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Review of prime level

Let p > 5, N be primes. We consider weight 2 modular forms of level [o(N):
o E» v = Ex(z) — Ex(Nz), weight 2 Eisenstein series of level ()
o T=Amn(E; n)=(T;—€—1:2¢ prime, £ # N)
o T = the completion of the Hecke algebra at (Z, p)
o T° = the cuspidal quotient of T
o I° = the image of Z in T°

Theorem (Mazur, '77). Assume that p # N. Then,
® T° £ 0 <= p divides the numerator of %
® TO is Gorenstein

©® Z° is a principal ideal, and T, — ¢ — 1 generates Z° if and only if
¢#£1 (mod p) and ¢ is not a pth power mod N




Review of prime level (cont.)

Question (Mazur): What is the rank of T° as a Z,-module? What
is the arithmetic significance of rank 1 vs. rank > 17

Some results:
(i) Merel, ~'96:

N—1

=
rkz, (T%) > 1 < H i"is a pth power mod N
i=1

(ii) Calegari-Emerton, ~'05:
rlz, (1°) > 1 = dim, ((CHQYN))Ip]) > 1

(iii) Wake-Wang-Erickson, ~'20:

some cup product in Galois

0
tkz,(T°) > 1 = cohomology vanishes



R = T via Wiles' numerical criterion

An “R = T Theorem” relates the arithmetic data of the following objects:

R : a universal Galois T : a Hecke algebra acting

deformation ring on modular forms

In particular, there is a standard argument to construct a surjection

R — T.

To conclude R = T, Calegari-Emerton and Wake—Wake-Erickson apply
Wiles' numerical criterion, which requires T to be a local complete
intersection (LCI) ring.

Today's Goal: Qutline a computational approach for counting rank of R
directly in order to establish R = T when T is not LClI



Our setup: Ribet's newform setting (RNS)

With p > 5 prime, we consider the following setting:
o N = lol1, with ¢; primes satisfying
o fo =1 (mod p) and rky, (T) ) =1
o {1 # +1 (mod p) but ¢4 is a pth power modulo ¢y

o Ej y = the weight 2 Eisenstein series of level [o(N) with
Atkin-Lehner signature (—1,—1).

Theorem (Ribet): There is a newform f € S3(Fo(N)) such that
f=Esy (mod p).

This means that rkZP(T) > 3 since we have:

o the Eisenstein series ES
o the cusp form of level ¢
o the newform f of level N

We can check computationally that T is not LCI.



Main result
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oK =Q(¢, 6"
o L defined using 4o
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o M"/Q is Galois
o M"/M' is w-isotypic, conductor”
o primes over £g split in M"' /M’

o M'/Q is Galois
o M’ /M is w’-isotypic, unramified
o primes over £ split in M'/M

rkZP (T) >3

Theorem (H-W-WE): For (p, £, ¢1) satisfying the RNS assumptions,
(i) all primes of K over {1 split in K'/K,

(i) there exists some prime of K over £ that
splits in both K'/K and K" /K.

If either condition fails, the surjection R — T is an isomorphism.




R = T via rank bounds

Following work of Wake-Wang-Erickson, we study a deformation ring R
of Galois pseudorep'ns of p = w @ 1. The input for this machinery is:

@ For (p, lo, ¢1) satisfying our RNS assumptions, we fix two cocycles:

o b() represents the Kummer class of ¢; in H*(Gg,F,(1))
o ¢ represents a class in H'(Gg,F,(—1)) ramified only at ¢,

® Since b U c(M) = 0, there exists a cochain aV) satisfying
52D — ) _ O
© With d = pMc() — 5(1) we check for a cochain b(?) satisfying

—5b@ = 1) _ p) 4 p1) _ g1,

Main Theoretical Output from HWWE Part I: For (p, ¢o,¢1) as above,

dimg, (R/pR) >3 <= (1) aV)(Fry,) € F, vanishes
ii) a special invariant a? + 3 € F,(2) vanishes
p




Going from theory to computation

The key idea is to compute S-units that correspond to a®|g, and b(?|g,
via Kummer theory. We take a two-step approach to this computation:
©® Find candidate cochains that solve differential equations for a*) and b(®
® Make local adjustments so candidate solutions satisfy local conditions
K/ K//
b2

K = Q¢ 1377)

e

p1)

Q(¢p)

