−1
g

)
· (1, 0, . . . , 0)T .

(b) Compute the edge coefficients of fp−2|D(w(2),6) using g(t) := f(1, 0, t)2:(
fp−2
w(2)−je2−(6−j)e0)

)
06j67

= f(4,0,0)
−1Qp−1

g · (1, 0, . . . , 0)T .

(c) Compute the edge coefficients of fp−2|D(w(3),6) using g(t) := f(0, 1, t)2:(
fp−2
w(3)−je2−(6−j)e1

)
06j67

= f(0,4,0)
−1Qp−1

g · (1, 0, . . . , 0)T .

(2) Compute πv,6(fp−2|D(v,6)) for v = v(1), v(2), v(3) (the black dots in Figure 2) using
Theorem 4.24 and Equation (5.2) as follows:
(a) Compute the first column of Ap using v(1) = (p− 1, p, 2p− 1):(

fp−1(p−1,p,2p−3),f
p−1
(p−1,p−1,2p−2),f

p−1
(p−1,p−2,2p−1), f

p−1
(p−2,p,2p−2),f

p−1
(p−2,p−1,2p−1), f

p−1
(p−3,p,2p−2)

)
=
(
πv(1),6

(
fp−2|D(v(1),6)

))
|
B(v(1),2)

= −Cp ◦ πw(1),6

(
fp−2|D(w(1),6)

)
.

(b) Compute the second column of Ap using v(2) = (2p, p− 1, p− 1):(
fp−1(2p,p−1,p−3), f

p−1
(2p,p−2,p−2), f

p−1
(2p,p−3,p−1),f

p−1
(2p−1,p−1,p−2),f

p−1
(2p−1,p−2,p−1),f

p−1
(2p−2,p−1,p−1)

)
=
(
πv(2),6

(
fp−2|D(v(2),6)

))
|
B(v(2),2)

= −Cp−1 ◦ πw(2),6

(
fp−2|D(w(2),6)

)
.

(c) Compute the third column of Ap using v(3) = (p− 1, 2p, p− 1):(
fp−1(p−1,2p,p−3),f

p−1
(p−1,2p−1,p−2),f

p−1
(p−1,2p−2,p−1), f

p−1
(p−2,2p,p−2),f

p−1
(p−2,2p−1,p−1), f

p−1
(p−3,2p,p−1)

)
=
(
πv(3),6

(
fp−2|D(v(3),6)

))
|
B(v(3),2)

= −Cp ◦ πw(3),6

(
fp−2|D(w(3),6)

)
.

(3) Output the matrix Ap ∈ F3×3
p defined in (2.6) using the coefficients of fp−1 that are

shown in bold above.
20

Remark 5.11. The matrix Qp−1
g in step (1c) is the same as in step (1a) and need not be

recomputed. The matrices that represent πw,6 for w = w(1), w(2), w(3) in step (2) are all the
same, since πw,6 does not depend on w, by Lemma 3.13. Indeed, if ι(t) ∈ {1, . . .#D`} is the
index of t ∈ D` in its lexicographic ordering, the matrix W ∈ R16×28 with nonzero entries
Wι(u),ι(t+u) := Ft for u ∈ D2 and t ∈ D4 and W6+j,18+j := 1 for 1 6 j 6 10 represents πw,6.

Remark 5.12. If we instead use the “uncompressed” matrix Up ∈ F28×28
p representing the

linear operator
∏

p−1>k>0 τ
E
w(1)+k(e0−e1),0,1

, which by (4.21) satisfies

Up = −λ−16 ψEv(1),6 ◦ Cp ◦ π
E
w(1),6,

we can consider an “uncompressed” version of Algorithm 5.10. We replace Cp ◦ πw(1),6 and
Cp ◦ πw(3),6 with πv(1) ◦ Up and πv(3) ◦ Up, respectively, to obtain the desired vectors in (2a)
and (2c), and for (2b) we replace C−1p with −λ6(πEv(1),6 ◦ Up ◦ ψ

E
w(1),6

)−1.

Lemma 5.13. Algorithm 5.10 runs in O(log2 p log log p) time using O(log p) space.

Proof. The algorithm uses O(log p) ring operations for the matrix exponentiations and O(1)
field inversions in step (1), and O(1) field operations in step (2). Each ring operation
in Fp can be achieved using O(1) ring operations in Z on integers with O(log p) bits (using
Newton iteration to perform fast Euclidean division, see [GG13, Thm. 9.8]), which yields a
bit complexity of O(M(log p)) = O(log p log log p) per ring operation via [HvdH21]. We can
perform field inversions in O(M(log p) log log p) = O(log p(log log p)2) time using a fast GCD
algorithm [GG13, Cor. 11.13], which is dominated by the cost of O(log p) ring operations; the
time bound follows and the space bound is immediate. �

We now give our algorithms to compute the Cartier–Manin matrix of a smooth plane
quartic. Let us define the matrix

M(t) := Tw(1)+t(e0−e1),0,1 ∈ R[t]16×16, (5.14)

whose entries are polynomials in t of degree at most 2, by Corollary 4.21. From (4.19), we
see that M(t) can be computed as the product of matrices in R[t]16×28, R[t]28×28, R[t]28×16

representing the maps πEv(t)+e0−e1,6, τ
E
v(t),0,1, ψ

E
v(t),6, respectively, where v(t) = w(1) + t(e0 − e1).

The matrices representing πEv(t)+e0−e1,6 and ψ
E
v(t),6 are computed as in the proof of Lemma 3.13:

the matrix representing πEv(t)+e0−e1,6 is independent of v(t), its entries are coefficients of f
or elements of {0, 1}, while the entries in ψEv(t),6 are determined by (3.18). The matrix
representing τEv(t),0,1 = P Ev(t)+e0,j ◦ φ

E
v(t),i is computed by composing the matrix in {0, 1}28×36

representing the projection P Ev(t)+e0,1 with the matrix in R[t]36×28 representing φEv,i whose
entries are given by (4.12). From equation (4.20) we then have

Cp := T p−1
w(1),0,1

=
∏

p−1>j>0

M(j) mod p ∈ F16×16
p . (5.15)

Algorithm 5.16. Given a nondegenerate f ∈ Fp[x0, x1, x2]4, compute the Cartier–Manin
matrix Ap of the smooth plane quartic X : f(x0, x1, x2) = 0 as follows:

(1) Compute the matrix M(t) ∈ Fp[t]16×16 corresponding to f as described above.
(2) Compute the matrix Cp = T p−1w1,0,1

=
∏

p−1>j>0M(j) ∈ F16×16
p .

