
Explicit isomorphisms of quaternion algebras over
quadratic global fields

Tı́mea Csahók*, Péter Kutas†, Mickaël Montessinos‡,Gergely Zábrádi§

Tuesday 28th June, 2022

Abstract

Let L be a separable quadratic extension of either Q or Fq(t). We exhibit efficient algorithms
for finding isomorphisms between quaternion algebras over L. Our techniques are based on
computing maximal one-sided ideals of the corestriction of a central simple L-algebra.

1 Introduction

In this paper we consider a special case of the following algorithmic problem. Let K be a global
field and let A and B be central simple algebras over K given by a K-basis and a multiplication
table of the basis elements. The task is to decide whether A and B are isomorphic, and if so,
find an explicit isomorphism between them. A special case of this problem when B =Mn(K)
is referred to as the explicit isomorphism problem which has various applications in arithmetic
geometry [4],[10],[12], computational algebraic geometry [7] and coding theory [19],[18].

In 2012, Ivanyos, Rónyai and Schicho [26] exhibited an algorithm for the explicit iso-
morphism problem in the case where K is an algebraic number field. Their algorithm is a
polynomial-time ff-algorithm (which is a deterministic algorithm that is allowed to call an ora-
cle for factoring integers and polynomials over finite fields) in the case where the dimension of
the matrix algebra, the degree of the number field and the discriminant of the number field are
all bounded. More concretely, the running time of the algorithm is exponential in all these pa-
rameters. They also show that finding explicit isomorphisms between central simple K-algebras
A and B of dimension n2 over K can be reduced to finding an explicit isomorphism between the
algebra A⊗ Bop andMn2(K) (where Bop denotes the opposite algebra of B).

Then in [11] and independently in [30] an algorithm polynomial in log(d) was provided
when A is isomorphic toM2(Q(

√
d)). The case where K = Fq(t), the field of rational functions

over a finite field was considered in [22] where the authors propose a randomized polynomial-
time algorithm. This algorithm is somewhat analogous to that of [26] but it is polynomial in
the dimension of the matrix algebra. Similarly to the number field case, this was extended to
quadratic extensions (now with a restriction to odd characteristics) in [23].

In this paper we initiate a new method for dealing with field extensions which is analogous
to Galois descent. It is known that finding an explicit isomorphism between A andMn(K) is

*University of Oxford
†Eötvös Loránd University and University of Birmingham
‡Vilnius University, Faculty of Mathematics and Informatics, Institute of Mathematics
§Eötvös Loránd University and Rényi Institute of Mathematics, Lendület “Automorphic” Research Group

1

polynomial-time equivalent to finding a rank 1 element in A. Thus if one could find a subalge-
bra of A isomorphic toMn(Q) orMn(Fq(t)), then one could apply the known algorithms for
the subalgebra and that would give an exponential speed-up in both cases. Furthermore, these
types of methods should work equally for the function field and number field case which have
completely different applications. In [30] and [23] this type of method is studied. In both cases
one finds a simple subalgebra of A which is central simple over a subfield of the center of A.
This subalgebra is not necessarily a full matrix algebra, but it is at least split by the center of A.
This can be leveraged to compute zero divisors in A. The disadvantage of these methods is that
they are based on explicit calculations and reductions to finding nontrivial zeros of quadratic
forms which do not generalize easily.

In this paper we prove results of [30] in a more conceptual way and extend them to the
isomorphism problem of two quaternion algebras over a quadratic global field. The main tech-
nique is to compute a maximal right ideal of the corestriction of the algebra A (which is an
explicit construction corresponding to the usual corestriction on cohomology groups) and ap-
ply it to construct an involution of the second kind on A. In general this might not be useful,
but when A possesses a canonical involution of the first kind, then composing the two kinds of
involutions and taking fixed points gives us the central simple subalgebra over a smaller field.
Fortunately, tensor products of quaternion algebras carry a canonical involution of the first kind
which is exactly what we need. This provides an example of the explicit isomorphism problem
when the degree of the field over Q or Fq(t) is fixed but the discriminant does not need to be
bounded.

We also implement our algorithm in Magma [2]. In particular, this also involved imple-
menting the main algorithm from [22] and [18]. The same implementation was used in [5] for
matrix algebras of degree 2 in even characteristic. Here we use it for algebras of higher degree
and study its efficiency. Even though our main algorithm runs in polynomial time, the imple-
mentation is not practical. The bottleneck of the computation seems to be computing maximal
orders in higher degree split central simple algebras. The computationally expensive part is not
the factorization of the discriminant of the starting order (which in the rational function field
case is particularly fast), just the fact that the currently known maximal order algorithms run
in polynomial time but with a large exponent. We analyze the complexity of maximal order
algorithms given in [22, section 3] and [14, sections 3 and 4] and we also provide some sub-
stantial speed-ups in the case relevant to our main algorithm (when the algebra is obtained as a
corestriction).

The paper is structured as follows. Section 2 contains number theoretic and algorithmic
preliminaries. Section 3 is devoted to the general method of computing involutions of the sec-
ond kind and computing Galois descents of quaternion algebras. In Section 4 we describe our
main algorithm for finding explicit isomorphisms between quaternion algebras over quadratic
extensions of either Q or Fq(t) (where q can be even as well). Section 5 is devoted to complexity
estimates and optimisation tricks to speed-up the computations. Section 6 contains some details
about our Magma implementation1.

Acknowledgements
We would like to thank John Voight for helpful suggestions and comments on an earlier version
of this manuscript.

1https://github.com/QuaternionIsomorphisms/QuaternionIsomorphisms/

2

https://github.com/QuaternionIsomorphisms/QuaternionIsomorphisms/

2 Preliminaries

2.1 General algebraic background
Definition 2.1. Let K be a field and let A be a finite dimensional algebra over K. Then A is a central
simple algebra over K if it is simple and its center Z(A) equals K (central). A central simple algebra A
over the field K that has dimension 4 over K is called a quaternion algebra.

By a fundamental result of Wedderburn, a central simple algebra A is isomorphic to the full
matrix algebraMn(D) for some division ring D. In particular, a quaternion algebra over K is
either a division algebra or is isomorphic to the algebra of 2× 2 matrices over K.

Definition 2.2. Let A be a central simple algebra over K. We say that A is split by a field extension
L/K if A⊗K L ∼=Mn(L) for a suitable n. If a central simple algebra over K is isomorphic toMn(K),
then we call the algebra split (i.e. a shorter version of split by the extension K/K).

Now we recall some facts about the Brauer group. Our main reference is [16].

Definition 2.3. We call the central simple K-algebras A and B Brauer equivalent if there exist integers
m, m′ > 0 such that A⊗KMm(K) ∼= B⊗KMm′(K). The Brauer equivalence classes of central simple
K-algebras form a group under tensor product over K. This group is called the Brauer group Br(K) of
K.

In order to state the cohomological interpretation of the Brauer group we need to introduce
some further notation. For a field K we put Ksep for a fixed separable closure of K and GK :=
Gal(Ksep/K) for the absolute Galois group.

Theorem 2.4. [16, Thm. 4.4.3] Let K be a field. Then the Brauer group Br(K) is naturally isomorphic
to the second Galois cohomology group H2(GK, K×sep).

For specific fields one can even determine the Brauer group explicitly. The case of local fields
is treated by the following famous result of Hasse.

Proposition 2.5 (Hasse). [16, Prop. 6.3.9, Rem. 6.5.6] Let K be a nonarchimedean local field. Then we
have a canonical isomorphism

Br(K) ∼= Q/Z .

Moreover for a finite separable extension L/K there are commutative diagrams

Br(L)
∼= //

Cor
��

Q/Z

id
��

Br(K)
∼= // Q/Z

and Br(K)
∼= //

Res
��

Q/Z

|L : K|
��

Br(L)
∼= // Q/Z ,

where the right vertical map in the second diagram is the multiplication by the degree |L : K|.

The map inducing the isomorphism Br(K) ∼= Q/Z is classically called the Hasse invariant
map. Note that in the archimedean case Frobenius’ Theorem on division rings over the field of
real numbers R is equivalent to the fact Br(R) = 1

2 Z/Z ⊂ Q/Z. Finally, since C is algebraically
closed, we have Br(C) = 0.

Now let K be a global field, i.e either a number field (finite extension of Q) or the function
field K = F(C) of a smooth projective curve C over a finite field F. Denote by P the set of (finite

3

and infinite) places of K, i.e. in the function field case P is the set C0 of closed points on C and
in the number field case P consists of the prime ideals in the ring of integers of K and the set
of equivalence classes of archimedean valuations on K. For a place P ∈ P we denote by KP the
completion of K at P. If A is a central simple algebra over K then AP := A⊗K KP is a central

simple algebra over KP. This induces a natural map Br(K)→ Br(KP)
invP→ Q/Z. Note that every

central simple algebra A splits at all but finitely many places, i.e. we have invP([AP]) = 0 for
all but finitely many P. Using the main results of class field theory one obtains the following
classical theorem of Hasse.

