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Abstract. We revisit the problem of tabulating Carmichael numbers. Carmichael num-
bers have been tabulated up to 1021 using an algorithm of Richard Pinch [8]. In finding all
Carmichael numbers with d prime factors, the strategy is to first construct pre-products
P with d− 2 prime factors, then find primes q and r such that Pqr satisfies the Korselt
condition.

We follow the same general strategy, but propose an improvement that replaces an
inner loop over all integers in a range with a loop over all divisors of an intermediate
quantity. This gives an asymptotic improvement in the case where P is small and expands
the number of cases that may be accounted as small. In head-to-head timings this new
strategy is faster over all pre-products in a range, but is slower on prime pre-products. A
hybrid approach is shown to improve even the case of prime pre-products.

1. Introduction

Fermat’s Little Theorem states that when p is prime that ap ≡ a (mod p) for any integer
a. The converse of this theorem is a computationally efficient way to detect if an integer
is composite. That is, for a given n we pick an a < n and compute an (mod n). If the
result is not a, we may conclude that the number is composite. Unfortunately, there are
composite numbers for which the computed congruence is a, e.g. n = 341 and a = 2. Even
worse, there are composite numbers for which the congruence is a for any a < n. The least
example is n = 561. These numbers are sometimes called absolute Fermat pseudoprimes
but are more often called Carmichael numbers due to R.D. Carmichael who published the
first examples [2].

For a background and survey on Carmichael numbers we refer to [13]. Our chief concern
regards tabulation and the key source is R.G.E. Pinch’s The Carmichael numbers up to
1015 [8]. This paper also gives a background of prior tabulations of Carmichael numbers.
In a series of reports, he announced further tabulations using the same algorithm with the
most recent being up to 1021 [9, 10, 11, 12].

The tabulation method that Pinch employs uses a bifurcated approach. For a given
number P , we search for primes q and r so that Pqr is a Carmichael number. Depending
on properties of P there are two different strategies for finding q and r. Roughly speaking,
the strategies change when P goes from being “small” to “large.” We follow in Pinch’s
footsteps and offer four significant contributions. These are

• an asymptotic analysis of his algorithm for when P is “small”,
• a new asymptotically superior way of dealing with the “small” case,
• timing information supporting the theoretical claims, and
• a tabulation for all P < 3 · 106.
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In the “small” case, Pinch’s method was only practical when P was a prime. In this
case, the computation time was nearly linear in P . If P was composite, the computation
could approach a time quadratic in P (see Theorem 4). Our improvement removes this
dependence on the prime factors of P and remains nearly linear for all P (see Theorem
5). Due to the fact that the number of Carmichael numbers of the form Pqr with P fixed
is finite, we do a new style of tabulation on P values rather than on the absolute size of
Carmichael numbers. This tabulation includes Carmichael numbers not found in [12], e.g.
with P = 999983,

1344 14285 88839 69679 08345 46298 33201 = P · 1000709986897 · 1343212046747951.

The rest of the paper is organized as follows. Section 2 establishes notation, relevant
theorems, and the motivation for our tabulation. Section 3 analyzes the prior approaches
and shows an asymptotically and practically improved algorithm. Section 4 discusses the
implications in the context of a tabulation of all Carmichael numbers less than B. We
conclude with implementations comments and other questions in Section 5.

2. Notation

The tabulation methods rely on Korselt’s Criterion.

Theorem 1 (Korselt’s Criterion). A composite number n is a Carmichael number if and
only if n is squarefree and (p− 1) | (n− 1) for all prime divisors p of n.

The tabulation methods construct n in factored form. Our goal will be to construct
square-free odd numbers n which we will then test with Korselt’s criterion. Let d be

the number of factors in n and then d > 2. Let Pk =
∏k
i=1 pi and Qd−k =

∏d
i=k+1 pi

where pi < pj iff i < j. The primary tabulation methods concern Pd−2 and constructing
or searching for pd−1 and pd. Since these quantities are used so often, we will suppress
subscripts and write these quantities as P , q, and r respectively.

Theorem 2 (Proposition 1 of [8]). Let n be a Carmichael number less than B.

(1) Let k < d. Then pk+1 < (B/Pk)
1/(d−k) and pk+1 − 1 is relatively prime to pi for

all i ≤ k.
(2) Let L = lcm{p1 − 1, . . . , pd−1 − 1}. Then Pd−1r ≡ 1 (mod L) and r − 1 divides

Pd−1 − 1.