(3) Use Algorithm 5.10 with inputs Cp and f to compute the Cartier–Manin matrix Ap.
21

Remark 5.17. We may also consider an uncompressed version of Algorithm 5.10 that uses
M(t) := τEw1+t(e0−e1),0,1 ∈ R[t]28×28 to compute the matrix Up defined in Remark 5.10 rather
than using the matrices M(t) defined in (5.14) to compute Cp. Note that in the former case
the entries of M(t) have degree at most 1 rather than 2.

Theorem 5.18. Algorithm 5.16 can be implemented to use O(p log p log log p) time and
O(log p) space, and also to use O(p1/2 log2p) time and O(p1/2 log p) space.

Proof. The first complexity bound is achieved by iteratively instantiating the entries of M(t)
at t = k and accumulating the matrix product in Cp. This involves O(p) ring operations in Fp,
which takes O(p log p log log p) time using O(log p) space. The second complexity bounds is
achieved by using the interpolation/evaluation algorithm of Bostan–Gaudry–Schost [BGS07]
to compute

∏
p−1>j>0M(j), which uses M(p1/2 log p) = O(p1/2 log2 p) time and O(p1/2 log p)

space. The cost of invoking Algorithm 5.10 in step (2) is negligible in both cases. �

Remark 5.19. In our O(p log p log log p) implementation, rather than computing Cp as the
product of p−1 matricesM(j), we instead iteratively multiply the vectors πw(i),6(f

p−2|D(w(i),6)

)
that appear in steps (2a) and (2c) of Algorithm 5.10 by each matrices M(j) as it is computed.
We then repeat this process using the curve defined by f(x1, x0, x2) to obtain the vector
computed in step (2b); note that in steps (1c) and (2c) of Algorithm 5.10 are identical to
steps (1b) and (2b) except the roles of x0 and x1 are reversed. This effectively replaces each
matrix multiplication with 3 matrix-vector multiplications and is practically faster in the
range of p we consider. The matrices M(j) for j = 0, . . . , p− 1 can be efficiently enumerated
using finite differences (the entries of M(t) are polynomials of degree at most 2).

We now turn to the case R = Z, where our strategy is to use an average polynomial-time
approach to simultaneously compute the matrices Cp at suitable primes p 6 N using a
single matrix M(t) ∈ Z[t]16×16. A nondegenerate polynomial f ∈ Z[x0, x1, x2]4 will have
nondegenerate reduction modulo all primes p that do not divide ∆∗4(f), but in order to obtain
a valid matrix Cp to use as input for Algorithm 5.10 computed via (5.15) withM(t) ∈ Z[t]16×16

we also need to ensure that the scalar (m+ 1)λ6 arising in Lemma 3.13 and the degree d = 4
are both nonzero modulo p.

Now m + 1 = p− 1 is never divisible by p, so it suffices to restrict our attention to odd
primes that do not divide λ6. We thus define D := 2λ6∆

∗
4(f) and treat all primes p 6 N that

do not divide D using an average polynomial-time approach and handle good primes p | D
as special cases via Remark 5.20 below. The primes p | D are bounded by a constant that
does not depend on N , thus the time spent handling the good p | D has no impact on the
complexity of our algorithm as a function of N (and it is completely negligible in practice).

Remark 5.20. For primes p | D where f has good reduction we can compute the Cartier–
Manin matrix directly from its definition, but we can more efficiently treat p - ∆∗4(f) by
simply applying Algorithm 5.16 to the nondegenerate reduction of f modulo p. In our
implementation we do the same for good primes p | ∆∗4(f) greater than 3 by applying a
random linear transformation to the reduction of f modulo p until we obtain a nondegenerate
polynomial f̃ ∈ Fp[x0, x1, x2] that defines an isomorphic curve. In practice this appears to
always work for p > 3 but we make no attempt to prove this here. Note that we have assumed
f(x0, x1, x2) = 0 is a model for X that is smooth a p, but if not, replace f modulo p with the
reduction of a model for X that is smooth at p.

22

Before describing our average polynomial-time algorithms to compute Ap for p 6 N coprime
to D, we briefly recall some background material on remainder trees and forests. Given a
sequence of integer matrices M0, . . . ,MN−1 and a sequence of coprime integers m0, . . . ,mN−1
we wish to compute the following sequence of reduced partial products for 0 6 k < N :

Pk := M0 · · ·Mk mod mk.

Let M−1 := MN := mN := 1, and for 0 6 k < N/2 let M ′
k := M2k−1M2k and m′k := m2km2k+1.

If we now recursively compute P ′k := M ′
0 · · ·M ′

k mod m′k = M0 · · ·M2k mod m2km2k+1 for
0 6 k < N/2, we can then compute

P2k = P ′k mod m2k and P2k+1 = P ′kM2k+1 mod m2k+1.

Unwinding this recursion yields the RemainderTree algorithm described in [HS14].
The RemainderForest algorithm in [HS16] reduces the time and (especially) the space

needed by splitting the remainder tree into 2κ-subtrees, for a suitable choice of κ. In
[HS14, HS16, Sut20] the RemainderForest algorithm is used to compute the sequence of
vectors Vk := V0M0 · · ·Mk mod mk using vector-matrix multiplications to carry results from
one subtree to the next, but it can also be used to compute Pk = IM0 · · ·Mk mod mk using
the same approach. Below we record a special case of [HS16, Theorem 3.3], in which ‖Mk‖
denotes the logarithm of the largest absolute value appearing in the nonzero matrix Mk.

Theorem 5.21. Fix a constant c > 0. Let N be a positive integer, let m0, . . . ,mN−1 be
positive coprime integers with log

∏n
k=0mk 6 cn for 2 6 n < N , let M0, . . . ,MN−1 ∈ Zr×r be

nonzero integer matrices with r < c logN and ‖Mi‖ 6 c logN . We can compute the matrices

Pk :=
k∏
i=0

Mi mod mk

for 0 6 k < N in O(r2N log3N) time using O(r2N) space.

Proof. We apply [HS16, Thm. 3.3] with κ := b2 log2 log2Nc, B = cN , B′ = 1, H = c logN .
We use M(n) = O(n log n) from [HvdH21] and note that replacing M(n) with n log n in
the statement of [HvdH18, Lem. 4] allows us to omit the last step of the proof where the
hypothesis that M(n)/(n log n) is increasing is used and remove that hypothesis.