Theorem 2.6 (Hasse). [16, Cor. 6.5.4, Rem. 6.5.6] For any global field K we have an exact sequence

0→ Br(K)→
⊕
P∈P

Br(KP)
∑ invP→ Q/Z→ 0 .

Note that the Hasse-invariant of a nonsplit quaternion algebra over a local field is 1
2 . In

particular, any quaternion algebra A over K splits at an even number of places. Further, for
any finite subset S ⊂ P of even cardinality there exists a unique quaternion algebra (upto
isomorphism) over K that splits exactly at the places in P \ S. This is usually referred to as
Hilbert’s reciprocity law.

Finally, we briefly recall the definition and basic properties of orders in central simple alge-
bras over local and global fields.

Definition 2.7. Let R be a Dedekind domain and K be its field of fractions. An R-order in a central
simple algebra A over K is a subring O in A that is a finitely generated R-submodule in A such that
K ·O = A (i.e. O is a full R-lattice in the K-vectorspace A). We call an order O ⊂ A maximal if it is
maximal with respect to inclusion.

By the following result, being a maximal order is a local property.

Theorem 2.8. [32, Cor. 11.2] An R-order O in A is maximal if and only if for each maximal ideal P in
R the localization OP is a maximal RP-order in A.

2.2 The corestriction of a central simple algebra
Due to the fact that the Brauer group admits a cohomological interpretation, one can use stan-
dard techniques from Galois cohomology to analyze central simple algebras. Let L be a finite
Galois extension of K (contained in the fixed separable closure Ksep). Let GK and GL be the
absolute Galois group of K and L respectively. There are two standard maps to analyze: restric-
tion, which is a map from H2(GK, K×sep) to H2(GL, K×sep) and corestriction which is a map from
H2(GL, K×sep) to H2(GK, K×sep).

For our purposes we need explicit descriptions of these maps on central simple algebras.
The restriction map is easy, one just considers the extensions of scalars by L (i.e. the map A 7→
A ⊗K L). However the corestriction map is more complicated. We describe the corestriction
map when L is a separable quadratic extension of K. This discussion is taken from [29, Section
3B] (in that book the corestriction is called the norm of an algebra).

Let L be a separable quadratic extension of a field K. Let σ be a generator of Gal(L/K).
Let A be a central simple algebra over L. Then we define Aσ to be the algebra you apply σ to
every entry in the multiplication table of A. Alternatively, one can define Aσ as a collection of
elements {aσ| a ∈ A} with the following properties:

aσ + bσ = (a + b)σ, aσbσ = (ab)σ , (λ · a)σ = σ−1(λ)aσ (λ ∈ L) .

4

Aσ is also a central simple L-algebra and the map A → Aσ given by a 7→ aσ is a K-algebra
isomorphism (but is visibly not L-linear).

Definition 2.9. Let L be a separable quadratic extension of K. Let A be a central simple L-algebra. The
switch map s is the K-linear endomorphism of A⊗L Aσ defined on elementary tensors by s(a⊗ bσ) =
b⊗ aσ, extended K-linearly.

Proposition 2.10. [29, Proposition 3.13.] The elements of A ⊗L Aσ invariant under the switch map
form a subalgebra which is a central simple algebra over K of dimension dimL(A)2 over K.

The algebra in Proposition 2.10 is called the corestriction of A (with respect to the extension
L/K). It induces the corestriction map of Galois cohomology. Our main application of the
corestriction maps concerns involutions of central simple algebras. Recall that an involution of
the central simple algebra A of the second kind is an involution whose restriction to the center
L of A is nontrivial. For an overview of involutions the reader is referred to [29, Chapter 1,
Section 1-3]. The main result we use is the following:

Theorem 2.11. Let L/K be a quadratic Galois extension and let A be a central simple algebra over L.
Then A admits an involution of the second kind if and only if the corestriction of A is split.

The proof of this theorem in [29] is constructive which we will exploit in later sections.

2.3 Corestriction of maximal orders
For the purpose of optimising maximal order computation in the corestriction of a matrix alge-
bra (see Section 5 for details), we need to consider the intersection of the corestriction of a central
simple algebra with a Dedekind domain strictly contain in the base global field. In this section,
we deal with the situation at unramified primes. This case is already well known, and we rely
on the exposition given in [13]. We discuss the situation at ramified primes in Proposition 5.5.

The unramified case is the case where S is a Galois R-algebra. We quote as a definition of
Galois extensions of rings the characterization given by point (6) of [13, Theorem 12.2.9]:

Definition 2.12. Let R be a commutative ring, and S a commutative R-algebra. Let G be a finite group
of R-algebra automorphisms of S. Then S is a Galois extension of R with group G if the following
conditions are verified:

1. SG = R

2. for each maximal ideal m of S and for each non-trivial σ ∈ G, there is an x ∈ S such that
σ(x)− x /∈ m.

Let K be a global field and L be a Galois extension of K with Galois group G. Assume that
R ⊊ K is a Dedekind domain and S is the integral closure of R in L. We have the following

Lemma 2.13. The ring S is a Galois extension of R with group G if and only if no prime ideal of R is
ramified in S.

Proof. Since R = S ∩ K it is clear that R = SG. Now, we let P be a prime ideal of S, lying above
a prime p in R. Then if p does not ramify in L, then for each 1 ̸= σ ∈ G either σ(P) ̸= P or σ
induces a non-trivial automorphism of the residue field of P. In both cases, we may find some
x ∈ S such that σ(x) − x /∈ P. Conversely, if p ramifies in S then the inertia subgroup IP is
nontrivial, ie. there exists an element 1 ̸= σ ∈ G such that σ(P) = P and σ acts trivially on the
residue field of P. So for all x ∈ S, σ(x)− x ∈ P.

5

For the remainder of this subsection, assume that L is a quadratic extension and G = {1, σ}.
We now give a definition of the corestriction of an S-order in A. Note that by [13, Theorem
14.1.12], this agrees with the more general construction [13, Definition 14.1.1] given in the case
that S is a Galois extension of R. However, we give a definition which does not require S to be
Galois over R, as we deal with such cases in Subsection 5.2.

Definition 2.14. Let A be a central simple algebra over L and let O be an S-order in A. Then we call
corestriction of O the intersection of O ⊗S Oσ and the corestriction of A.

We may now state and prove the main result of this subsection:

Proposition 2.15. Let A =Mn(L), and let O be a maximal S-order in A. Assume that no prime of R
ramifies in L. Then the corestriction of O is a maximal order in the corestriction of A.

Proof. Recall that an Azumaya algebra over a ring R′ is an R′-algebra A′ that is finitely gen-
erated, projective and faithful as an R′-module and such that the map s : A′ ⊗R′ A′op →
EndR′(A′) is an isomorphism, where s is defined by s(a ⊗ b)(x) = axb for a, b, x ∈ A′ (see
[13, Theorem 7.1.4 (3)] and [13, Corollary 1.1.16 (1)]).

Since A and its corestriction are matrix algebras (respectively over L and K), their maximal
orders are Azumaya algebras (respectively over R and S). This follows from [13, Theorem
11.3.14], since the Brauer class of a matrix algebra is trivial in the Brauer group of its base field.
Furthermore, any R-order that is an Azumaya R-algebra is a maximal order in the corestriction
of A. This is the content of [13, theorem 11.3.11].

Lemma 2.13 states that S is a Galois extension of R. In particular, by [13, Theorem 12.2.9], S
is a separable R-algebra. Furthermore, by [13, Theorem 6.4.6], S is an R-progenerator module. It
follows that [13, Theorem 14.1.9 (1)] applies, which states that the corestriction of an Azumaya
S-algebra is an Azumaya R-algebra.

2.4 Algorithmic preliminaries
In this subsection we give a brief overview of known algorithmic results in this context and
provide more details of the algorithms specifically used in this paper.

Let K be a field and let A be an associative K-algebra given by the following presentation.
One is given a K-basis b1, . . . , bm of A and a multiplication table of the basis elements, i.e. bibj
expressed as a linear combination ∑m

k=1 γi,j,kbk. These γi,j,k are called structure constants and
we consider our algebra given by structure constants. It is a natural algorithmic problem to
compute the structure of A, i.e., compute its Jacobson radical rad A, compute the Wedderburn
decomposition of A/ rad A and finally compute an explicit isomorphism between the simple
components of A/ rad A andMn(Di) where the Di are division algebras over K andMn(Di)
denotes the algebra of n× n matrices over Di. The problem has been studied for various fields
K, including finite fields, the field of complex and real numbers, global function fields and
algebraic number fields. There exists a polynomial-time algorithm for computing the radical of
A over any computable field [3]. There also exist efficient algorithms for every task over finite
fields [14],[34] and the field of real and complex numbers [8]. Finally, when K = Fq(t), the field
of rational functions over a finite field Fq, then there exist efficient algorithms for computing
Wedderburn decompositions [27].

This motivates the algorithmic study of computing isomorphisms between simple algebras.
Over finite fields every simple algebra is a full matrix algebra. Finding isomorphisms between
full matrix algebras can be accomplished in polynomial time using the results from [14] and
[34].

