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Finite-dimensional algebras

>
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An algebra over a field K is a vector space that is also a
ring

Finite dimensional, if it is finite dimensional as a K-vector
space

Radical: intersection of all maximal left ideals
(equivalently, collection of strongly nilpotent elements)

Simple: No nontrivial two-sided ideals

A/Rad(A) is the direct sum of simple algebras (as they
are automatically Artinian)

Simple algebra is isomorphic to M,(D) where D is a
division algebra
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Algorithmic problems

\4

In our models the algebra is represented by a K-basis and
a multiplication table (structure constant representation)

Motivation for such a representation: computational
representation theory

Natural problem: compute the structure of the algebra, in
this lecture we focus on the case where K is a global field

Computing the radical — polynomial-time

Computing the semisimple components — can be
reduced to factoring polynomials in K[x]

The hardest part is computing explicit isomorphisms
between a simple algebra and M,(D)
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Brauer group
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Central simple K-algebra: a simple algebra whose center
is exactly K

Two central simple K-algebras A, B are Brauer-equivalent
if they are isomorphic to M,(D) and M,,(D) respectively

Brauer classes of central simple K-algebras form a group

under the tensor product

The identity is the class of K and inverse is provided by
the opposite algebra

The Brauer group is actually isomorphic to H?(G, K)
where G is the absolute Galois group of K (important for
later)

The isomorphism problem between A and B can be

reduced to finding an explicit isomorphism between
A® B°P and a full matrix algebra M,(K)
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Applications
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Solving norm equations in cyclic extensions:
A= (L|K,0,7) where v € K; then A is isomorphic to
M,(K) iff v is in the image of the norm map

Finding an explicit isomorphism is equivalent to solving
the norm equation

Finding K-rational points on conics is a special case of
this
Explicit n-descent on elliptic curves: a procedure that

allows you to compute the generators of E(K)/nE(K)
(Cremona, Fisher, O'Neil, Simon, Stoll)

The key step is finding an explicit isomorphism between
M,(K) and an object called the obstruction algebra

Parametrizing Severi-Brauer varieties
Factoring Ore-polynomials
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Some

v

remarks

If A= M,(K), then the rank of a matrix m is just
dim({xm|x € A})/n

Finding an explicit isomorphism is equivalent finding a
rank 1 element

Finding a zero divisor reduces the problem to a smaller
instance as for an idempotent of e of rank k one has that
eAe = M (K)

So from now on | will talk mostly on finding zero divisors
Hardness: one is looking for an element in a Zariski
closed set
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Previous work

> If A= M,(Q), then the problem is equivalent to factoring
(Rényai, Ivanyos, Sz4nts, Cremona, Rusin, Simon,
Voight)

» When A= M,(K) and K is a number field, then there is
an algorithm that is polynomial in the size of the
structure constants and exponential in every other
parameter (lvanyos,Rényai,Schicho)

» When A= M,(K) and K = F(t), then there exists a
polynomial-time algorithm (lvanyos, K., Rényai)

» When A= M(L) and L is a quadratic extension of Q
then there is a polynomial-time algorithm modulo
factoring (K., Fisher)

» When A= M,(L) and L is a quadratic extension of F,(t)
and g is odd then there is a polynomial-time algorithm
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This work
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We study the isomorphism problem of two quaternion
algebras over quadratic global fields

Not covered by previous research as the tensor product of
the two quaternion algebras is isomorphic to My(K)

We also include the characteristic 2 case

The methods used give a more conceptual
proof/algorithms of previous work

We also provide a Magma implementation

Key idea: a form of explicit Galois descent
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Corestriction of central simple algebras
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The Brauer group is isomorphic to a second cohomology
group hence one has restriction and corestriction on the
cohomology side

Restriction just corresponds to extensions of scalars

Let L|K be a separable quadratic extension, then
corestriction maps a central simple L-algebra to a central
simple K-algebra