(3) Each pi satisfies pi <
√
n <
√
B.

Theorem 2.1 places significant restrictions on valid P . For example P = 21 is inadmis-
sible because 3 | (7− 1). In a tabulation of all Carmichael numbers less than B, bounds in
2.1 and 2.3 are important. The computational way to understand Theorem 2.2 is that we
may search for r in the residue class (Pd−1)

−1 (mod L). This is a matter of sieving in the
interval (q, Pd−1 − 1) with the residue class of (Pd−1)

−1 with step size of L.
Beeger proved that if P is prime, then there are only a finite number of Carmichael

numbers of the form Pqr for a given P [1]. In [4], Duparc generalized this result to
composite P . While there is an implied algorithm in [4], Pinch restates the theorem and
makes the algorithm explicit. We state his version of the theorem and follow his notation.
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Theorem 3 (Proposition 2 of [8]). There are integers 2 ≤ D < P < C such that, putting
∆ = CD − P 2, we have

q =
(P − 1)(P +D)

∆
+ 1,(1)

r =
(P − 1)(P + C)

∆
+ 1,(2)

P 2 < CD < P 2

(
pd−2 + 3

pd−2 + 1

)
.(3)

Corollary 1. There are only finitely many Carmichael numbers of the form Pqr for a
given P .

This motivates the present work. Since the number of Carmichael numbers with fixed P
is finite, once the computation has been done, such a P never needs to be revisited (except
possibly for independent verification). Thus, we want to tabulate all Carmichael numbers
of the form Pqr for P < X.

The prior tabulations focused on finding all Carmichael numbers n < B. Pinch used
Theorem 3 when P was “small” and used Theorem 2.2 when P was “large”. Invoking
Theorem 2.2 involves two things. First, one has to find q given P which may be done by
standard prime sieving. Second, given q and P , one has to use Theorem 2.2 to find r. This
means that if the first step (prime sieving for q) is more costly than invoking Theorem 3,
then we may account P as “small.”

Many of our results depend on τ(n) =
∑

d|n 1, the function that counts the number of

divisors of n. Dirichlet established∑
n≤x

τ(n) = x lnx+ (2γ − 1)x+O(x
√
x).

We now give a thorough explanation of the “small” case and show how it may be
significantly improved which comprises the bulk of our new results.

3. The case for “small” P

In the reports [10, 11, 12], Pinch writes of Theorem 3 “in practice [the theorem] was useful
only when d = 3.” On a cursory reading of the theorem and resulting algorithm, it might
not be clear why this is. We explain his result more thoroughly and provide justification for
why using Theorem 3 when d > 3 becomes computationally expensive. Ideally, one would
not want this dependence on d. If you have two different P but of comparable size then the
timing results depend strongly on the number of prime factors of P . Indeed, we show that
the cost per P can range from being nearly linear in P to being approaching quadratic
in P . Ideally, an algorithm would only depend on the size of P . Intuitively, these two
numbers have the same input size and we would want an algorithm that is dependent on
the input size alone. We offer this improvement and remove the reliance on d. At first, it
might appear that the new approach offers no asymptotic improvement to the case d = 3.
However, we show that we can use a hybrid method to improve even this case.
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In the context of a tabulation of all Carmichael numbers n < B, this makes the ability
to switch between “small” and “large” more intuitive because we do not have to deal with
the added input of d.

3.1. Generating CD pairs in time O(P 2− 1
d−2 lnP ).

To use Theorem 3 in a computational way, Pinch suggests looping over 2 ≤ D < P , then
looping over all C as permitted by the inequality in Theorem 3.3. With C,D, we create
∆. Then the inner loop uses C,D,∆ to check that q and r are rational primes and that
Pqr is a Carmichael numbers using Korselt’s criterion. We ignore the asymptotic cost of
these checks and only concern ourselves with the asymptotic count of the times the inner
loop (where the checks occur) is entered. This double nested loop is the akin to using a

sieve of Eratosthenes to find composite numbers on the interval [P 2, P 2
(
pd−2+3
pd−2+1

)
]. The

asymptotic count of entering the inner loop is determined by the length of the interval.

Define LP so that P 2
(
pd−2+3
pd−2+1

)
= P 2 + LP . When P is prime, we have

P 2P + 3

P + 1
= P 2 + 2P − 2 +

2

P + 1
.