6

For more general fields, non-trivial central simple algebras exist. However, the discussion
given in [26, Section 4] gives a polynomial-time reduction from the computation of isomor-
phism of matrix algebras to the general computation of isomorphism between central simple
algebras. We record the result below.

Theorem 2.16. Let A1 and A2 be isomorphic central simple algebras of degree n over an infinite field K.
Then there is a polynomial-time reduction from computing an explicit isomorphism between A1 and A2
to computing an explicit isomorphism between A1 ⊗ Aop

2 andMn2(K).

We now examine existing algorithms for the case where K is a global field.

2.5 Number fields
Over number fields there is an immediate obstacle. Rónyai [33] showed that this task is at least
as hard as factoring integers. However, in most interesting applications factoring is feasible,
thus it is a natural question to ask whether such an isomorphism can be computed if one is
allowed to call an oracle for factoring integers.

In [20] the connection between norm equations and split cyclic algebras is exploited to com-
pute an explicit isomorphism between a full matrix algebra and a split cyclic algebra. This
method might be practical in certain cases but there is no known proven polynomial-time al-
gorithm for solving norm equation. Also for general central simple algebras (other than degree
2 or 3) there is no known efficient algorithm to turn a structure constant representation into a
cyclic algebra representation (thus [26] is more general). The main difficulty here is that in gen-
eral not every central simple algebra is a cyclic algebra, such a statement is only true for global
fields (thus an efficient algorithm would have to exploit the special structure of the field).

In [30] a polynomial-time algorithm (modulo factoring integers) is proposed for the n = 2
case when K is a quadratic field. This algorithm also uses an explicit descent method for finding
a Q-subalgebra of A. However, the subalgebra is computed by solving quadratic forms over Q,
while our approach applies more conceptual methods detailed in Section 3.

In [26] the authors propose such an algorithm when A ∼= Mn(K) where K is a number
field. This algorithm involves a search step for elements of small norm in a maximal order of
A. However, when K is a non-trivial extension of Q, the expected duration of the search grows
exponentially in all the parameters (n, the degree and the size of the discriminant of K). It
follows that [26] does not provide a polynomial-time algorithm for the problem over a general
number field, or even over extensions of Q of bounded degree.

2.6 Function fields

In the case that K = Fq(t), where q is a prime power, an algorithm is given by [22]. In contrast to
the number field case, this algorithm is polynomial in n and log q due to the fact that there is no
exhaustive search step at the end. Instead of the search step, the intersection of two maximal or-
ders, one over Fq[t] and one over the valuation ring for the degree valuation is computed. This
yields a finite algebra over Fq which contains a rank one idempotent element. This techniques
fails for function fields of positive genus.

When K is a finite extension of Fq(t), the only known case is the case of separable quadratic
extensions. When q is odd, then [23] proposes a polynomial-time algorithm for finding zero
divisors in split quaternion algebras over K using techniques similar to the ones developed in
[30]. When q is even, then an analogous polynomial-time algorithm is presented in [5].

We emphasize that some of the previously mentioned algorithms (e.g., the main algorithm
from [22]) have not been implemented and have no precise complexity estimate (beyond run-

7

ning in polynomial time). In this work we provide an implementation of [22] and analyze the
complexity of certain subroutines (such as maximal order computation) in more detail.

3 The descent method

Let K be a field and let L be a separable quadratic extension of K. Let A be a central simple
algebra over L given by structure constants. Our goal in this section is to find a subalgebra
of A which is a central simple algebra over K. In other words, we would like to decompose
A as a tensor product B ⊗K L when this is possible. Our main technical tool is an algorithm
that computes the corestriction of a central simple algebra. We apply this the case of quadratic
extensions.

Our first step is to construct an involution of the second kind on A if such an involution
exists. The following lemma [29, Theorem 3.17] provides a useful relationship between certain
right ideals of the corestriction of A and involutions of the second kind:

Lemma 3.1. Let A be a central simple algebra over L of dimension n2 where L is a separable quadratic
extension of the field K. Put B for the corestriction of A with respect to L/K. Assume that there exists a
right ideal I of B such that Aσ ⊗L A = IL ⊕ (1⊗ A) where IL = I ⊗K L. Then A admits an involution
of the second kind.

Proof. We sketch the proof here. For each a ∈ A there exists a unique element τI(a) ∈ A such
that

aσ ⊗ 1− 1⊗ τI(a) ∈ IL.

One can check that the map a 7→ τI(a) is indeed an involution of the second kind on A.

Now we propose an algorithm which either returns an involution of the second kind, or a
zero divisor of A:

Algorithm 3.2. Let L be a separable quadratic extension of a field K. Let A be a central simple algebra
over L of dimension n2 and let B be its corestriction with respect to the field extension L|K. Finally,
suppose that A admits an involution of the second kind (i.e., B is isomorphic to Mn2(K) by Theorem
2.11). Then the following algorithm computes either a zero divisor or an involution of the second kind of
A:

1. Compute a maximal right ideal I in B.

2. Let IL = I ⊗ L be the scalar extension of I in Aσ ⊗ A. Compute the intersection of IL and 1⊗ A.

3. If IL ∩ 1⊗ A ̸= 0, then we have computed a zero divisor in A

4. If IL ∩ 1⊗ A = 0 , then I is a right ideal with the property that Aσ ⊗L A = IL ⊕ (1⊗ A) by
dimension considerations which allows us to construct an involution of the second kind.

The following theorem shows that if one is allowed to call an oracle for the first step, which
is essentially equivalent to finding an explicit isomorphism between the corestriction B and
Mn2(K)), then the rest of the algorithm runs in polynomial time.

Theorem 3.3. Let L be a separable quadratic extension of a field K. Let A be a central simple algebra
over L of dimension n2 which admits an involution of the second kind. Then Algorithm 3.2 gives a
polynomial-time reduction from the problem of computing an involution of the second kind in A to the
problem of computing a maximal right ideal in A.

8

Proof. Let B be the corestriction of A. Our assumptions together with Theorem 2.11 imply that
B is split. The correctness of Algorithm 3.2 follows mostly from Lemma 3.1, we only have to
show that every element of IL is a zero divisor. Every element of I is a zero divisor as B is a
full matrix algebra and non-units are automatically zero divisors. Now IL is obtained from I by
extensions of scalars hence every element of IL is a zero divisor as well.

Now we discuss the complexity of the steps of the algorithm. Computing a right ideal is a
subroutine required by the statement of the theorem, thus Step 1 can be carried out in polyno-
mial time. Step 2 computes the intersection of two L-subspaces which can be accomplished by
solving a system of linear equations over L. Finally, the last step runs in polynomial time by
Lemma 3.1.

The above proof is particularly interesting when one is looking for zero divisors in quater-
nion algebras.

Proposition 3.4. Let L be a separable quadratic extension of K. Then there exists a polynomial-time
reduction from the problem of finding a K-sulbalgebra of a quaternion algebra over L that is a quaternion
algebra over K to the problem of finding an explicit isomorphism between a degree 4 split central simple
algebra over K given by structure constants andM4(K).

Proof. Let A be a quaternion algebra over L which contains a K-subalgebra that is a quaternion
algebra over K, and let B be the corestriction of A. B is then a split central simple algebra of
degree 4 over K. Computing an explicit isomorphism withM4(K) allows us to find a maximal
right ideal of B, which we use as input for Algorithm 3.2.

Algorithm 3.2 returns either a zero divisor or an involution of the second kind on A. If
it returns a zero divisor, then one can efficiently construct an explicit isomorphism between
A and M2(L) which provides a subalgebra isomorphic to M2(K). If Algorithm 3.2 returns
an involution of the second kind, then one can compose that with the canonical involution
(conjugation) on A. Then the fixed points of this map form a quaternion subalgebra over K.

When L is a quadratic extension of K = Q or K = Fq(t), then there already existed effi-
cient algorithms for computing quaternion subalgebras over K in quaternion algebras over L
([30, Corollary 19], [23, Proposition 42]) using explicit calculations and utilizing algorithms for
finding nontrivial zeros of quadratic forms. Proposition 3.4 shows a more conceptual method
for computing subalgebras which avoids tedious calculations. Furthermore, this proposition
applies to quaternion algebras in characteristic 2 as well.

Corollary 3.5. Let L be a separable quadratic extension of K = F2k (t) and A a quaternion algebra over
L. There exists a polynomial-time algorithm which computes a quaternion subalgebra over K of A if such
a quaternion algebra exists.

Proof. The statement follows from Proposition 3.4 and the fact that there exists a polynomial-
time algorithm for finding explicit isomorphisms between an algebra A given by structure con-
stants andM4(F2k (t)) [22].

Let L be a quadratic extension of K = F2k (t) and A be an algebra isomorphic toM2(L) given
by structure constants. Combining Corollary 3.5 with [5, Theorem 3.19] one has the following
result:

Theorem 3.6. Let L be a quadratic extension of K = F2k (t) and A an algebra isomorphic toM2(L)
given by structure constants. Then there exists a polynomial-time algorithm that computes a zero divisor
in A.