Using this construction, we prove
(i) a®M(Fry,) = 0 <= all primes of K over /1 split in K'/K

(i) a?+ B =0 <= there exists some prime of K over /, that splits in
both K'/K and K" /K




Computing an S-unit in K* for a(l)\GK

Any cochain a(t) satisfying —6a(t) = (1) — (1) gives a degree p3(p — 1)
twisted-Heisenberg extension of Q, cut out by

w b M
0 1 wc®|:Gyg— GL3(Fp).
0 w
M Sharifi's theory gives the explicit formula
. alnalex = D3(7) € KX,
K’ M
‘ / ‘ where
o 7 € K* satisfies Nmy /q(¢,)(7) = c®, and
K L
/ o Dl = Zp io" denotes a first-order Kolyvagin
‘ derlvatlve operator.
Q(¢p) (1) _ ok

The local adjustment can be written a, j; = (}ag.



Computing an S-unit in K* for b2 ‘GK

Similarly, a cochain b® satisfying —6b(®) = a(t) — p(1) 4 p(1) _ (1)
gives a degree p*(p — 1) twisted-Heisenberg extension of Q, cut out by

w bM wa®  p2)
0 1 wc® db|
0 O 0 1
7 Expressing the differential equation for b3 in terms
‘ of the triple Massey product (b(), c(), b(1)) gives
M’
e binalee = (D2(MD(€)aMlg! € K*,
K K’ M where
\ ‘ / ‘ o & € K* satisfies Nmyqc,) (&) = agi)j, and
K L

‘// o D2 =Yt (D)o

Q(¢p) The local adjustment can be written b(afi)J = p"eg.



Computational evidence for R =T

We have attempted to verify whether the conditions in our main result hold
for the triples (p, £o, ¢1) in the following ranges:

<o (5,60,51) with £g < 100 and ¢; < 1000,
<o (7,€Q,E1) with ¢5 <50 and ¢; < 500.

To summarize, every example for which our algorithm completed is
consistent with our conjecture that R = T. Specifically, we either:

© compute that (i) and (ii) of our main result are satisfied, and hence
dimg,(R/pR) > 3,

and independently compute that rkz,(T) > 3, or

© compute that (ii) is not satisfied, and hence R = T.




Overview of implementation in Sage

o Our program for checking the conditions in our main result, available
online at https://github.com/cmhsu2012/RR3, is written for Sage
Version 9.2 and uses the unit/S-unit interface, written by John Cremona,
to the unit/S-unit groups computed in PARI/GP.

o All computations were carried out on the Strelka Computer Cluster or the
SMP Cluster with an allotted computing time of 3 days per example.

o A particularly interesting computational observation is that condition (i)
in our main result, i.e., a¥)(Fry,) = 0, has been satisfied in every example
computed to date.

© When translating the abstract conditions on Galois cochains into
implementable computations in number fields, a particularly challenging
aspect was determining which Kummer extension of Q((,) to use.


https://github.com/cmhsu2012/RR3

Example: p =5,/ = 11,4,
£=(2,0,2,1,0,0,...,0)

c=(3,4,4,4,1,1)
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D)y, =0, o?+ B #0,
Condition (i) holds Condition (ii) does not hold




Examples: p =5,y =11

adjustments to

primes £ difficulty factors 0 o [ 5D -3 conclusion | Hecke rank
plb] 6 [pink] @, [g]ad [P [Prp=02] KT
5|11 | 23 wild #0 0 1 3 4 no 3
5|11 43 tame #0 3 2 0 4 yes >4
5 11| 67 wild #0 0| 0 1 3 no 3
5|11 | 197 wild #0 0 2 1 4 yes >4
511 ] 263 | wild =0 0| 2 41 3 no 3
5|11 | 307 | tame =0 1 3 0 0 no 3
5|11 | 373 wild #0 0 4 0 3 no 3
511 ] 397 | wild #0 0| 4 | 2] 3 no 3
5|11 | 593 | tame =0 0 3 0 2 no 3
5|11 ] 683 | wild =0 0| 4 3]0 yes >4
5111 | 727 wild #0 0 1 1 3 yes >4
5|11 | 857 tame #0 2 0 0 4 no 3
511 ] 967 | wild #0 0| 0 2 | 2 no 3
5|11 | 1013 | wild #0 0 3 3 1 no 3




Thanks for listening!