Provided log r = O(logB), the complexity of multiplying r×r matrices with B-bit entries is
O(r2B logB+ rωB log logB), where ω < 3 is the exponent of matrix multiplication. We have
r = O(logB), so this is O(r2B logB) = O(r2N logN), which we may substitute for [HS16,
Lem. 3.1] in the proof of [HS16, Thm3.3]. The cost of replacing vector-matrix multiplications
with matrix multiplications as we transition from one subtree to the next is asymptotically
negligible: we may reduce modulo m :=

∏N−1
k=0 mk throughout and perform O(2κ) = O(log2N)

matrix multiplications with O(N)-bit entries, each involving O(r2N logN) bit operations. �

Algorithm 5.22. Given f ∈ Z[x0, x1, x2]4 with ∆∗4(f) 6= 0 and a positive integer N ,
compute the Cartier–Manin matrices Ap of the reductions of the smooth plane quartic
X : f(x0, x1, x2) = 0 modulo primes p 6 N of good reduction for X as follows:

(1) Use the RemainderForest algorithm to compute Cp =
∏

p−1>j>0M(j) mod p for
primes p 6 N with p - D using the matrices Mi := M(−2− i) ∈ Z16×16 and moduli
mi := i+ 2 when i+ 2 is a prime p - D and with mi := 1 otherwise, for 0 6 i < N − 1.
The matrices Mi and moduli mi should be dynamically computed as needed.

23

(2) For each Cp computed in (1) apply Algorithm 5.10 with input f mod p and Cp to
compute Ap. This step should be interleaved with step (1), computing the relevant Ap
in batches as the RemainderForest algorithm completes each subtree.

(3) For p 6 N of good reduction dividing D compute Ap via Remark 5.20.

Note that for primes p 6 N that do not divide D we have

Pp−2 =

p−2∏
i=0

Mi mod mp−2 =

p−2∏
i=0

M(−2− i) mod p

≡
p−2∏
i=0

M(p− 2− i) ≡
∏

p−1>j>0

M(j) ≡ Cp mod p, (5.23)

thus step (1) of Algorithm 5.22 computes exactly the matrices Cp that are needed in step (2).

Remark 5.24. Lemma 3.13 and Corollary 4.21 imply that each integer matrix product
MiMi+1 is divisible by λ6. In our implementation of Algorithm 5.22 we precompute λ6 and
remove it from each matrix product computed during the RemainderForest computation
in step (1). This changes the output Pp−2 mod p by a factor of λp−26 , and we divide once
more by λ6 to obtain the desired matrix Cp, since λp−16 ≡ 1 mod p (note that λ6 |D so p - λ6).
This does not change the complexity of the algorithm, but it reduces the sizes of the matrix
coefficients in every layer of the product tree above the leaves by roughly a factor of 2, which
yields a significant constant factor speedup (more than a factor of 2 in our tests).

Remark 5.25. As in Remark 5.17, we may also consider an uncompressed version of
Algorithm 5.22 that instead computes 28× 28 matrices Up mod p and uses Remark 5.12 to
compute the Cartier–Manin matrices Ap. In this uncompressed version we are not able to
apply the optimization noted in Remark 5.24.

Remark 5.26. Algorithms 5.16 and 5.22 can be modified to more efficiently handle smooth
plane quartics of the form f(x0, x1, x2) = x40 + h(x1, x2)x

2
0 + g(x1, x2). In this case fp−1v = 0

whenever v0 is odd, and for p > 2 this implies that the Cartier–Manin matrix Ap ∈ F3×3
p has

at most five nonzero entries: the four corners and the center. The center corresponds to the
1× 1 Cartier–Manin matrix of the genus 1 curve x20 = h(x1, x2)

2 − 4g(x1, x2) which can be
computed via [HS16] using 4× 4 matrices. Restricting the domain and codomain of

τEw(1)+(2t+1)(e0−e1),0,1 ◦ τ
E
w(1)+2t(e0−e1),0,1

to the subspaces spanned by monomials with even degree in x0 yields a matrix M ∈ R[t]16×16.
One finds that M can be compressed via a coordinate projection to a 10× 10 matrix M ′, and
we compute Wp :=

∏
p−3
2
>k>0M(k) mod p as the product of M(p−3

2
) and the zero extension

of
∏

p−3
2
>k>0M

′(t) mod p. The matrix Wp can then be zero extended to Up ∈ F28×28
p and

used to compute the four corner entries of Ap via Remark 5.17.

Theorem 5.27. Algorithm 5.22 runs in O(N log3N) time using O(N) space.

Proof. Theorem 5.21 implies that the complexity of step (1) is within the desired bounds.
Step (2) calls Algorithm 5.10 O(N/ logN) times, which takes O(N logN log logN) time using
O(logN) space. The complexity of step (3) is asymptotically negligible, since D is fixed as a
function of N , and the theorem follows. �

24

To help assess the benefits of our new recurrences, we also implemented an algorithm that
uses the recurrences derived in [Har15] to compute the Cartier–Manin matrix Ap of a smooth
plane quartic X : f(x0, x1, x2) = 0 (or its reduction modulo p when R = Z). If one applies
[Har15, Thm. 4.1] with n = 2, d = 4, s = 1, h = (d − 1)(n + 1) + 1 = 10, k0 = p − 1, and
w = v + z with z = (0, 0, 6) ∈ Dh−d, one obtains a matrix Q ∈ R[k, l]66×66 that can be used
to compute fp−1|D(pv+z,10) for any v ∈ D4 via

fp−1|D(pv+z,10) =
1

dp−1(p− 1)!
Q(p−1, p−2)Q(p−1, p−3) · · ·Q(p−1, 0)gp−1|D(pv+z,10), (5.28)

where g(x0, x1, x2) = x40 + x41 + x42. The algorithm in [Har15] uses the matrix Q to compute
a matrix Ms which is then used to compute the matrix AarF s that appears in the trace
formula [Har15, Thm. 3.1], but the Cartier–Manin matrix Ap can be computed directly from
(5.28), and it suffices to compute the product M(p − 2)M(p − 3) · · ·M(0) mod p, where
M(j) := Q(−1, j); the algorithm in [Har15] works modulo p2 when s = 1, but that is not
necessary here. This product does not depend on v ∈ D4, so it suffices to compute a single
matrix product and then apply (5.28) using v = (1, 1, 2), (2, 1, 1), (1, 2, 1); this yields three
vectors in F66

p , each of which contains three entries that correspond to a column of Ap.
Having reduced the problem to computing

∏
p−1>j>0M(j) mod p we immediately obtain

algorithms to compute Ap with the complexities given in Theorem 5.18 for R = Fp, and
for R = Z we obtain an average polynomial-time algorithm with the complexities given in
Theorem 5.27 using a remainder forest. The difference in the size of the matrices (66 versus
28 or 16) only impacts the constant factors, which we consider in the next section.

Remark 5.29. There is an additional optimization that we exploit in our implementation of
the average polynomial-time algorithm based on [Har15, Thm. 4.1]. In the remainder forest
algorithm, rather than computing the 66 × 66 matrix Pk = M0 · · ·Mk mod mk we instead
compute the 3 × 66 matrix Pk = V0M0 · · ·Mk mod mk, where V0 is a 3 × 66 matrix with
entries in {0, 1} and zeros in all but one entry of each row. This optimization is possible
because we only need 3 rows of the matrix product to compute Ap. This optimization is not
applicable in the context of Algorithm 5.22 because we need to invert the reduced matrix
products in order to compute the middle column of Ap via Algorithm 5.10.