9

4 The main algorithm

In this section we propose our main algorithm for computing explicit isomorphisms between
quaternion algebras over quadratic global fields.

We start with a small observation regarding the isomorphism problem of rational quaternion
algebras. It is known that there is a polynomial-time algorithm for this task if one is allowed
to call an oracle for factoring integers. Furthermore, there is a polynomial-time reduction from
the problem of computing explicit isomorphisms of rational quaternion algebras to factoring,
which implies that the factoring oracle is indeed necessary.

Let Bp,∞ be the rational quaternion algebra which is ramified exactly at p and at infinity.
In [9] the authors study the following problem: if we are given two quaternion algebras iso-
morphic to Bp,∞ and we are also given a maximal order in both quaternion algebras, can we
compute an explicit isomorphism between them without relying on a factoring oracle. The mo-
tivation for this problem comes from the fact that the endomorphism ring of a supersingular
elliptic curve over a field of characteristic p> 0 is a maximal order in Bp,∞. The authors propose
a heuristic algorithm which does not rely on factoring. Here we propose an algorithm for this
task which does not rely on any heuristics:

Proposition 4.1. Let A, B be rational quaternion algebras both known to be isomorphic to Bp,∞ and let
O1, O2 be maximal orders in A and B respectively. Then there exists a polynomial-time algorithm which
computes an isomorphism between A and B.

Proof. In [26] the authors show that finding an isomorphism between A and B can be reduced
to finding a primitive idempotent in C = A ⊗Q Bop. First observe that O1 ⊗Oop

2 is an order
in C which is locally maximal at every prime except at p. Thus we can find a maximal order
containing O1 ⊗ Oop

2 in polynomial time without factoring using the algorithm from [36] (in
the general algorithm one needs to factor the discriminant of the order but in this case the
factorization is already known as the discriminant of both O1 and O2 is p2). Finally, we use the
algorithm from [24] which finds a primitive idempotent.

Remark 4.2. 1. At the end of the above proof we could use the algorithm from [26] but then
it might only find a zero divisor which is not enough for our purposes (as it reduces to
finding a zero divisor in a quaternion algebra where we do not have a maximal order).

2. The same reasoning applies to the case where A and B are isomorphic rational quaternion
algebras and one knows the places at which the algebras ramify.

The main goal of the remainder of the section is to design an efficient algorithm which com-
putes an explicit isomorphism between isomorphic quaternion algebras over quadratic exten-
sions L of Q or Fq(t) (where q is a prime power and can be even).

Thus if one is given two quaternion algebras A1 and A2 over L which is a separable quadratic
extension of either K = Q or K = Fq(t), then by Theorem 2.16 it is enough to find an explicit
isomorphism between A1 ⊗ Aop

2 andM4(L). Note that when K = Q the paper [26] proposes
such an algorithm but it is exponential in the size of the discriminant of L/Q. We will get
around this issue by exploiting the fact that in this caseM4(L) is not given by a usual structure
constant representation but as a tensor product of two quaternion algebras.

First we identify three algorithmic problems on which the main algorithm will rely:

Problem 1. Let K be a field and let A be an algebra over K known to be isomorphic to M4(K) or
M16(K) given by structure constants (without an isomorphism). Compute a maximal right ideal of A.

10

Remark 4.3. Problem 1 is equivalent to finding an explicit isomorphism between A andM4(K)
orM16(K).

Problem 2. Let K be a field and let D be a quaternion division algebra over K. Let A be an algebra over
K isomorphic toM2(D) given by structure constants. Compute a zero divisor in A.

Problem 3. Let K be a field and let L be a separable quadratic extension of K. Let A be a split quaternion
algebra over L given by structure constants. Compute a zero divisor in A.

Let K be a global field and let L be a separable quadratic extension of K. We show that if
one can find efficient algorithms for these problems then there exists an efficient algorithm for
computing explicit isomorphisms between quaternion algebras over L.

Remark 4.4. In our applications K will be either Q or Fq(t), but we prefer to state the above
problems in this generality for the following two reasons. First, both algorithms would follow
the exact same outline, only the subroutine for the aforementioned Problems 1, 2 and 3 would
be different. Second, a general framework might have applications over global fields other than
Q or Fq(t). For example when K = Q(

√
2), Problem 1 admits a polynomial-time algorithm and

thus only the other two have to be dealt with.

Theorem 4.5. Let A1 and A2 be isomorphic quaternion algebras over L where L is a quadratic extension
of a global field K. Suppose there exist polynomial-time algorithms (with an oracle for factoring integers
in the case that K has characteristic zero) for Problems 1, 2 and 3. Then there exists a polynomial-time
algorithm for computing an isomorphism between A1 and A2.

Proof. We provide an algorithm for computing an explicit isomorphism between Aop
1 ⊗ A2 and

M4(L). Then Theorem 2.16 implies that one can compute an explicit isomorphism between A1
and A2 in polynomial time.

Let B = Aop
1 ⊗ A2. Then one can compute an involution of the first kind on B since it is

given as a tensor product of quaternion algebras (i.e., we take the canonical involution on each
component of the tensor product).

Applying Theorem 3.3 one can either construct an involution of the second kind or a zero
divisor in B using an efficient algorithm for Problem 1. Suppose first that the algorithm from
Theorem 3.3 finds a zero divisor a in B. If the zero divisor has rank 1 or 3 (here rank means
its rank as a matrix which can be computed by computing the dimension of the left ideal it
generates), then one can find either a rank 1 or a rank 3 idempotent by computing the left unit
of the right ideal (i.e., an element e such that for every element b in the right ideal, eb = b)
generated by a. Observe that if an idempotent e has rank 3, then 1− e has rank 1, and thus one
has actually found a primitive idempotent in both cases, which implies an explicit isomorphism
between B andM4(L). If a has rank 2, then we construct an idempotent e of rank 2 in a similar
fashion. Then eBe ∼= M2(L) and computing an explicit isomorphism between them can be
used to construct an explicit isomorphism between B and M4(L) (as a rank one element in
eBe ∼=M2(L) has rank 1 in B). Computing an explicit isomorphism between eBe andM2(L) is
exactly Problem 3. Note that the discussion also implies that it is enough to find a zero divisor
in B as it can be used for constructing an explicit isomorphism between B andM4(L).

Now we can suppose that the algorithm from Theorem 3.3 has computed an involution of
the second kind on B. We then have an involution of the second kind and an involution of
the first kind on A. Composing them and taking fixed points finds a subalgebra C of B which
is a central simple algebra of degree 4 over K and C ⊗K L = B. There are 3 kinds of central
simple algebras of degree 4: full matrix algebras, division algebras, and 2× 2 matrix algebras
over a division quaternion algebra. When C is a full matrix algebra over K, then one can use
an algorithm for Problem 1 to compute a zero divisor. When C is a 2× 2 matrix algebra over

11

a division quaternion algebra, then computing a zero divisor in C is an instance of Problem 2.
Finally, C is never a division algebra as it is split by a quadratic extension (the smallest splitting
field of a degree 4 central simple division algebra has degree 4 over the ground field for global
fields).

After obtaining a general algorithm our goal is to look at the Problems 1, 2 and 3 in the cases
where K = Q or K = Fq(t).

4.1 Rational function fields

We begin with the case when K = Fq(t) and q is odd:

1. Problem 1 can be solved in polynomial time using the main algorithm from [22, Section
4].

2. Problem 2 can be obtained in polynomial time using the algorithm from [18, Corollary 17].

3. Problem 3 admits a polynomial-time algorithm derived in [23, Proposition 43].

Now we look at the case where q is even :

1. Problem 1 can be accomplished in polynomial time using the main algorithm from [22,
Section 4].

2. Problem 2 admits a polynomial-time algorithm by [5, Corollary 3.22].

3. Problem 3 admits a polynomial-time algorithm by Theorem 3.6.

All these imply the following:

Corollary 4.6. Let L be a separable quadratic extension of Fq(t) where q is a prime power (which can
be even). Let A1 and A2 be two isomorphic quaternion algebras over L. Then there exists a randomized
polynomial-time algorithm which computes an isomorphism between A1 and A2.

4.2 The rationals
Now we turn our attention to the K = Q case. Problem 1 can again be accomplished in poly-
nomial time (with the help of an oracle for factoring integers) using the algorithm from [26,
Section 2]. Problem 3 can also be obtained in polynomial time using an oracle for factoring
integers. One has to use the algorithm [30, Corollary 19].

There is no known algorithm for Problem 2 in the rational case. In the rest of this section we
propose a polynomial-time algorithm for this task which is analogous to [18, Corollary 17]. The
key ingredient of the algorithm is a special case of a result in [1] (see also the Master’s thesis of
Schwinning [35] where the construction is made explicit):

Lemma 4.7. Suppose one is given a list of places v1, . . . , vk of Q where k is even. Then there exists a
polynomial-time algorithm which constructs a quaternion algebra over Q which ramifies at exactly those
places.

Proposition 4.8. Let A be an algebra isomorphic toM2(D) where D is a quaternion division algebra
over Q. Then there exists a polynomial-time algorithm which is allowed to call an oracle for factoring
integers which computes a zero divisor in A.