On the other hand, let P = Pd−3pd−2 with d > 3. If pd−2 is minimal then Pd−3 may be

nearly as large as P 1− 1
d−2 . So,

P 2

(
pd−2 + 3

pd−2 + 1

)
= (Pd−3pd−2)

2

(
pd−2 + 3

pd−2 + 1

)
= P 2 + 2P 2

d−3(pd−2 − 1) +
2Pd−3
pd−3 + 1

.

Then 2P − 2 < LP < 2PPd−3 < 2P 2− 1
d−2 . In summary, LP is nearly linear in P when

Pd−3 is small but LP can approach quadratic in P as Pd−3 becomes large with respect to
P . In particular, LP is linear in P when d = 3.

Theorem 4. Fix a pre-product P . Then all valid C,D pairs may be created in time

O(LP lnP ) = O(P 2− 1
d−2 lnP ).

Proof. The cost of sieving an interval of length LP by step size D is O(LP /D). Summing
over D, gives

P−1∑
D=2

O(LP /D) = O(LP lnP ) = O(P 2− 1
d−2 lnP )

as claimed. �

So, when d = 3, O(LP lnP ) = O(P lnP ) and this helps explain why Pinch found the
CD method only useful for the case d = 3. In the subsection below we will show how to
restore linearity in P and remove the dependence on d.
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3.2. Generating D∆ pairs in average time O(P (lnP )2).

Our approach is to change the order in which the various quantities are generated. In
the above, CD pairs were created and then the integrality of q is checked. We follow Pinch
looping over 2 ≤ D < P . For a given D, loop over divisors δ of (P − 1)(P + D). Then
(P − 1)(P + D)/δ will be an integer. If C = (P 2 + δ)/D is integral, then we have a CD
pair that would have been found from the prior subsection and δ would be as ∆ above. We
trade the guarantee of an integer C in favor of the guarantee of an integer q. We have to
account for two things. First, that the expected number of times the inner loop is entered
is asymptotically fewer. This is pretty simple to do as τ ((P − 1)(P +D)) is expected to be
smaller than LP /D. Second, that the cost of obtaining the list of divisors is not expensive.
This is also achieved by some variant of the sieve of Eratosthenes.

Through the use of a sieve of Eratosthenes, we can create factorizations of all numbers
in the interval [P + 2, 2P − 1] in time O(P ln lnP ). Depending on the nature of the

implementation the storage space can be O(P 1/3+ε) using [7], O(P 1/2+ε) using standard
segmenting or an incremental sieve [14], or a naive implementation requiring O(P 1+ε)
storage. Given factorizations of (P − 1) and (P + D), it is easy to construct all possible
divisors of (P − 1)(P + D). We should also note that having access to this information
is not an unreasonable change from Pinch’s own version. Generating primes is, after all,
usually done with a sieve of Eratosthenes.

The new approach is to loop over all 2 ≤ D < P . The inner loop is now over divisors of
(P − 1)(P +D). In the inner loop, we check the integrality of C, the integrality of r, that
Korselt’s criteria holds, the primality of r, and finally the primality of q. When all checks
pass, we output Pqr as a Carmichael number.

The expected number of divisors of (P − 1)(P +D) will frequently be significantly less
than LP /D. The former has a count on average of O((lnP )2) while the latter can be nearly
quadratic in P when D is small. If we want to tabulate all Carmichael numbers of the
form Pqr with P < X then we may analyze the following sum

∑
P<X

P−1∑
D=2

τ ((P − 1)(P +D)) <

(∑
P<X

τ(P − 1)

)(∑
D<X

τ(P +D)

)

<

(∑
P<X

τ(P )

)( ∑
D<2X

τ(D)

)
= 2X2(lnX)2 +O(X2 lnX).

The above gives the following theorem.

Theorem 5. The cost of tabulating all Carmichael number of the form Pqr for P < X is
O(X2(lnX)2).
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The average cost per P is then on the order of O(P (lnP )2). This removes the strong
dependence on the number of divisors of P . In the case of d = 3, this seems to offer no
improvement but we will show in the next subsection that this case can be improved by
this method.

The full set of divisors of (P − 1)(P +D) need not be considered. One can discard large
divisors because

pd−2 < q =
(P − 1)(P +D)

∆
+ 1⇒ ∆ <

(P − 1)(P +D)

pd−2 − 1
.

In the case of d = 3 this inequality is ∆ < P +D.