A demonstration version of the Õ(p) and average polynomial-time versions of all three
approaches (compressed, uncompressed, and the algorithm based on [Har15, Thm. 4.1])
written in the SageMath computer algebra system [Sage] is available at [CHS22]. The
optimized C implementation whose practical performance is analyzed in the next section will
be part of the next release of the open source smalljac software library [KS08].

6. Performance comparisons

In this section we compare the practical performance of our new algorithms to each other,
and to existing implementations, both for computing the Cartier–Manin matrix of a smooth
plane quartic over Fp (see Table 1), and for computing the Cartier–Manin matrices of the
reductions of a smooth plane quartic over Q at good primes p 6 N for some bound N .
Table 2 compares the new average polynomial-time algorithms to each other and Table 4
compares them to average polynomial-time algorithms for other types of genus 3 curves.

25

We first consider Õ(p) and Õ(p1/2) implementations of the compressed and uncompressed
versions of Algorithm 5.16 (denoted Algorithm 5.16c and Algorithm 5.16u below) as well
as Õ(p) and Õ(p1/2) implementations of the approach based on [Har15, Thm. 4.1] described
at the end of the previous section (denoted [Har15] (optimized) below). We compared the
performance of these six algorithms to each other, and to the following existing algorithms:

• In [Cos15] Costa gives an Õ(p)-time p-adic algorithm for computing the matrix of
Frobenius to a specified p-adic precision, which can be used to compute the Cartier–
Manin matrix of a smooth plane quartic. This algorithm is available at [Cos15a].

• The smalljac software library [KS08] includes a naïve point-counting algorithm for
plane projective curves X : f(x0, x1, x2) = 0 that computes

#X(Fp) = 0f(1,0,0)+ #{t ∈ Fp :f(t, 0, 1) = 0}+
∑
a∈Fp

#{t ∈ Fp : f(t, 1, a) = 0} (6.1)

via the identity #{t ∈ Fp : g(t) = 0} = deg gcd(g(t), tp − t) (valid for g 6= 0), in
O(p log2p log log p) time using O(log p) space.

• For smooth plane curves the RationalPoints function in Magma [Magma] uses an
O(p log2p log log p)-time algorithm to enumerate rational points over Fp.

The last two algorithms only compute #X(Fp), they do not compute the Cartier–Manin
matrix Ap, which provides additional information about X, including the reduction of its
zeta function modulo p and the p-rank of its Jacobian. Magma includes an implementation
of Tuitman’s algorithm [Tui16] that computes the entire zeta function in Õ(p) time, but the
constant factors make it more than 100 times slower than the three Õ(p) algorithms listed
above in the ranges we tested, so we chose not to include it in our comparison.

We ran each of these 9 algorithm on smooth plane quartics defined by dense polynomials
f ∈ Fp[x0, x1, x2]4, taking p to be the first prime larger than 2n for n = 10, 11, . . . , 30. The
running times for each algorithm can be found in Table 1, in which the complexity bounds in
the column headings ignore O(log log p) factors.

Each of the three Õ(p1/2) algorithms is substantially faster than the existing approaches,
as one would expect given the asymptotic advantage. For p ≈ 230 Algorithm 5.16c appears to
be faster than Algorithm 5.16u by factor of about 3, which in turn appears to be faster than
[Har15] (optimized) by a factor of almost 8. The factor of 3 ≈ (28/16)2 is as expected, while
the factor of 8 > 5.6 ≈ (66/28)2 is larger than one might expect; this is likely due to the
fact that p is not large enough for the O(rωp1/2 log p log log p) term in the complexity bound
from [BGS07] to become completely negligible. All three implementations use the smalljac
library [KS08], which includes an implementation of the algorithm in [BGS07] built on the
zn_poly library [Har10], which is used for fast cache-friendly multiplication in Fp[x].

The relative performance of the Õ(p) implementations of Algorithm 5.16 is perhaps more
surprising: Algorithm 5.16u outperforms Algorithm 5.16c by a wide margin. This is explained
by the fact that in our Õ(p) implementation of Algorithm 5.16u we exploit the shape of
the 28× 28 matrices M(t) defined in Remark 5.17: as can be seen from (4.12), it has only
7 · 22 + 21 = 165 < 256 = 162 nonzero entries. As noted in Remark 5.19, in our Õ(p)
implementation we iteratively compute matrix-vector products, which lets us exploit the

26

sparsity of the uncompressed M(t) (the compressed matrices are not sparse). Additionally,
the uncompressed M(t) have degree 1 rather than 2, which provides a further speedup.

We also analyzed the performance of the three average polynomial-time algorithms intro-
duced in this paper: the compressed and uncompressed versions of Algorithm 5.22 and the
algorithm based on [Har15, Thm. 4.1]. Table 2 lists the total time and space, and average
time per prime, to compute the Cartier–Manin matrices of the reductions modulo p of a fixed
smooth plane quartic curve over Q for good primes p 6 N = 2n for n = 10, 11, . . . , 23. We
used a dense polynomial f ∈ Z[x0, x1, x2]4 with small (single digit) coefficients as input to all
three algorithms. The parameter κ that determines the number 2κ of trees in the remainder
forest was chosen to optimize the running time; for N = 218, . . . , 223 this led us to use κ = 6
for both versions of Algorithm 5.22 and κ = 7 for the algorithm based on [Har15, Thm. 4.1],
which is close to the asymptotic value κ = b2 log2 log2Nc used in Theorem 5.21.

Remark 6.2. For the algorithm based on [Har15, Thm. 4.1], at small values of N the optimal
value of κ is actually log2N , meaning that each “tree” in the forest consists of a single matrix.
This choice of κ leads to an Õ(N2) time complexity but is advantageous for small values
of N because it allows the algorithm to avoid full matrix multiplications via Remark 5.29.
This explains the rapid growth in the running times for this algorithm for N 6 217.

In addition to κ, the memory used by our algorithms is influenced by the matrix dimensions
and the size of the matrix coefficients. To get a better understanding of these parameters, we
analyzed the computation of a single product tree in the middle of a remainder forest with
N = 224 and κ = 6 for all three algorithms. The results are shown in Table 3, in which one
can see the growth in the size of the matrix coefficients at each level of the product tree in
the “KB/entry” columns, the total size of all the matrices in each level in the “MB” columns,
and the total time per level. The decrease in the total size of the matrices in the first few
layers of the product tree for Algorithm 5.22c is explained by Remark 5.24.