12

Proof. First we compute a maximal order in A using the algorithm from [25, Corollary 6.5.4].
An extension of this algorithm [21] computes the places where the algebra A ramifies. Now
we use Lemma 4.7 to compute a division algebra D0 which ramifies at exactly those places as
A, which implies that A ∼= M2(D0). Now we proceed in a similar fashion as in [18, Theorem
16] or [5, Corollary 3.22] but by invoking the algorithm from [26] for computing the required
explicit isomorphism.

An immediate corollary is the following:

Corollary 4.9. Let L be a quadratic extension of Q and let A1 and A2 be isomorphic quaternion algebras
over L. Then there exists a polynomial-time algorithm which is allowed to call an oracle for factoring
integers, that computes an explicit isomorphism between A1 and A2.

5 Complexity questions and optimisations

In this section, we give complexity estimates for the computation of maximal orders in separable
algebras over function fields. We then present optimisations that are relevant to our use case.
Namely, in Algorithm 1 our algebra A is a tensor product of quaternion algebras which allows
for case specific optimizations. More precisely, we compute maximal orders for the smallest
possible algebras and use them to construct orders with small discriminant in the algebras that
we generate throughout execution of Algorithm 1.

5.1 Complexity of maximal order computation
The complexity bottleneck of our algorithm is the computation of various maximal orders. Al-
though polynomial-time algorithms exist for this task (see [15] and [22]), the actual complexity
makes them rather impractical as soon as the degree of A increases. Throughout the execu-
tion of Algorithm 1, we may encounter two K-algebras of degree 16. One is the corestriction of
A = B1⊗ B2 and the other is AK ⊗M2(D), which is done when AK itself is isomorphic to some
M2(D), with D a division quaternion algebra (see Sections 4 and 6 for more details). In both
cases, we need to compute a zero divisor and therefore we need to compute maximal orders
(in fact, we compute a maximal order over the ring Fq[t] and another one over the valuation
ring corresponding to the degree valuation). We review descriptions of the algorithm used for
maximal order computations in Magma, and give an upper bound for its complexity.

The algorithm used for computing maximal orders over Dedekind domains in associative
algebras over global function fields is the one given in section 3 and 4 of [15], which is similar
to the algorithm described in section 3 of [22]. The computation proceeds from a starting order
Λ0. Letting µ be half the degree of the discriminant of Λ0, the algorithm has a worst-case
complexity of O(µn5), where n is the dimension of the input algebra (see [15, proposition 3.17
and remark 4.18]). If no starting order is given, one is computed from the given basis of the
input algebra. However, according to the discussion in subsection 3.3 of [22], an upper bound
for µ is then (n8dD + n2dN), where dD and dN are upper bounds respectively of the degrees of
the denominators and of the numerators of the structure constants of A. Note that in [22], n is
the degree of the algebra, while the convention used in [15] is that n is the dimension. We obtain
the following:

Proposition 5.1. The cost of computing a maximal order in a separable Fq(t)-algebra A of dimension
n, such that the numerators and denominators of the structure constants of A are bounded above by a
constant C ∈ R>0 is O(n9).

The cost of computing a maximal overorder of an order with discriminant µ, however, is O(µn5).

13

Remark 5.2. [22] states its result for algebras that are isomorphic to matrix algebras, but this
hypothesis is not used in the estimation of bounds for the degree of the discriminant. The
estimates are therefore valid for more general separable algebras.

5.2 Optimisation of the maximal order computations
As suggested by Proposition 5.1, computing maximal orders in degree 16 matrix algebras is the
computational bottleneck of our algorithm. However, this complexity depends on the degree of
the discriminant of the order with which we start our computation. We use this to our advan-
tage, by computing maximal orders for the input quaternion algebras, and then passing their
bases through the various operations we execute on the algebras (tensor product, corestriction
and Galois descent). While it is not true that after applying these operations we always get
maximal orders, we may control the growth of the discriminant, and therefore the complexity
of the later maximal order computations.

We now give results concerning the discriminant of orders passing through our various
operations. In this context, R is a Dedekind domain, and K is the fraction field of R. We stress
that the results given here are targeted for function fields of odd characteristic, as this is the use
case of our implementation.

Proposition 5.3. Let A and B be central simple algebras over K, respectively of dimension m and n, and
let OA and OB be R-orders respectively of A and B. Then OA ⊗R OB is an R-order in A⊗K B, and

Disc(OA ⊗R OB) = Disc(OA)
nDisc(OB)

m.

Proof. This is [28, Equation 3.5].

Next, we consider the computation of the corestriction of a matrix algebra A =Mn(K) on
a quadratic extension K of a rational function field Fq(t) in odd characteristic, and let σ be the
non-trivial Fq(t)-automorphism of K. We let R ⊊ Fq(t) be a Dedekind domain, and we call
S the integral closure of R in K. Let O be a maximal S-order in A. Then O ⊗R Oσ embeds in
A⊗R Aσ in an obvious manner and is stable under the switch map (see Definition 2.9). We call
Cor(O) = (O⊗R Oσ)∩Cor(A) the corestriction of O. We may easily construct a basis of Cor(O)
in Cor(A) from a basis of O in A. Unfortunately, Cor(O) is not a maximal R-order in Cor(A).
However, we compute its discriminant, whose degree only depends on the quadratic field K.
We first need a lemma:

Lemma 5.4. With notations as above, let us assume further that R is a DVR, and that its corresponding
valuation in Fq(t) ramifies in K. Then S admits a uniformizer π such that σ(π) = −π.

Proof. Since q is odd, we may find θ ∈ K \ Fq(t) such that θ2 ∈ Fq(t). That is, σ(θ) = −θ. Up
to multiplication by an element of Fq(t), we may assume that θ ∈ S and that its valuation is
0 or 1. Let k be the residue field of S, and then σ induces the identity on k. In k, we therefore
have σ(θ) = θ = −σ(θ) and since k has odd characteristic, θ = σ(θ) = 0. Therefore, θ is a
uniformizer of S and σ(θ) = −θ.

Proposition 5.5. Let the notations be as above. Then let p1, ..., pm be the irreducible elements of R that
ramify in S. Then

Disc(Cor(O)) = ∏
1≤i≤m

p
n4−n2

2
i .

14

Proof. We first prove the result in the case that R is a DVR. Let v be the valuation corresponding
to R in K.

If v does not ramify in S, then this is Proposition 2.15. We now assume that v ramifies in S.
For the computation that follows, we will use the delta symbol for tuples. By this, we mean

that if (i, j) and (o, p) are couples of indices, then δ(i,j),(o,p) is 1 if (i, j) = (o, p) and is zero
otherwise. The definition is extended to tuples with more than two elements in the obvious
manner. We also will use the lexicographic order on tuples of indices.

Let π be a uniformizer of S such that σ(π) = −π, which exists by Lemma 5.4. Up to
conjugation by an automorphism, we may assume that O = Mn(S). Let (Ei,j)1≤i,j≤n be the
canonical matrix basis ofMn(S) over S. Then a basis of Cor(O) is

B = (Ei,j ⊗ Ei,j)(1,1)≤(i,j)≤(n,n)

∪(Ei,j ⊗ Ek,l + Ek,l ⊗ Ei,j)(1,1)≤(i,j)<(k,l)≤(n,n)

∪(π(Ei,j ⊗ Ek,l − Ek,l ⊗ Ei,k))(1,1)≤(i,j)<(k,l)≤(n,n).

The discriminant of Cor(O) is then the ideal of R generated by

det(tr(bibj))1≤i,j≤n4 .

Since R is a DVR, we in fact only need to compute the valuation of this determinant in R.
We now compute the value of tr(bibj) for the various choices of bi and bj in B. We use

the general fact that tr(Ei,jEk,l) = δ(i,j),(l,k). For what follows, we consider the indices 1 ≤
i, j, k, l, o, p, q, r ≤ n. We also make the assumptions that (i, j) ̸= (k, l) and that (o, p) ̸= (q, r). It
is then straightforward to check the following identities.

tr((Ei,j ⊗ Ei,j)(Eo,p ⊗ Eo,p)) = δ(i,j),(p,o)

tr((Ei,j ⊗ Ei,j)(Eo,p ⊗ Eq,r + Eq,r ⊗ Eo,p)) = 0

tr((Ei,j ⊗ Ei,j)(Eo,p ⊗ Eq,r − Eq,r ⊗ Eo,p)) = 0

tr((Ei,j ⊗ Ek,l + Ek,l ⊗ Ei,j)(Eo,p ⊗ Eq,r − Eq,r ⊗ Eo,p)) = 0

tr((Ei,j ⊗ Ek,l − Ek,l ⊗ Ei,j)(Eo,p ⊗ Eq,r + Eq,r ⊗ Eo,p)) = 0

tr((Ei,j ⊗ Ek,l + Ek,l ⊗ Ei,j)(Eo,p ⊗ Eq,r + Eq,r ⊗ Eo,p)) = 2(δ(i,j,k,l),(p,o,r,q) + δ(i,j,k,l),(r,q,p,o))

tr((Ei,j ⊗ Ek,l − Ek,l ⊗ Ei,j)(Eo,p ⊗ Eq,r − Eq,r ⊗ Eo,p)) = 2(δ(i,j,k,l),(p,o,r,q) − δ(i,j,k,l),(r,q,p,o))

Now, the last two lines represent the trace of the product of two elements of B if and only if
the inequalities (i, j) < (k, l) and (o, p) < (q, r) are satisfied. Given i, j, k, l such that (i, j) < (k, l),
either (j, i) < (l, k) or (l, k) < (j, i).