Example 1. Let P = 5 · 19 · 23 · 29 = 63365, then there are four Carmichael numbers of
the form Pqr. They are

(1) P · 683 · 2545783 = 110177147679985
(2) P · 2297 · 36037 = 5245163907985
(3) P · 37 · 137 = 321197185
(4) P · 70168253 · 254447257 = 1131326282391998510665.

The third number is the smallest Carmichael number with exactly six prime factors. Gen-
erating these four numbers requires checking about 9 million D∆ pairs or about 2.8 billion
CD pairs.

3.3. An improvement to the d = 3 case.

Given the prime factorization of (P−1) and (P+D), it is easy to compute how many total
divisors we would have to consider prior to actually constructing the divisors. Supposing
we have

(P − 1)(P +D) =
∏
k

peii then τ ((P − 1)(P +D)) =
∏
k

(ei + 1).

Since we would know how many times the inner loop is entered, we may choose to enter the
innerloop based on which quantity is smaller: LP /D or τ ((P − 1)(P +D)). Once LP /D
starts being smaller, one can entirely abandon the incremental sieve and assume LP /D
will continue to stay smaller.

This implies that the d = 3 case may be done asymptotically faster by this dynamic
choice. In subsection 3.1 and in the d = 3 case, LP /D ranges from P to 2 as D ranges
from 2 to P − 1. That is, there are many CD pairs when D is small and this changes to
having very few CD pairs as D approaches P − 1. However, in the approach in subsection
3.2, the number of divisors of τ((P − 1)(P + D)) remains relatively constant throughout
the computation where the variance is determined by the number of divisors of (P + D).
The asymptotic cost for a given P is now

P−1∑
D=2

min{2P/D, τ((P − 1)(P +D))}
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As a heuristic, if we replace τ((P − 1)(P +D)) with its average value, we can show that
this sum is asymptotically smaller than both the results of the prior subsections.

Conjecture 1. When P is a prime, all Carmichael numbers of the form Pqr may be found
in time O(P ln lnP ).

The reasoning for this is as follows. We may choose to compute Pqr with the D∆
method when D is small and switch to the CD method when D is large. Letting this cross
over occur around D = P

(lnP )2
and using the average value of τ((P − 1)(P +D)) we get:

P
(lnP )2∑
D=2

(lnP )2 +
P−1∑

D= P
(lnP )2

2P/D = P + 2P ln lnP = O(P ln lnP ).

Example 2. Let P = 65003 a prime, then there are ten Carmichael numbers of the form
Pqr. They are

(1) P · 384226823 · 1387549787527 = 34655299431568422859575163
(2) P · 260009 · 149569603 = 2527930457246474281
(3) P · 4485139 · 1443304409 = 420791778351741348553
(4) P · 4255030921 · 605229266867 = 167400226720595416380338521
(5) P · 2145067 · 123503801 = 17220850085262054001
(6) P · 11960369 · 628504339 = 488636899246608538273
(7) P · 845027 · 27300841 = 1499615814744258121
(8) P · 3073667 · 36326833 = 7258013177193134833
(9) P · 260009 · 845027 = 14282109784670729

(10) P · 845027 · 1950061 = 107115466344644941

The average value of τ((P −1)(P +D)/2) is around 45 and bLP /Dc = 45 when D = 2827.
After some point, say D = 6000, the computation of τ((P −1)(P +D)/2) can cease entirely
and the computation is finished using only generation of CD pairs as in subsection 3.1.

In reality, the trade-off between the two methods is also determined by timing informa-
tion. There are at least two timing issues that were ignored in the above analysis. First,
the method of primality testing differs from the D∆ to the CD method (see subsection
5.2). Second, the cost of constructing the CD pairs has almost no overhead cost compared
to the overhead cost associated with the D∆ method. Once the CD method becomes
dominant, we can cease the overhead with the D∆ method entirely and just safely assume
that LP /D will remain smaller. This means that the computation will likely go through
three phases:

(1) D “small” - pay cost for factors - D∆ method used,
(2) D “moderate” - pay cost for factors - dynamic switching between CD and D∆,
(3) D “large” - stop paying cost for factors and default to CD method.