Remark 6.3. In our implementation we use the algorithm for integer matrix multiplication
described in [HvdH18]. As explained in the proof of Theorem 5.27, this algorithm computes
the product of r × r matrices with b-bit entries in time O(r2b log b+ rωb log log b), provided
that log r = O(log b). This becomes O(r2b log b) when b is large relative to r, as in the context
of Theorem 5.21 where we have r = O(logB), and in Theorem 5.27 where r = O(1). But for
the small values of b that arise in the lower levels of the product tree the constant factors
make this approach less efficient than naïve matrix multiplication, so we use the algorithm of
[HvdH18] only once it becomes faster to do so. These crossover points are indicated by thin
horizontal lines in Table 3. Given that r is fixed in all the algorithms we consider, we made
no attempt to achieve the optimal value of ω in our implementation; doing so might have
improved the relative performance of the algorithm with r = 66 in the range we tested.

In Table 3 one can see that the matrix coefficient sizes roughly double in each level while
the number of matrix products is cut in half, and the total size of the products in each level
is essentially constant in the top half of each tree. Asymptotically, the time to build each
layer of the product tree is quasilinear in the total size, so for sufficiently large N/2κ one
would expect the relative running times of the three algorithms in the top half of the tree to
approach the ratios of these total sizes, which are roughly 1 : 2.6 : 7.0 for the algorithms with
r = 16, 28, 66, respectively. The ratios of the actual times to build these trees for N = 224 are

27

Cartier–Manin matrix point counting

Algorithm 5.16c Algorithm 5.16u [Har15] (optimized) [Cos15] smalljac magma

p p1/2log2p p log p p1/2log2p p log p p1/2log2p p log p p log p p log2p p log2p

210 + 7 0.003 0.001 0.002 0.000 0.022 0.001 0.014 0.000 0.000
211 + 5 0.003 0.001 0.003 0.000 0.029 0.003 0.017 0.001 0.010
212 + 3 0.004 0.002 0.004 0.000 0.041 0.006 0.023 0.001 0.020
213 + 17 0.004 0.004 0.006 0.001 0.056 0.011 0.035 0.002 0.040
214 + 27 0.005 0.009 0.008 0.002 0.081 0.023 0.058 0.004 0.070
215 + 3 0.006 0.017 0.012 0.003 0.113 0.047 0.112 0.008 0.140
216 + 1 0.008 0.033 0.018 0.006 0.175 0.089 0.192 0.023 0.300
217 + 29 0.011 0.066 0.028 0.012 0.255 0.184 0.372 0.039 0.620
218 + 3 0.017 0.130 0.047 0.024 0.402 0.368 0.718 0.078 1.23
219 + 21 0.025 0.263 0.072 0.047 0.598 0.735 1.43 0.158 2.62
220 + 7 0.039 0.527 0.119 0.092 0.956 1.41 2.84 0.324 5.50
221 + 17 0.060 1.05 0.186 0.188 1.47 2.84 5.65 0.740 11.4
222 + 15 0.100 2.11 0.318 0.370 2.41 5.65 11.3 1.47 23.9
223 + 9 0.154 4.15 0.488 0.736 3.69 11.8 22.6 2.93 48.3
224 + 43 0.269 8.43 0.858 1.46 6.26 23.4 44.9 6.44 99.3
225 + 35 0.421 16.6 1.35 2.93 9.73 45.2 89.9 13.6 201
226 + 15 0.735 33.7 2.36 5.83 16.8 90.4 180 26.9 723
227 + 29 1.16 66.4 3.68 11.7 27.4 188 360 54.5 1530
228 + 3 1.95 135 6.14 23.4 44.5 361 719 114 3080
229 + 11 2.90 265 9.04 46.7 68.5 750 1440 230 6430
230 + 3 4.89 539 15.1 93.1 119 1480 3130 465 13600

Table 1. Algorithms for smooth plane quartics over Fp. Times in 5.2GHz Intel
i9-12900K core-seconds. Complexities ignore O(log log p) factors. The point counting
computations only determine the trace of the Cartier–Manin matrix.

Algorithm 5.22c Algorithm 5.22u [Har15] (optimized)

N seconds ms/p GB seconds ms/p GB seconds ms/p GB

210 0.060 0.355 0.042 0.151 0.903 0.033 0.092 0.550 0.034
211 0.135 0.444 0.043 0.395 1.30 0.035 0.219 0.719 0.034
212 0.280 0.500 0.044 1.12 2.01 0.035 0.592 1.06 0.034
213 0.648 0.633 0.047 3.60 3.51 0.036 1.84 1.80 0.035
214 1.47 0.774 0.053 7.00 3.69 0.077 6.66 3.34 0.035
215 3.62 1.03 0.067 15.9 4.54 0.123 24.2 6.89 0.037
216 8.08 1.24 0.088 36.9 5.65 0.217 74.4 11.4 0.040
217 19.2 1.57 0.131 85.2 6.96 0.410 252 20.5 0.071
218 44.8 1.95 0.223 192 8.37 0.805 676 29.4 0.910
219 106 2.44 0.413 437 10.1 1.63 1680 38.6 2.38
220 241 2.94 0.790 991 12.1 3.29 4100 50.0 4.91
221 543 3.49 1.57 2230 14.3 6.73 10800 69.3 10.1
222 1260 4.26 3.20 5040 17.0 13.8 29900 101 20.9
223 2950 5.23 6.57 11400 20.3 28.4 88200 156 43.2

Table 2. Average polynomial-time algorithms for smooth plane quartics over Q
with small coefficients. Times in 5.2GHz Intel i9-12900K core-seconds.

28

Algorithm 5.22c
(r = 16)

Algorithm 5.22u
(r = 28)

[Har15] (optimized)
(r = 66)

products KB/entry MB seconds KB/entry MB seconds KB/entry MB seconds

217 0.014 457 2.91 0.005 469 6.62 0.003 1890 87.2
216 0.029 470 2.95 0.015 776 6.21 0.009 2508 70.7
215 0.055 449 2.28 0.039 989 7.37 0.019 2624 53.5
214 0.103 420 2.44 0.079 996 7.07 0.038 2679 36.3
213 0.198 406 2.62 0.159 999 8.68 0.078 2708 31.8
212 0.389 399 3.58 0.319 1001 13.2 0.156 2723 46.0
211 0.772 395 3.71 0.639 1002 14.4 0.313 2730 73.6
210 1.54 393 3.44 1.28 1003 13.6 0.628 2734 79.6
29 3.07 392 3.39 2.56 1003 14.0 1.26 2736 77.6
28 6.13 392 3.43 5.12 1003 14.1 2.51 2737 76.8
27 12.2 392 3.51 10.2 1003 14.4 5.03 2737 76.5
26 24.5 392 3.81 20.5 1003 15.0 10.1 2737 77.9
25 49.0 392 3.90 40.9 1003 15.2 20.1 2738 80.0
24 97.9 392 4.05 81.9 1003 15.5 40.2 2738 80.8
23 196 392 4.18 164 1003 16.0 80.4 2738 82.0
22 392 392 4.37 328 1003 16.5 161 2738 84.1
2 783 392 4.52 655 1003 17.1 322 2738 85.7
1 1570 392 5.80 1310 1003 21.0 644 2738 96.4

Table 3. Computation of a product tree in the middle of a remainder forest
with N = 224 and κ = 6 involving the product of N/2κ = 218 r × r matrices.
The “MB” columns list the total size of the products in megabytes. Horizontal
lines indicate matrix multiplication algorithm crossovers. Times in 5.2GHz
Intel i9-12900K core-seconds.

approximately 1 : 3.6 : 20.0, a discrepancy that is likely explained by lower order complexity
terms involving rω and the greater frequency of cache misses for larger total bit sizes.