It follows that each line of the matrix
(

tr(bαbβ)1≤α,β<n4

)
, has only one non-zero coefficient.

The non-zero coefficient has valuation 0 in S, unless the index of the line is larger than n4+n2

2 ,
in which case the valuation is 2. Since the matrix is symmetric, this property is also true for its
columns. It follows that there exists a permutation of the columns such that the resulting matrix
is diagonal. Therefore, the valuation of det

(
tr(bαbβ)1≤α,β<n4

)
is n4− n2 in S. As a result, letting

p be the unique maximal ideal of R, we get

Disc(Cor(O)) = p
n4−n2

2 .

15

Now, let R be a Dedekind domain. Then for any R-order O′, it is well known that Disc(O′) =⋂
p∈Spec(R) Disc(O′p). Therefore, the result will follow from the DVR case if we prove that for

a prime p of R, Cor(RpO) = RpCor(O). However, this is immediate as multiplication by an
element of Rp commutes with the switch map.

The last operation to consider is the Galois descent operation, using an involution of the
second kind. It does not seem possible here to obtain such explicit results as we have had
before. A reason for that is that the discriminant of the resulting R-order largely depends on the
choice of involution of the second kind. In [17], the situation is studied in the case of quaternion
algebras.

Following results from this subsection, we make the following optimisations to our algo-
rithm: Maximal orders of quaternion algebras B1 and B2 are immediately computed. Further-
more, after applying any operation to one of our algebras, we apply the same operation to
its maximal orders and then compute a maximal order of the new algebra from the order we
obtain.

We may now compare the efficiency of the optimised version of our algorithm and that of
the naive one. Let B1 and B2 be two central simple K-algebras of equal dimensions, and let
A = B1 ⊗K B2. We assume that B1 and B2 are such that A is isomorphic to a matrix algebra.
We compare the cost of the computation of a maximal order in CorA. The complexity estimates
are given assuming that the degrees of the discriminants of B1, B2 and K are bounded by a
constant C independent of n. For this discussion we let n = dim A. Hence dimFq(t) A = 2n,

dimFq(t) Bi = 2n
1
2 for i ∈ {1, 2}, and dim(CorA) = n2. Aside from the maximal order computa-

tions, we compute tensor products and a basis of fixed points by a linear map. We consider the
cost of these linear algebra operations to be negligible compared to the cost of maximal order
computations.

In the naive approach, we directly compute maximal orders of the corestriction of the alge-
bra A = B1 ⊗ B2. By Proposition 5.1, this maximal order computation has a cost O(n18). The
optimised approach first computes maximal orders O1 (resp. O2) of B1 (resp. B2), which has a
cost O(n

9
2). We must then compute a maximal overorder of O1 ⊗R O2. By Proposition 5.3, the

degree of the discriminant of this order is bounded by 2Cn
1
2 . Hence, by the second statement

in Proposition 5.1, this computation has a cost in O(n
11
2). Finally, we must compute a maximal

order in the corestriction of A. This time, using Proposition 5.5 we start from an order with
discriminant of degree O(n2). This operation therefore has a cost O(n12). This last call is by far
the most expensive of the optimised computation. We record this result as

Proposition 5.6. With notations as above, directly computing a maximal order in CorA using
Friedrichs’ algorithm [15] has complexity O(n18), where n is the dimension of A.

Using the approach described in this section, the complexity of this computation is reduced to O(n12).

Remark 5.7. The algorithm from Theorem 4.5 uses the case where B1 and B2 are quaternion
algebras. That is, n = 4. Therefore, some multiplicative constants (powers of 2 coming from
the difference between dimension over Fq(t) and dimension over K) that disappear with the O
notation still have a non negligible influence in the cost of the computation for the optimised
method. In Subsection 6.3, we give concrete timing comparisons to show that the optimised
method still remains more efficient than the naive approach, even with this additional overhead.

16

6 Implementation

In this section we present our implementation2 of Algorithm 1 in Magma. This includes an
implementation of the main algorithm from [22] for computing an explicit isomorphism of a
central simple algebra to a matrix algebra. This implementation, which is also used in [5] (but
in that case only on quaternion algebras), is of independent interest.

We stress that due to the impracticality of algorithms for maximal order computation in al-
gebras of dimension 256, our implementation of Algorithm 1 currently does not terminate in
reasonable time. This highlights the interest of improving the results of [22, section 3] and [15],
as the existence of a more efficient algorithm for this task would render our own algorithm
practical. We stress that any algorithm for maximal order computation with complexity de-
pending on the discriminant of a starting order would benefit from the optimisation described
in Subsection 5.2.

In the first subsection, we detail the subroutines we implement for Algorithm 1, and in the
second subsection we give results of computational experiments.

6.1 Implementation details
For clarity of exposition, we present as Algorithm 1 a succinct pseudo-code description of the
main function in our implementation of the algorithm from Theorem 4.5.

Input: (B1, B2) two quaternion algebras defined on a quadratic field L over K = Fq(t),
with q odd.

Output: An L-algebra isomorphism B1 → B2.
A← B1 ⊗L B2;
z, s← InvolutionSecondKind(A);
if z = 0 then

AK ← Descent(A, s) ;
z← ZeroDivisor(AK);

end
e← RankOneIdempotent(A, z);
return IsomorphismFromIdempotent(B1, B2, e)

Algorithm 1: Main algorithm

We now detail our implementation of the subroutines in Algorithm 1. In what follows, L
will be a quadratic extension of Fq(t).

• Tensor product computation is straightforward: one defines the algebra of dimension 16
over L, with basis (b1,i ⊗ b2,j)1≤i,j≤4. The structure constants of A = B1 ⊗ B2 are then
products of the structure constants of A and B. We also construct the canonical injections
from B1 and B2 to B1 ⊗ B2. These maps are useful to give a succinct description of the
conjugation involution over B1 ⊗ B2 and to compute a basis of O1 ⊗O2, where O1 and O2
are maximal orders in B1 and B2.

• Descent: Given an L-algebra A and a semi-linear algebra automorphism f , we return the
K-subalgebra of elements of A fixed by f . We also compute low discriminant orders in this
subalgebra by taking the fixed points of maximal orders of A if such orders are known.

2https://github.com/QuaternionIsomorphisms/QuaternionIsomorphisms/

17

https://github.com/QuaternionIsomorphisms/QuaternionIsomorphisms/

The only subtlety regarding the implementation is that in order to make it efficient in
Magma, the map f must be defined on a K-vectorspace representing the algebra A, since
it is only semi-linear over L.

• Corestriction: Computing the corestriction of an L-algebra A is a straightforward appli-
cation of Proposition 2.10. We apply the non-trivial Fq(t)-automorphism σ of L to the
structure constants of A to compute Aσ, and a map between A and Aσ. Then maximal
orders of A are computed, and from them we directly obtain maximal orders of Aσ. The
algebra A ⊗ Aσ and its maximal orders are computed as described above. The switch
map is then computed in a straightforward manner using maps A → Aσ, A → A⊗ Aσ

and Aσ → A ⊗ Aσ. We then apply the Descent subroutine to A ⊗ Aσ and the switch
map to obtain the corestriction of A, orders with small discriminant and a map from the
corestriction to A⊗ Aσ.

• InvolutionSecondKind: This is Algorithm 3.2. Details of the computation of the core-
striction are given below. Once the corestriction is computed, we compute a rank one
idempotent e. Then 1− e generates a maximal right ideal I of B. We therefore compute
the ideal generated by 1− e in A⊗ Aσ. The rest is a straightforward implementation of
Algorithm 3.2.

• RankOneIdempotent when A ∼= Mn(K): This is the main algorithm from [24, section
4]. This algorithm uses many subroutines: we implement lattice reduction algorithms de-
scribed in [22, section 2] and [31, section 1], and the computation of the WedderburnMal-
cev complement of a finite algebra following [6, Section 3]. The only remaining technical
part is then to compute the intersection of maximal orders in A following [22, lemma 25],
and to express its structure constants as an algebra over Fq.

• ZeroDivisor when A ∼=Mn(D), with D a division quaternion algebra over K: Following
[18, Theorem 18], we compute local indices of A and use this information to construct a
quaternion algebra D′ isomorphic to D, and then a representation ofMm(D′) with struc-
ture constants. We then use the RankOneIdempotent subroutine described above and the
IsomorphismFromIdempotent subroutine described below to compute an isomorphism
A ∼=Mm(D′) and return a zero divisor. Note that the hypothesis from [18, Theorem 18]
on the splitting places of A is not needed here since we restrict to the case that D is a
quaternion algebra, and we therefore only need to compute local indices instead of Hasse
invariants.