3.4. Back to the source. Pinch [8] gave an explicit version of an implied algorithm in
Duparc [4]. There is a slightly different algorithm that is also implied which we explain
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here. Recall that the CD method creates ∆ values. The values of the product CD lie in
[P 2 + 1, P 2 +LP ] and this implies that ∆ ∈ [1, LP ]. Duparc suggests only creating such ∆
values on the interval [1, 2P − 4]. On this interval, we will construct q > P . We note that
this interval is linear in P and such Carmichael numbers may be found in time O(P lnP ).
Having accounted for q > P in this manner, we can now search for pd−3 < q < P which
can also be done for in time O(P lnP ) by the use of a Sieve of Eratosthenes. The problem
now is the cost of finding r given P and q. This is the exact same problem as P being
large. We use Theorem 2 and we know that (Pq)r ≡ 1 (mod L) and (r−1) divides Pq−1.
The former can be used to sieve in a residue class and the latter can be used by factoring
Pq−1. In fact, the size of the factors imply a bound on how far we have to sieve. One can
now balance sieving with respect to L with the cost of finding factors of Pq− 1. However,
we know of no way to give an asymptotic estimate of this cost of finding q and r due to
the nature of L. The quantity L can be as small as pd−3 − 1 or nearly as large as P itself.

4. Tabulating all Carmichael numbers n < B when P is “large”

Since both q and r may be found in time that is essentially linear in P , we want P to
be large enough with respect to B so that the cost of the sieving/factoring approach is

better. Since we will have to sieve for q regardless, this implies that P > B1/3 and we
sieve for q on [pd−3, P ]. If q > P and P > B1/3, then Pqr > B and the corresponding
Carmichael number would exceed the desired bound. As with Pinch’s report, the case of
d = 3 is entirely accounted as “small.”

Theorem 6. All Carmichael numbers less than B with exactly three prime factors may be
tabulated in time O(B2/3).

Proof. For each prime p < B1/3, we use the results in subsection 3.3 to find q, r in expected
time O(p ln p). Since there are O(B1/3/ lnB) primes to consider, we consider the sum∑

p<B1/3

O(p ln ln p) = O(B2/3).

�

In [5], the authors conjecture that the number of Carmichael numbers less than B having
exactly three prime factors is asymptotically equivalent to

c
B1/3

(lnB)3

and in [6] it was proved that this set is asymptotically bounded above by B7/20+ε. All of
that is to say that an ideal tabulation algorithm would run in time linear in the output
size and we are far from that.

Lower bounds on ∆ may also be used to further reduce the number of divisors considered
to avoid generating Carmichael numbers that exceed the desired bound. Consider

Pq2 < P

(
(P − 1)(P +D)

∆

)2

< B ⇒ P 1/2(P − 1)(P +D)

B1/2
< ∆.
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This means that when P gets to be of size B1/5 that divisors would be discarded due to
being too small.

This means that the “large” case is as follows. We require P > B1/3 and composite.
This will have q satisfy pd−3 < q <

√
B/P . From here, we use Theorem 2 as described

above to find r.

5. Implementation and Conclusions

We conclude with three points. First, we mention some practical improvements to the
D∆ method. Second, we address some issues regarding the primality testing and the
approach we used. Here, we mention how we think primality testing ought to be done and
what choices we made in order to compare the D∆ method to the CD method. Third,
we present some timing information in order to show that our improved algorithms are
practical. The timing information shows that it is reasonable to use the D∆ method on all
P < X regardless of the number of prime factors in P . We also show that the D∆ method
used in conjunction with the CD method (see subsection 3.3) is faster than either method
individually. This means that our novel approach gives an unconditional improvement for
a tabulation of Carmichael numbers.

5.1. Improvements to D∆ method. For expositional purposes, we described a simple
version of the D∆ method that worked for asymptotic purposes. The desired goal is to
minimize the number of divisors that are created for entering the inner loop. There are
two ways to accomplish this. First, is to use q is a prime and not merely the fact that it is
an integer. The second is to use the fact that C is integral. We do not believe that either
of the improvements we describe would change the asymptotic analysis of the algorithm.

Consider divisors of (P − 1)(P +D)/2 instead of (P − 1)(P +D). Both guarantee q is
integral but the former guarantees q is odd. It is possible to employ a similar trick to force
q ≡ 1, 2 (mod 3). This means that the divisor has to be multiple of three or the divisor
has to be 1 (mod 3). In the latter case, this means prime divisors of (P − 1)(P + D)
that are 2 (mod 3) have to appear with parity. Both of these can be incorporated into
an odometer-style divisor generator to avoid generating unwanted divisors. While it is
theoretically possible to scale this for other primes, the overhead seems like it would be
worse than just doing the divisibility check. At that point, the “reduction” is equivalent
to trial division.

