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Finite-dimensional algebras

▶ An algebra over a field K is a vector space that is also a
ring

▶ Finite dimensional, if it is finite dimensional as a K -vector
space

▶ Radical: intersection of all maximal left ideals
(equivalently, collection of strongly nilpotent elements)

▶ Simple: No nontrivial two-sided ideals

▶ A/Rad(A) is the direct sum of simple algebras (as they
are automatically Artinian)

▶ Simple algebra is isomorphic to Mn(D) where D is a
division algebra

2 / 17



Algorithmic problems

▶ In our models the algebra is represented by a K -basis and
a multiplication table (structure constant representation)

▶ Motivation for such a representation: computational
representation theory

▶ Natural problem: compute the structure of the algebra, in
this lecture we focus on the case where K is a global field

▶ Computing the radical → polynomial-time

▶ Computing the semisimple components → can be
reduced to factoring polynomials in K [x ]

▶ The hardest part is computing explicit isomorphisms
between a simple algebra and Mn(D)
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Brauer group
▶ Central simple K -algebra: a simple algebra whose center

is exactly K

▶ Two central simple K -algebras A,B are Brauer-equivalent
if they are isomorphic to Mn(D) and Mm(D) respectively

▶ Brauer classes of central simple K -algebras form a group
under the tensor product

▶ The identity is the class of K and inverse is provided by
the opposite algebra

▶ The Brauer group is actually isomorphic to H2(G ,K )
where G is the absolute Galois group of K (important for
later)

▶ The isomorphism problem between A and B can be
reduced to finding an explicit isomorphism between
A⊗ Bop and a full matrix algebra Mn(K )
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Applications
▶ Solving norm equations in cyclic extensions:

A = (L|K , σ, γ) where γ ∈ K ; then A is isomorphic to
Mn(K ) iff γ is in the image of the norm map

▶ Finding an explicit isomorphism is equivalent to solving
the norm equation

▶ Finding K -rational points on conics is a special case of
this

▶ Explicit n-descent on elliptic curves: a procedure that
allows you to compute the generators of E (K )/nE (K )
(Cremona, Fisher, O’Neil, Simon, Stoll)

▶ The key step is finding an explicit isomorphism between
Mn(K ) and an object called the obstruction algebra

▶ Parametrizing Severi-Brauer varieties

▶ Factoring Ore-polynomials
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Some remarks

▶ If A ∼= Mn(K ), then the rank of a matrix m is just
dim({xm|x ∈ A})/n

▶ Finding an explicit isomorphism is equivalent finding a
rank 1 element

▶ Finding a zero divisor reduces the problem to a smaller
instance as for an idempotent of e of rank k one has that
eAe ∼= Mk(K )

▶ So from now on I will talk mostly on finding zero divisors

▶ Hardness: one is looking for an element in a Zariski
closed set
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Previous work

▶ If A ∼= M2(Q), then the problem is equivalent to factoring
(Rónyai, Ivanyos, Szántó, Cremona, Rusin, Simon,
Voight)

▶ When A ∼= Mn(K ) and K is a number field, then there is
an algorithm that is polynomial in the size of the
structure constants and exponential in every other
parameter (Ivanyos,Rónyai,Schicho)

▶ When A ∼= Mn(K ) and K = Fq(t), then there exists a
polynomial-time algorithm (Ivanyos, K., Rónyai)

▶ When A ∼= M2(L) and L is a quadratic extension of Q
then there is a polynomial-time algorithm modulo
factoring (K., Fisher)

▶ When A ∼= M2(L) and L is a quadratic extension of Fq(t)
and q is odd then there is a polynomial-time algorithm
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This work

▶ We study the isomorphism problem of two quaternion
algebras over quadratic global fields

▶ Not covered by previous research as the tensor product of
the two quaternion algebras is isomorphic to M4(K )

▶ We also include the characteristic 2 case

▶ The methods used give a more conceptual
proof/algorithms of previous work

▶ We also provide a Magma implementation

▶ Key idea: a form of explicit Galois descent
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Corestriction of central simple algebras

▶ The Brauer group is isomorphic to a second cohomology
group hence one has restriction and corestriction on the
cohomology side

▶ Restriction just corresponds to extensions of scalars

▶ Let L|K be a separable quadratic extension, then
corestriction maps a central simple L-algebra to a central
simple K -algebra