• RankOneIdempotent when A ∼= M4(L) and a zero divisor z is given: Following the
discussion in the proof of Theorem 4.5, we compute e, the left unit of the right ideal zA. If
z has rank 1 or 3, we are done as per the discussion. If z has rank 2, we apply the algorithm
from [23, Proposition 43] to the split quaternion algebra eBe.

• IsomorphismFromIdempotent: Given a rank one idempotent in algebra A = B1⊗ Bop
2 , we

compute an explicit isomorphism B1
∼= Bop

2 . Note that we in fact computed A = B1 ⊗ B2,
but since B2 is a quaternion algebra, the conjugation gives an explicit isomorphism B2 ∼=
Bop

2 . This is an implementation of the algorithm given by [26, Corollary 10].

6.2 Computation Examples
We present here two computations which employ some of the subroutines used in our imple-
mentation of Algorithm 1. For both computation, we exhibit here the input used and the result

18

that was found. The reader interested in seeing intermediate steps of the computation may find
these details in the examples/output directory of our implementation’s repository.

6.2.1 Spliting a matrix algebra

We demonstrate our implementation of the main algorithm from [22]. In our algorithm, it is
used for splitting the corestriction in the InvolutionSecondKind procedure. Execution in that
case is not tractable because of the time needed to compute maximal orders is such a large
algebra. We illustrate the method by recovering an explicit isomorphism to a matrix algebra for
a 9-dimensional algebra over F5(t).

We generate a split algebra by taking a random basis of the matrix algebraM3(F5(t)) and
computing structure constants corresponding to this basis. We then discard the explicit basis
and use the structure constants to generate a degree 3 central simple algebra. For this example,
we get A from the following basis ofM3(F5(t)): 4t

t+2 0 1
t+3

0 0 2
t2+3t+3

3 2t + 1 0

 ,

0 0 0
0 0 1
1 0 0

 ,

0 2t+1
t 0

0 0 3t
0 0 2t2 + t + 2

 ,

2t + 3 0 0
2

t+3
4

t2+2 0
0 0 4

t+1

 ,

 0 0 2t2 + 2t + 3
0 0 0
3

t2+3 0 0

 ,

 0 0 4t2 + t + 1
2t + 4 4

t+2 2t + 4
0 0 3t2

t+4

 ,

0 t+3
t2+t+1 2t2 + t + 3

0 0 0
0 0 0

 ,

3 0 0
2 0 0
0 0 4

t2+3t+3

 ,

 0 t+3
t+1 0

4t+4
t2+1 t + 4 4t+3

t+3
0 0 3

We then compute a rank one idempotent element e ∈ A. We get an element with the follow-

ing coordinates:

e =

0

t23+2t22+4t18+4t15+2t14+t13+3t12+2t11+4t10+3t9+2t8+3t7+4t6+t5+t4+t3+2t2+3t+2
t25+3t24+4t23+t22+3t21+t20+3t19+4t18+3t16+3t15+t14+t13+3∗t12+3∗t9+3∗t8+2∗t7+3∗t6+3∗t5+3∗t4+2∗t3+3∗t+3

t18+3t17+2t16+t14+2t13+t11+2t10+t9+3t6+2t5+3t4+4t3+4t2+4
t22+4t21+4t20+t19+t18+t17+2t16+4t15+3t14+4t13+3t12+4t11+t10+4t9+3t8+4t7+3t6+t5+4t4+4t3+3t2+3t+1

3t22+4t19+t18+4t17+4t15+2t13+4t12+t11+t10+4t9+t8+4t7+t6+t5+t4+3t3+2t2+4
t23+4t22+4t20+2t19+t18+3t17+4t16+t14+4t13+2t12+t11+3t10+t8+4t7+4t6+4t5+t3+4t2+3t+1

3t25+t24+4t23+3t22+2t20+t18+2t17+t16+4t15+2t14+4t12+2t11+2t10+t9+4t6+2t5+3t3+4t2+2t+3
t25+3t24+4t23+t22+3t21+t20+3t19+4t18+3t16+3t15+t14+t13+3t12+3t9+3t8+2t7+3t6+3t5+3t4+2t3+3t+3

2t18+3t17+4t16+t15+3t14+3t12+t11+4t8+3t7+3t6+t5+t4+3t+3
t21+4t20+4t19+3t17+t16+3t14+3t12+4t11+4t10+2t9+4t8+3t7+2t6+t5+2t4+3t3+3t2+3t+1

2t22+t21+t20+3t18+2t17+2t16+3t15+4t14+t13+2t12+t10+4t9+2t6+3t5+t4+4t3+2
t22+t21+t20+3t19+2t18+2t16+3t15+4t14+2t13+2t12+3t11+2t10+3t9+4t8+2t7+2t6+4t4+2t3+2t2+2t

2t20+t19+2t17+2t16+t15+4t14+t12+2t11+4t10+2t9+3t6+3t5+2t4+t3+t2+3
t23+4t22+4t20+2t19+t18+3t17+4t16+t14+4t13+2t12+t11+3t10+t8+4t7+4t6+4t5+t3+4t2+3t+1

3t18+4t17+t14+t13+4t12+3t11+2t10+4t8+4t6+2t5+4t3+2t2+2
t22+2t21+t20+2t19+3t18+3t16+3t15+4t14+3t13+3t12+t11+4t10+t7+2t6+4t4+2t3+2t2+3

19

6.2.2 Finding a rational quaternion subalgebra

The most novel part of our algorithm is the descent method described in Section 3. Here we
illustrate the method applied to an algebra A ∼= M2(L) where L = F3(t)(

√
t3 + 2t2 + 2t + 2).

For the rest of this example, we denote θ =
√

t3 + 2t2 + 2t + 2.
As above, we generate A from a random basis ofM2(L), by computing the corresponding

structure constants. For this example, we use the following matrices as basis elements:(
(t2 + 1)θ + 2t2+t+1

t2+1 0
2

t2+2t+2 θ + t2+2t+1
t+2 0

)
(

θ + 2t + 2 2
t+2 θ + 1

t
0 2

t+2 θ + 1

)
(

θ + t2+2
t2+1

2
t θ + 2t+2

t+2
0 2θ + 1

)
(

0 t2+2t+1
t2+t+2 θ + 1

t2+2
0 0

)
We then apply the method suggested by Proposition 3.4, and compute B ⊂ A, a quaternion

algebra over F3(t). The subalgebra B is given by a K-bases formed of the following elements:

1

0

t4+2t2+1
t2 θ+

t12+2t11+2t8+t7+2t4+t3+2t2+1
t5+t3+2t2

t29+t27+2t24+t23+t22+2t21+t20+t18+t16+t14+2t13+2t12+2t11+2t9+2t8+2t7+2t5+t+2
t21+2t20+2t19+t18+t17+2t15+2t14+t13+2t11+t9+t8+2t7+t6+2t3+2t2 θ+

t33+t32+t31+t30+t29+t28+t27+2t24+2t21+t19+2t16+2t14+t13+2t12+2t11+2t6+2t5+t3+2t2+2
t25+2t24+2t22+t21+2t20+2t19+t18+t15+2t14+2t12+t10+t9+2t8+t7+2t6+2t5+t3

,

θ

0

2t2+t+1
t2 θ+

t12+2t11+t10+t9+2t8+2t7+t6+2t4+t2+1
t5+t3+2t2

t30+t29+2t28+t27+2t26+t24+t22+t21+t19+t18+t17+t16+2t14+2t13+2t11+2t9+2t8+t7+2t5+2t+2
t22+t20+2t18+t17+2t16+t15+t13+2t12+2t11+t10+2t9+t6+2t4+t3+2t2 θ+

t33+t32+t31+t30+2t28+2t27+t26+t24+t23+2t22+2t21+2t19+2t18+t17+2t16+2t15+2t14+t12+2t10+2t9+t7+t6+2t5+t4+2t3+2
t25+2t24+2t22+t21+2t20+2t19+t18+t15+2t14+2t12+t10+t9+2t8+t7+2t6+2t5+t3

,

20

0

1

t3+t2+t+1
t3+2t2 θ+

t8+t6+2t5+t4+t+2
t3+2t2

t28+t27+t26+2t25+t24+t23+2t21+2t20+t18+2t17+2t16+2t15+t14+t12+t10+t9+t7+2t4+2t3+t2+2t+2
t22+t21+2t19+2t17+2t16+2t14+2t13+2t12+t11+t10+t8+2t7+2t6+2t4+t2 θ+

t29+2t28+t27+2t26+2t25+t24+2t23+t22+t20+t19+2t18+2t17+2t16+t14+t11+t9+2t8+2t7+2t5+2t3+2t2+1
t23+t22+2t20+2t18+2t17+2t15+2t14+2t13+t12+t11+t9+2t8+2t7+2t5+t3

,

and

0

θ

2t2+2
t θ+

2t8+t7+2t6+t5+2t2+2
t2+2t

2t27+2t26+2t25+2t23+2t21+t19+2t18+t16+t15+2t12+t11+2t10+t7+t6+2t4+2t2+t+2
t20+2t19+2t18+t17+t16+2t14+2t13+t12+2t10+t8+t7+2t6+t5+2t2+2t θ+

2t29+2t28+t27+t26+t24+t20+t17+t15+t14+2t13+2t12+t10+2t9+t7+2t5+2t3+2t+1
t22+t21+2t19+2t17+2t16+2t14+2t13+2t12+t11+t10+t8+2t7+2t6+2t4+t2

6.3 Running times comparisons
In Table 1 we give running times for the task of computing maximal orders in the corestriction of
a degree 2 matrix algebra over K = Fq(t)(

√
D), with D a polynomial of degree 2. The running

time includes the computation of the corestriction itself. Running times are given in seconds.