Remark 6.4. Table 3 only captures the cost of building a product tree in the remainder
forest, which is less than half the total running time (for the time-optimal value of κ). The
other phases of the algorithm (transferring information between product trees and computing
remainders down the trees) involve computations on matrices that one can assume have been
reduced modulo m, where m is either the product of all remaining moduli, or the product
of the moduli in some subtree. The values of m will be the same in all three algorithms, so
one would asymptotically expect the relative costs of these phases to converge to the relative
ratios of 2r2 for r = 16, 28 and 3r + r2 for r = 66 (via Remark 5.29), which are 1 : 3.1 : 8.9.

Remark 6.5. As in Table 2, the data in Table 3 reflects a curve with small coefficients,
which is the case we expect to most often arise in practice (as in [Sut19], for example). To
assess the performance of our algorithms on curves with larger coefficients we also tested
random curves with 10 and 100 digit coefficients with N = 224 using κ = 8 and κ = 10. As
in Table 3, the total size of the matrix products at each level stabilizes in the top half of the
product tree, as do the relative running times. For 10-digit coefficients the relative size ratios
are 1 : 2.8 : 2.7 and the time ratios are 1 : 3.5 : 6.0 (for the algorithms with r = 16, 28, 66,

29

respectively), and for 100-digit coefficients the relative size ratios are 1 : 2.7 : 1.8 and the
time ratios are 1 : 2.4 : 2.7 (as noted above, these ratios are relevant only to the build phase).

Finally, we compared the performance of Algorithm 5.22c to average polynomial-time
algorithms that are applicable to various types of genus 3 curves over Q, including:

• The algorithm in [HMS16] for computing Cartier–Manin matrices of reductions of a
geometrically hyperelliptic curve of genus 3 defined over Q with a model of the form
g(x, y, z) = 0, w2 = f(x, y, z), where g is a pointless conic and deg f = 4.

• The algorithm in [HS16] for computing Cartier–Manin matrices of reductions of a
hyperelliptic curve over Q, applied to a genus 3 curve y2 = f(x) with deg f = 8, which
is a 2-cover of P1.

• The algorithm in [Sut20] for computing the Cartier–Manin matrices of reductions of
superelliptic curves ym = f(x) over Q applied to genus 3 curves of the form y3 = f(x)
and y4 = f(x) with deg f = 4 (the case y3 = f(x) is a Picard curve).

• The algorithm for smooth plane quartics of the form x4 + h(y, z)x2 = f(y, z) (these
are degree 2 covers of genus 1 curves) described in Remark 5.26.

The results appear in Table 4, which reflects curves defined by dense polynomials with
random single digit coefficients. All of these implementations use the RemainderForest
algorithm and the same libraries for multiplying polynomials and matrices over Fp and Z,
based on [Har10] and [HvdH18]. None of these computations required more than 64GB
memory, but the computations for smooth plane quartics were the most memory intensive.

N
plane
quartic

geometrically
hyperelliptic

rationally
hyperelliptic

2-cover of a
genus 1 curve

3-cover
of P1

4-cover
of P1

210 0.058 0.053 0.007 0.021 0.006 0.006
211 0.158 0.069 0.008 0.035 0.007 0.007
212 0.281 0.126 0.011 0.070 0.008 0.008
213 0.638 0.294 0.022 0.139 0.013 0.012
214 1.49 0.724 0.065 0.326 0.030 0.028
215 3.43 2.12 0.222 0.742 0.086 0.089
216 8.00 5.42 0.829 1.77 0.333 0.285
217 19.1 12.4 3.25 4.24 0.882 0.760
218 44.6 29.6 10.0 10.1 2.38 2.15
219 105 69.5 24.4 24.2 6.67 5.48
220 241 168 55.6 57.2 15.3 12.2
221 543 388 133 133 36.1 29.6
222 1260 921 320 315 87.6 72.0
223 2950 2160 746 748 214 173
224 6840 4860 1760 1750 514 410
225 15600 11200 4120 4050 1220 975
226 35600 26000 9560 9370 2880 2350

Table 4. Average polynomial-time algorithms for various genus 3 curves
over Q with small coefficients. Times in 5.2GHz Intel i9-12900K core-seconds.

30

References

[AH19] Jeffrey D. Achter and Everett W. Howe, Hasse–Witt and Cartier–Manin matrices: A warning and
a request , Arithmetic Geometry: Computations and Applications, Contemporary Mathematics 722
(2019), 1–18, American Mathematical Society. (MathSciNet:MR3896846, arXiv: 1710.10726v5) 4

[AH01] Leonard M. Adleman and Ming-Deh Huang, Counting points on curves and abelian varieties over
finite fields , International Algorithmic Number Theory Symposium (ANTS I), LNCS 1122 (1996),
1–16, Springer. (MathSciNet:MR1446493) 2

[Bat93] Victor V. Batyrev, Variations of the mixed Hodge structure of affine hypersurfaces in algebraic
tori , Duke Math J. 69 (1993). (MathSciNet:MR1203231) 7

[Magma] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user
language, J. Symbolic Comput. 24 (1997), 235–265. (MathSciNet:MR1484478) 26

[BGS07] Alan Bostan, Pierrick Gaudry and Éric Schost. Linear recurrences with polynomial coefficients
and application to integer factorization and Cartier–Manin operator , SIAM J. Comput. 36 (2007),
1777–1806. (MathSciNet:MR2299425, HAL-Inria: 00103401) 22, 26

[CV09] Wouter Castryck and John Voight, On nondegeneracy of curves , Algebra Number Theory 3 (2009),
255–281. (MathSciNet:MR2525551) 7

[Cos15] Edgar Costa, Effective computations of Hasse-Weil zeta functions , Ph.D. thesis, New York Univer-
sity, 2015 (MathSciNet:MR3419250) 26, 28

[Cos15a] Edgar Costa, PycontrolledReduction, GitHub repository, https://github.com/edgarcosta/
controlledreduction (retrieved March 2021) 26