▶ This is not quite obvious how to do this on the level of
algebras, we will define it for quadratic extensions

9 / 17



Corestriction of central simple algebras II

▶ Let L|K be a separable quadratic extension and let σ be
the generator of the Galois group

▶ Let A be a central simple L-algebra and define Aσ as the
set of symbols {aσ|a ∈ A} with the rules aσbσ = abσ,
aσ + bσ = (a + b)σ and (αb)σ = σ(α)bσ for every α ∈ L

▶ Now there is a switch map on Aσ ⊗ A that sends an
elementary tensor aσ ⊗ b to bσ ⊗ a and this can be
extended K -linearly

▶ Fixed elements of the switch map form a central simple
K -algebra which is the called the corestriction of A

▶ Problem: does not give you Galois descent as it is not a
subalgebra of A
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Involutions

▶ An involution of a CSA is a linear map that has order two
and reverses multiplication

▶ Restricted to the center it is an automorphism of order at
most 2

▶ When it fixes the center then it is called an involution of
the first kind,otherwise an involution of the second kind

▶ Let L|K be a separable quadratic extension and let A be a
central simple L-algebra. Then A possesses an involution
of the second kind if and only if its corestriction is split
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Computing an involution of the second kind

▶ The above theorem is explicit

▶ If you find a right ideal I of the corestriction such that
Aσ ⊗L A = IL ⊕ (1⊗ A), then you can construct an
involution of the second kind explicitly

▶ A maximal right ideal will satisfy that most of the time

▶ If not, then you have found a zero divisor in A

▶ Finding a maximal right ideal is exactly the same problem
as finding a rank 1 element in the corestriction
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Main algorithm I

▶ In order to find an explicit isomorphism between two
quaternion algebras A,B (over L) it is enough to find a
rank 1 element in A⊗ Bop

▶ A⊗ Bop comes equipped with an involution σ1 of the first
kind as it is a product of quaternion algebras

▶ One can compute an involution of the second kind σ2 by
finding a maximal right ideal in the corestriction or a zero
divisor (if one finds the latter than we are done)

▶ This works because the corestriction is a central simple
K -algebra (although its dimension is higher)
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Main algorithm II

▶ Now one can compute the composition of σ1 and σ2 and
take the set of invariant elements

▶ The set of invariant elements C is a Galois descent (a
central simple K -subalgebra such that C ⊗K L = A⊗Bop)

▶ Since C is split by a quadratic extension it can’t be a
division algebra

▶ Hence C is either M2(D) or M4(K )

▶ One can use existing subroutines for finding a zero divisor
in C (from a zero divisor one can also find a rank 1
element efficiently)
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Important subroutines

▶ Finding zero divisors in an algebra B isomorphic to M2(L)

▶ Finding zero divisors in an algebra B isomorphic to M4(K )

▶ Finding zero divisors in M2(D),where D is a quaternion
algebra over K

▶ Finding rank 1 elements in an algebra B isomorphic to
M16(K )

▶ This reductions work over any field essentially and they
all admit polynomial-time algorithms for the rationals and
rational function fields
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Implementation
▶ Every algorithm runs in polynomial time (the number field

one modulo factoring) but the IRS algorithm has a huge
hidden constant, hence we opted for implementing the
function field case (in odd characteristic)

▶ The main algorithm for finding maximal right ideals in
Mn(Fq(t)) relies on computing maximal orders which is a
polynomial-time algorithm

▶ Unfortunately, the maximal order algorithm in Magma
scales very poorly and here we needed to compute a
maximal order in a CSA of dimension 256 (degree 16) as
that is the dimension of the corestriction

▶ We provided some optimization tricks which bring down
the asymptotic complexity of maximal order computation
significantly

▶ The main idea is that A⊗ Bop comes equipped with
rather large order that maps to a rather large order in the
corestriction

▶ This reduces the number of iterations and sizes as well
but the algorithm is still not quite practical (although
might be with an optimized implementation)
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Open problems

▶ Find better algorithms for computing maximal orders

▶ Can the Galois descent approach be generalized to cyclic
extensions?

▶ The current approach is somehow a double twist, does
there exists a more direct approach?

▶ Potential applications: if one has a split quaternion
algebra over an odd cyclic extension L of K = Q or
K = Fq(t), then finding a Galois descent immediately
leads to zero divisor (can be used to find L-rational points
on conics)

▶ Similarly might improve on current algorithms for certain
norm equations
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