This is not quite obvious how to do this on the level of
algebras, we will define it for quadratic extensions

9/17



Corestriction of central simple algebras |l
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Let L|K be a separable quadratic extension and let o be
the generator of the Galois group

Let A be a central simple L-algebra and define A” as the
set of symbols {a”|a € A} with the rules a?b” = ab?,

a’ + b” = (a+ b)? and (ab)? = o(«a)b? for every a € L
Now there is a switch map on A% ® A that sends an
elementary tensor a° ® b to b° ® a and this can be
extended K-linearly

Fixed elements of the switch map form a central simple
K-algebra which is the called the corestriction of A

Problem: does not give you Galois descent as it is not a
subalgebra of A
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Involutions

» An involution of a CSA is a linear map that has order two
and reverses multiplication

» Restricted to the center it is an automorphism of order at
most 2

» When it fixes the center then it is called an involution of
the first kind,otherwise an involution of the second kind

» Let L|K be a separable quadratic extension and let A be a
central simple L-algebra. Then A possesses an involution
of the second kind if and only if its corestriction is split
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Computing an involution of the second kind
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The above theorem is explicit

If you find a right ideal / of the corestriction such that
A’ ®; A= 1 & (1 ® A), then you can construct an
involution of the second kind explicitly

A maximal right ideal will satisfy that most of the time
If not, then you have found a zero divisor in A

Finding a maximal right ideal is exactly the same problem
as finding a rank 1 element in the corestriction
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Main algorithm |

» In order to find an explicit isomorphism between two
quaternion algebras A, B (over L) it is enough to find a
rank 1 element in A ® B°P

» A® B° comes equipped with an involution oy of the first
kind as it is a product of quaternion algebras

» One can compute an involution of the second kind o, by
finding a maximal right ideal in the corestriction or a zero
divisor (if one finds the latter than we are done)

» This works because the corestriction is a central simple
K-algebra (although its dimension is higher)
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Main algorithm |l
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Now one can compute the composition of ¢; and o, and
take the set of invariant elements

The set of invariant elements C is a Galois descent (a
central simple K-subalgebra such that C ®x L = A® B°P)
Since C is split by a quadratic extension it can’t be a
division algebra

Hence C is either My(D) or My(K)

One can use existing subroutines for finding a zero divisor
in C (from a zero divisor one can also find a rank 1
element efficiently)
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Important subroutines

v

Finding zero divisors in an algebra B isomorphic to M,(L)
Finding zero divisors in an algebra B isomorphic to M,(K)

Finding zero divisors in M,(D),where D is a quaternion
algebra over K

Finding rank 1 elements in an algebra B isomorphic to
Mis(K)

This reductions work over any field essentially and they
all admit polynomial-time algorithms for the rationals and
rational function fields
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Implementation

» Every algorithm runs in polynomial time (the number field
one modulo factoring) but the IRS algorithm has a huge
hidden constant, hence we opted for implementing the
function field case (in odd characteristic)

» The main algorithm for finding maximal right ideals in
M,(F,(t)) relies on computing maximal orders which is a
polynomial-time algorithm

» Unfortunately, the maximal order algorithm in Magma
scales very poorly and here we needed to compute a
maximal order in a CSA of dimension 256 (degree 16) as
that is the dimension of the corestriction

» We provided some optimization tricks which bring down
the asymptotic complexity of maximal order computation
significantly

» The main idea is that A ® B° comes equipped with
rather large order that maps to a rather large order in the
corestriction 16 /17



Open
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problems

Find better algorithms for computing maximal orders

Can the Galois descent approach be generalized to cyclic
extensions?

The current approach is somehow a double twist, does
there exists a more direct approach?

Potential applications: if one has a split quaternion
algebra over an odd cyclic extension L of K = Q or

K = F,4(t), then finding a Galois descent immediately
leads to zero divisor (can be used to find L-rational points
on conics)

Similarly might improve on current algorithms for certain
norm equations

17/17