[CHS22] Edgar Costa, David Harvey, and Andrew V. Sutherland, SPQPointcounting, Jupyter notebook,
https://cocalc.com/AndrewVSutherland/SPQPointCounting/ToyImplementation (2022). 25

[FKS21] Francesc Fité, Kiran S. Kedlaya, and Andrew V. Sutherland, Sato–Tate groups of abelian threefolds:
a preview of the classification, in Arithmetic Geometry, Cryptography, and Coding Theory, Contemp.
Math. 770 (2021), 103–129. (MathSciNet:MR4280389, arXiv: 1911.02071) 3

[FKS22] Francesc Fité, Kiran S. Kedlaya, and Andrew V. Sutherland, Sato–Tate groups of abelian threefolds ,
preprint. arXiv: 2106.13759 3

[FOR08] Stéphane Flon, Roger Oyono, and Christophe Ritzenthaler, Fast addition on non-hyperelliptic
genus 3 curves, in Algebraic Geometry and its Applications, Ser. Number Theory Appl. 5 (2008)
1–28, World Sci. Publ. (MathSciNet:MR2484046, IACR: 2004/118) 2

[GG13] Joachim von zur Gathen and Jürgen Gerhard, Modern computer algebra, third edition, Cambridge
University Press, 2013. (MathSciNet:MR3087522) 21

[GKZ94] Israel M. Gelfand, Mikhail M. Kapranov, Andrei V. Zelevinsky, Discriminants, resultants, and
multidimensional determinants, Birkhäuser, 1994. (MathSciNet:MR2394437) 7, 15

[Har10] David Harvey, A cache-friendly truncated FFT , Theoret. Comput. Sci. 410 (2009), 2649–2658.
(MathSciNet:MR2531107, arXiv: 0810.3203) 26, 30

[Har15] David Harvey, Computing zeta functions of arithmetic schemes, Proc. Lond. Math. Soc. 111
(2015), 1379–1401. (MathSciNet:MR3447797 arXiv: 1402.3439) 2, 3, 25, 26, 27, 28, 29

[HvdH18] David Harvey and Joris van der Hoeven, On the complexity of integer multiplication, J. Symbolic
Comput. 89 (2018). (MathSciNet:MR3804803, HAL: 01071191) 23, 27, 30

[HvdH21] David Harvey and Joris van der Hoeven, Integer multiplication in time O(n log n), Annals of Math.
193 (2021), 563–617. (MathSciNet:MR4224716, HAL: 02070778) 21, 23

[HMS16] David Harvey, Maike Massierer, and Andrew V. Sutherland, Computing L-series of geometrically
hyperelliptic curves of genus three, in Algorithmic Number Theory 12th International Sympo-
sium (ANTS XII), LMS J. Comput. Math. 19A (2016), 220–234. (MathSciNet:MR3540957,
arXiv: 1605.04708) 2, 30

[HS14] David Harvey and Andrew V. Sutherland, Computing Hasse–Witt matrices of hyperelliptic curves
in average polynomial time, Algorithmic Number Theory 11th International Symposium (ANTS
XI), LMS J. Comput. Math. 17A (2014), 257–273. (MathSciNet:MR3240808, arXiv: 1402.3246) 2,
23

[HS16] David Harvey and Andrew V. Sutherland, Computing Hasse–Witt matrices of hyperelliptic curves in
average polynomial time, II , in Frobenius Distributions: Lang–Trotter and Sato–Tate Conjectures,

31

https://doi.org/10.1090/conm/722/14534
https://doi.org/10.1090/conm/722/14534
https://mathscinet.ams.org/mathscinet-getitem?mr=3896846
https://arxiv.org/abs/1710.10726v5
https://doi.org/10.1007/3-540-61581-4_36
https://doi.org/10.1007/3-540-61581-4_36
https://mathscinet.ams.org/mathscinet-getitem?mr=1446493
https://doi.org/10.1215/S0012-7094-93-06917-7
https://doi.org/10.1215/S0012-7094-93-06917-7
https://mathscinet.ams.org/mathscinet-getitem?mr=1203231
http://dx.doi.org/10.1006/jsco.1996.0125
http://dx.doi.org/10.1006/jsco.1996.0125
https://mathscinet.ams.org/mathscinet-getitem?mr=1484478
https://doi.org/10.1137/S0097539704443793
https://doi.org/10.1137/S0097539704443793
https://mathscinet.ams.org/mathscinet-getitem?mr=2299425
https://hal.inria.fr/inria-00103401/
https://doi.org/ 10.2140/ant.2009.3.255
https://mathscinet.ams.org/mathscinet-getitem?mr=2525551
https://www.proquest.com/docview/1711150592
https://mathscinet.ams.org/mathscinet-getitem?mr=3419250
https://github.com/edgarcosta/pycontrolledreduction/
https://github.com/edgarcosta/controlledreduction
https://github.com/edgarcosta/controlledreduction
https://cocalc.com/AndrewVSutherland/SPQPointCounting/ToyImplementation
https://cocalc.com/AndrewVSutherland/SPQPointCounting/ToyImplementation
https://doi.org/10.1090/conm/770
https://doi.org/10.1090/conm/770
https://mathscinet.ams.org/mathscinet-getitem?mr=4280389
https://arxiv.org/abs/1911.02071
https://arxiv.org/abs/2106.13759
https://arxiv.org/abs/2106.13759
https://doi.org/10.1142/9789812793430_0001
https://doi.org/10.1142/9789812793430_0001
https://mathscinet.ams.org/mathscinet-getitem?mr=2484046
https://eprint.iacr.org/2004/118
https://doi.org/10.1017/CBO9781139856065
https://mathscinet.ams.org/mathscinet-getitem?mr=3087522
https://doi.org/10.1007/978-0-8176-4771-1
https://doi.org/10.1007/978-0-8176-4771-1
https://mathscinet.ams.org/mathscinet-getitem?mr=2394437
https://doi.org/10.1016/j.tcs.2009.03.014
https://mathscinet.ams.org/mathscinet-getitem?mr=2531107
https://arxiv.org/abs/0810.3203
https://doi.org/10.1112/plms/pdv056
https://mathscinet.ams.org/mathscinet-getitem?mr=3447797
https://arxiv.org/abs/1402.3439
https://doi.org/10.1016/j.jsc.2017.11.001
https://mathscinet.ams.org/mathscinet-getitem?mr=3804803
https://hal.archives-ouvertes.fr/hal-01071191/
https://doi.org/10.4007/annals.2021.193.2.4
https://mathscinet.ams.org/mathscinet-getitem?mr=4224716
https://hal.archives-ouvertes.fr/hal-02070778/
https://doi.org/10.1112/S1461157016000383
https://doi.org/10.1112/S1461157016000383
https://mathscinet.ams.org/mathscinet-getitem?mr=3540957
https://arxiv.org/abs/1605.04708
https://dx.doi.org/10.1112/S1461157014000187
https://dx.doi.org/10.1112/S1461157014000187
https://mathscinet.ams.org/mathscinet-getitem?mr=3240808
https://arxiv.org/abs/1402.3246
https://doi.org/10.1090/conm/663/13352
https://doi.org/10.1090/conm/663/13352