Naive version Optimised version
95.180 7.160

1128.870 46.990
2338.350 155.520

Table 1. Running time for computing maximal orders in the corestriction of degree
2 matrix algebras

The naive version column corresponds to the running time of the direct approach to the task,
and the optimised version column refers to using the methods described in Subsection 5.2.

In Table 2 we give running times for executions of the RankOneIdempotent subroutine from
Algorithm 1. We execute it on a F17(t)-algebra A isomorphic toMn(F17(t)). We recall that this
subroutine is an implementation of the main algorithm from [22]. It begins with the computa-
tion of a maximal F17[t]-order and a maximal R-order of A, where R is the valuation ring for the
degree valuation. That is, R is the ring of elements in F17(t) that have a denominator of higher
degree than their numerator.

Running times are again given in seconds. We also give the running time of the maximal
order computations.

The results from Table 2 show that the complexity bottleneck of this subroutine is indeed the
computation of maximal orders. We recall that our use case involves running this computation
on algebras isomorphic toM16(Fq). We conclude that our algorithm would be made practical

21

n Maximal F17[t]-order computation Maximal R-order computation Running time
2 4.690 0.390 5.510
3 7245.840 401.000 7706.890

Table 2. Runtime for the RankOneIdempotent subroutine

by the discovery of a fast algorithm for computing maximal orders in separable algebras over
Fq(t).

References

[1] Böckle, G. and Gvirtz, D. (2016). Division algebras and maximal orders for given invariants.
LMS Journal of Computation and Mathematics, 19(A):178–195.

[2] Bosma, W., Cannon, J., and Playoust, C. (1997). The magma algebra system I: The user
language. Journal of Symbolic Computation, 24(3-4):235–265.

[3] Cohen, A. M., Ivanyos, G., and Wales, D. B. (1997). Finding the radical of an algebra of linear
transformations. Journal of Pure and Applied Algebra, 117:177–193.

[4] Cremona, J., Fisher, T., O’Neil, C., Simon, D., and Stoll, M. (2015). Explicit n-descent on
elliptic curves III. algorithms. Mathematics of Computation, 84(292):895–922.

[5] Csahók, T., Kutas, P., Montessinos, M., and Zábrádi, G. (2022). Finding nontrivial ze-
ros of quadratic forms over rational function fields of characteristic 2. arXiv preprint
arXiv:2203.04068.

[6] de Graaf, W., Ivanyos, G., Küronya, A., and Rónyai, L. (1997). Computing Levi decom-
positions in Lie algebras. Applicable Algebra in Engineering, Communication and Computing,
8:291–303.

[7] De Graaf, W. A., Harrison, M., Pı́lniková, J., and Schicho, J. (2006). A Lie algebra method for
rational parametrization of Severi–Brauer surfaces. Journal of Algebra, 303(2):514–529.

[8] Eberly, W. (1991). Decompositions of algebras over R and C. Computational Complexity,
1(3):211–234.

[9] Eisenträger, K., Hallgren, S., Lauter, K., Morrison, T., and Petit, C. (2018). Supersingular
isogeny graphs and endomorphism rings: reductions and solutions. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 329–368. Springer.

[10] Fisher, T. (2013). Explicit 5-descent on elliptic curves. The Open Book Series, 1(1):395–411.

[11] Fisher, T. (2017). Higher descents on an elliptic curve with a rational 2-torsion point. Math-
ematics of Computation, 86(307):2493–2518.

[12] Fisher, T. and Newton, R. (2014). Computing the Cassels–Tate pairing on the 3-Selmer
group of an elliptic curve. International Journal of Number Theory, 10(07):1881–1907.

[13] Ford, T. J. (2017). Separable Algebras, volume 183 of Graduate Studies in Mathematics. Ameri-
can Mathematical Society.

22

[14] Friedl, K. and Rónyai, L. (1985). Polynomial time solutions of some problems of computa-
tional algebra. In Proceedings of the seventeenth annual ACM symposium on Theory of computing,
pages 153–162.

[15] Friedrichs, C. (2000). Berechnung von Maximalordnungen über Dedekindringen. PhD thesis,
Technische Universität Berlin.

[16] Gille, P. and Szamuely, T. (2017). Central simple algebras and Galois cohomology, volume 165.
Cambridge University Press.

[17] Granath, H. (2006). Lattices and orders in quaternion algebras with involution. Journal of
Algebra, 304(2):927–949.

[18] Gómez-Torrecillas, J., Kutas, P., Lobillo, F., and Navarro, G. (2022). Primitive idempotents
in central simple algebras over Fq(t) with an application to coding theory. Finite Fields and
Their Applications, 77:101935.

[19] Gómez-Torrecillas, J., Lobillo, F., and Navarro, G. (2016). A new perspective of cyclicity in
convolutional codes. IEEE Transactions on Information Theory, 62(5):2702–2706.

[20] Hanke, T. (2007). The isomorphism problem for cyclic algebras and an application. In
Proceedings of the 2007 international symposium on symbolic and algebraic computation, pages 181–
186.

[21] Ivanyos, G. (1996). Algorithms for algebras over global fields. PhD thesis, Hungarian Academy
of Sciences.

[22] Ivanyos, G., Kutas, P., and Rónyai, L. (2018). Computing explicit isomorphisms with full
matrix algebras over Fq(x). Foundations of Computational Mathematics, 18(2):381–397.

[23] Ivanyos, G., Kutas, P., and Rónyai, L. (2019). Explicit equivalence of quadratic forms over
Fq(t). Finite Fields and Their Applications, 55:33–63.

[24] Ivanyos, G., Lelkes, Á., and Rónyai, L. (2013). Improved algorithms for splitting full matrix
algebras. JP Journal of Algebra, Number Theory and Applications, 28(2):141–156.

[25] Ivanyos, G. and Rónyai, L. (1993). Finding maximal orders in semisimple algebras over Q.
Computational Complexity, 3(3):245–261.

[26] Ivanyos, G., Rónyai, L., and Schicho, J. (2012). Splitting full matrix algebras over algebraic
number fields. Journal of Algebra, 354(1):211–223.

[27] Ivanyos, G., Rónyai, L., and Szántó, Á. (1994). Decomposition of algebras over
Fq(x1, ..., xm). Applicable Algebra in Engineering, Communication and Computing, 5(2):71–90.

[28] Janusz, G. J. (1979). Tensor products of orders. Journal of the London Mathematical Society,
s2-20(2):186–192.

[29] Knus, M.-A., Merkurjev, A., Rost, M., and Tignol, J.-P. (1998). The book of involutions,
AMS Coll. Pub, 44:17.

[30] Kutas, P. (2019). Splitting quaternion algebras over quadratic number fields. Journal of
Symbolic Computation, 94:173–182.

23

[31] Lenstra, A. K. (1985). Factoring multivariate polynomials over finite fields. Journal of Com-
puter and System Sciences, 30(2):235–248.

[32] Reiner, I. (2003). Maximal Orders. London Mathematical Society Monographs. Oxford Uni-
versity Press.

[33] Rónyai, L. (1987). Simple algebras are difficult. In Proceedings of the nineteenth annual ACM
symposium on Theory of computing, pages 398–408.

[34] Rónyai, L. (1990). Computing the structure of finite algebras. Journal of Symbolic Computa-
tion, 9(3):355–373.

[35] Schwinning, N. (2011). Ein Algorithmus zur Berechnung von Divisionsalgebren über Q zu
vorgegebenen Invarianten. Master’s thesis, Universität Duisburg-Essen, Germany.

[36] Voight, J. (2013). Identifying the matrix ring: algorithms for quaternion algebras and
quadratic forms. In Quadratic and higher degree forms, pages 255–298. Springer.

24

	Introduction
	Preliminaries
	General algebraic background
	The corestriction of a central simple algebra
	Corestriction of maximal orders
	Algorithmic preliminaries
	Number fields
	Function fields

	The descent method
	The main algorithm
	Rational function fields
	The rationals

	Complexity questions and optimisations
	Complexity of maximal order computation
	Optimisation of the maximal order computations

	Implementation
	Implementation details
	Computation Examples
	Spliting a matrix algebra
	Finding a rational quaternion subalgebra

	Running times comparisons