We can further reduce the set of divisors we generate by examining the integrality
condition on C. When D ≡ 0 (mod 2), for (P 2 + ∆)/D to be integral, ∆ has to be odd.
So, for all D even, we require v2(∆) = 0. This generalizes as follows:

Proposition 1. Let p be a prime with p | D, then

(1) if vp(P ) = 0 then vp(∆) = 0,
(2) if vp(P ) > 0 then vp(∆) = vp(D).
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At the time of writing, our implementation only considers D (mod 2).
This is also explains why most Carmichael numbers occur with D being relatively small.

If we view P 2 + ∆ as a random residue modulo D, then we expect it to take the value 0
about 1/D times. The count of divisors determines how many “chances” we get of this
happening.

5.2. Primality Testing. The slowest operation in the inner loop will be the primality
tests of q and r. In [8], Pinch writes “we note that testing candidates for pi for primality is
required at every state of the calculation. We found precomputing a list of prime numbers
up to a suitable limit produced a considerable saving in time.” He did not further address
how primality was proved for his output. We address that from both a theoretical and
practical point of view.

As with any primality proving algorithm, the strategy is generally to use some form
of “fast” pseudoprimality test followed by a primality proof. On the former, one usually
considers trial division up to some small bound followed by a base-2 strong Fermat pseu-
doprime test. On the latter, we note that in the D∆ method that q−1 is always generated
in factored form. Further, r − 1 is often generated in a partially factored form. These are
ideal candidates for the Pocklington-style primality tests. In fact, q can always be tested
with this method. If the factored part of r − 1 exceeds r3/10 then the Pocklington-style
tests may be used (see section 4.1 of [3] for an explanation).

If not enough of the partial factorization of r − 1 is given or if q and r were generated
with the CD method, we could use ECPP to establish primality of the output.

In section 3, we compared the number of times the inner loop was entered for the
CD method to the D∆ method. For timing purposes, we wanted the inner-loops to be
comparable. That is, we did not want an entirely different primality testing algorithm in
the inner loop of one method to compare to a different method. So, the data in the section
below corresponds to a run that only does the “pseudoprimality” testing of trial division
by small primes. This way, each method pays a comparable cost for entering the inner
loop.

5.3. Timing Data. Code for both the CD method and the D∆ method were implemented
in C++ and run on a small cluster at Illinois Wesleyan University. The cluster has 4 nodes,
each with a 12-core, 24-thread, 3.8 GHz processor (with boosting capability up to 4.6 GHz).

The following two sets of timings illustrate the improvements discussed in this paper.
First, the D∆ and CD methods were applied to all pre-products up to a variety of bounds.
The tuples (P, q, r) constructed may include non-Carmichael numbers due to a lack of
primality proving, but the timings reflect a fair comparison since the same primality tests
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are applied in both cases.

Pre-product bound (thousands) D∆ time in seconds CD time in seconds
10 21 81
20 92 553
30 231 1730
40 430 3778
50 697 7017
60 983 11455
70 1425 17281
80 1898 23806
90 2425 33288

Tabulations were also performed on exclusively prime pre-products. This is the best
case for the CD method, and as one can see it outperforms the D∆ method under this
restriction. A simple hybrid method was also implemented, where the tabulation switches
from D∆ to CD when D > P/(lnP )2. As one can see, this combination of techniques
provides an improvement over either individually. As before, the pre-product bound is in
thousands, and the timings are in seconds.

Prime pre-product bound D∆ CD hybrid
10 9 1 1
20 36 6 3
30 83 15 8
40 151 26 14
50 237 41 22
60 348 60 31
70 470 80 41
80 619 103 53
90 738 125 64
100 939 159 81
110 1170 193 97
120 1328 221 110

5.4. Future Work. We intend on revisiting the work here and expanding on it in two
ways. As with Pinch, we find that the case of d = 3 may be entirely accounted as small.
For a tabulation of all Carmichael numbers less than B, we now would only have to consider
composite P with P > 3 · 106. We plan on letting the tabulation algorithm run longer and
doing a tabulation of all Carmichael numbers n < 1024. We would also like to revisit the
implied algorithm of Duparc found in subsection 3.4 and see if it gives improvements.
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