Contemp. Math. 663 (2016), 127–147, American Mathematical Society. (MathSciNet:MR3502941
arXiv: 1410.5222) 2, 23, 24, 30

[Katz73] Nicholas M. Katz, Une formule de congruence pour la function ζ, in Groups de Monodromie
en Géométrie Algébrique, Lecture Notes in Mathematics 340 (1973), 401–438, Springer. (Math-
SciNet:MR0354657) 5

[KS08] Kiran S. Kedlaya and Andrew V. Sutherland, Computing L-series of hyperelliptic curves, Algo-
rithmic Number Theory 8th International Symposium (ANTS VIII), Lecture Notes in Computer
Science 487 (2009), 119–162, Springer. (MathSciNet:MR2467855, arXiv: 0801.2778) 2, 25, 26

[Ma1916] F.S. Macaulay, The algebraic theory of modular systems, Cornell Hist. Math Monographs, 1916.
(MathSciNet:MR1281612) 6, 7

[Man65] Ju. I. Manin, The Hasse–Witt matrix of an algebraic curve, in Fifteen Papers on Algebra, Amer.
Math. Soc. Transl. 45 (1965) 245–264, translated by J.W.S. Cassels. (MathSciNet:MR0124324) 5

[Pil90] Jonathan Pila, Frobenius maps of abelian varieties and fining roots of unity in finite fields, Math.
Comp. 55 (1990), 745–763 (MathSciNet:MR1035941) 2

[Sage] The Sage Developers, SageMath, the Sage Mathematics Software System Version 9.4, available at
https://www.sagemath.org, 2021. 25

[Sti09] Henning Stichtenoth, Algebraic function fields and codes, Graduate Texts in Mathematics 254,
Springer, 2009. (MathSciNet:MR2464941) 3, 4

[SV87] Karl-Otto Stöhr and José Felipe Voloch, A formula for the Cartier operator on plane algebraic
curves, J. Reine Angew. Math. 377 (1987), 49–64. (MathSciNet:MR0887399) 4

[Sch85] René Schoof, Elliptic curves over finite fields and the computation of square roots mod p, Math.
Comp. 44 (1985), 483–494. (MathSciNet:MR777280) 2

[Sut07] Andrew V. Sutherland, Order computations in generic groups , PhD Thesis, Massachusetts Institute
of Technology, 2007. (MathSciNet:MR2717420) 2

[Sut09] Andrew V. Sutherland, A generic approach to searching for Jacobians, Math. Comp. 78 (2009),
485–507. (MathSciNet:MR2448717, arXiv: 0708.3168) 2

[Sut19] Andrew V. Sutherland, A database of nonhyperelliptic curves over Q, Thirteenth Algorith-
mic Number Theory Symposium (ANTS XIII), Open Book Series 2 (2019), 443–459. (Math-
SciNet:MR3952027, arXiv: 1806.06289) 3, 29

[Sut20] Andrew V. Sutherland, Counting points on superelliptic curves in average polynomial time, Four-
teenth Algorithmic Number Theory Symposium (ANTS XIV), Open Book Series 4 (2020), 403–422.
(MathSciNet:MR4235126, arXiv: 2004.10189) 2, 3, 5, 23, 30

[Tui16] Jan Tuitman, Counting points on curves using a map to P1, Math. Comp. 85 (2016), 961–981.
(MathSciNet:MR3434890, arXiv: 1402.6758) 26

Department of Mathematics 77 Massachusetts Ave. Cambridge, MA 02139, USA
Email address: edgarc@mit.edu
URL: https://edgarcosta.org/

School of Mathematics and Statistics, University of New South Wales, Sydney NSW 2052,
Australia

Email address: d.harvey@unsw.edu.au
URL: http://web.maths.unsw.edu.au/∼davidharvey/

Department of Mathematics 77 Massachusetts Ave. Cambridge, MA 02139, USA
Email address: drew@math.mit.edu
URL: https://math.mit.edu/∼drew/

32

https://mathscinet.ams.org/mathscinet-getitem?mr=3502941
https://arxiv.org/abs/1410.5222
https://link.springer.com/chapter/10.1007/BFb0060518
https://mathscinet.ams.org/mathscinet-getitem?mr=0354657
https://doi.org/10.1007/978-3-540-79456-1_21
https://mathscinet.ams.org/mathscinet-getitem?mr=2467855
https://arxiv.org/abs/0801.2778
https://doi.org/10.3792/chmm/1263317740
https://mathscinet.ams.org/mathscinet-getitem?mr=1281612
http://dx.doi.org/10.1090/trans2/045
https://mathscinet.ams.org/mathscinet-getitem?mr=0124324
https://doi.org/10.2307/2008445
https://mathscinet.ams.org/mathscinet-getitem?mr=1035941
https://www.sagemath.org
https://www.sagemath.org
https://doi.org/10.1007/978-3-540-76878-4
https://mathscinet.ams.org/mathscinet-getitem?mr=2464941
https://doi.org/10.1515/crll.1987.377.49
https://doi.org/10.1515/crll.1987.377.49
https://mathscinet.ams.org/mathscinet-getitem?mr=0887399
https://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777280-6/
https://mathscinet.ams.org/mathscinet-getitem?mr=777280
https://dspace.mit.edu/handle/1721.1/38881
https://mathscinet.ams.org/mathscinet-getitem?mr=2717420
https://doi.org/10.1090/S0025-5718-08-02143-1
https://mathscinet.ams.org/mathscinet-getitem?mr=2448717
https://arxiv.org/abs/0708.3168
https://msp.org/obs/2019/2-1/p27.xhtml
https://mathscinet.ams.org/mathscinet-getitem?mr=3952027
https://arxiv.org/abs/1806.06289
https://msp.org/obs/2020/4-1/p25.xhtml
https://mathscinet.ams.org/mathscinet-getitem?mr=4235126
https://arxiv.org/abs/2004.10189
https://www.ams.org/journals/mcom/2016-85-298/S0025-5718-2015-02996-2/
https://mathscinet.ams.org/mathscinet-getitem?mr=3434890
https://arxiv.org/abs/1402.6758
https://edgarcosta.org/
http://web.maths.unsw.edu.au/~davidharvey/
https://math.mit.edu/~drew/

	1. Introduction
	2. The Cartier matrix of a smooth plane curve
	3. Setup
	4. Shifting coefficients
	5. Computing Cartier–Manin matrices of a smooth plane quartic
	6. Performance comparisons
	References

