
Computing zeta functions of algebraic curves
using Harvey’s trace formula

Madeleine Kyng
UNSW

ANTS-XV
University of Bristol

August 2022

1 / 22

The problem

Develop a practical point-counting algorithm that can take as input a completely arbitrary
curve.

Input: An absolutely irreducible polynomial F̄ ∈ Fq[x , y] defining a plane curve X .

Output: The zeta function Z
X̃

(T) of the nonsingular projective curve X̃ that has the
same function field as X .

Many practical algorithms have been developed for specific classes of curves (e.g., elliptic,
hyperelliptic, nondegenerate).

Previous algorithms 2 / 22

Schoof’s algorithm

The best-known point-counting algorithm is Schoof’s algorithm for elliptic curves.

This was the first polynomial-time algorithm for point-counting on elliptic curves.

An `-adic algorithm — we count Fq-points on E by computing tr(φ) (mod `)
modulo enough small primes ` to recover #E (Fq) via CRT.

Has time complexity Õ((log q)5).

Descendants of Schoof have time complexity log(q)C(g)

— impractical for curves of genus g > 2.

Previous algorithms 3 / 22

Kedlaya’s algorithm

For g > 2, we would use a Kedlaya-style p-adic algorithm when applicable.

Kedlaya’s algorithm [2001] applied to hyperelliptic curves.

Kedlaya’s algorithm has time complexity Õ(g4n3p).

Kedlaya’s algorithm was soon generalised to work for larger classes of curves; superelliptic
curves, Cab curves, nondegenerate plane curves.

Descendents of Kedlaya have time complexity polynomial in g and n = logp(q).

Previous algorithms 4 / 22

Tuitman’s algorithm

Tuitman’s algorithm [2016] is the most general of the Kedlaya-style algorithms.
It can be applied to any F̄ for which a “good” lift to characteristic zero is provided.

Input: A “good lift” F ∈ K [x , y] of F̄ ∈ Fq[x , y],

where K is a degree n number field in which p is inert,

defining a nonsingular curve X̃ over the field ZK/pZK
∼= Fq.

Output: The zeta function Z
X̃

(T) of X̃ .

Complexity: Õ(pd6
1d

4
2n

3) where d1 = degy (F) and d2 = degx(F).

Previous algorithms 5 / 22

Applicability of Tuitman

Lifting problem

Given F̄ ∈ Fq[x , y], how does one find a lift F ∈ K [x , y] for Tuitman?

For p > 2 there always exists a “good” lift to Zq (not K), but in some cases it is difficult to
compute.

Limitation of Tuitman’s algorithm:
At present, Tuitman’s algorithm cannot handle every F̄ ,
because there is no known method for computing a “good” lift for an arbitrary F̄ .

Previous algorithms 6 / 22

Recent progress on lifting

When F̄ defines a non-singular curve in the toric surface associated with ∆(F̄), a naive lift of
F̄ almost always works.

Castryck, Tuitman and Vermuelen expanded the class of curves that Tuitman can deal with.

Castryck and Tuitman [2017] developed procedures for lifting curves of genus g ≤ 5.

Castryck and Vermeulen [2020] developed procedures for lifting F̄ with degy (F̄) ≤ 5.

Previous algorithms 7 / 22

The new algorithm

Our algorithm:

Can accept any input F̄ .

Has time complexity competitive with Tuitman’s (though exponents are worse).

Is relatively easy to understand and implement.

Previous algorithms 8 / 22

The main theorem

Main theorem

The new algorithm has the following properties:

Input: An absolutely irreducible polynomial F̄ ∈ Fq[x , y] defining a plane curve X .

Output: The zeta function Z
X̃

(T) of the nonsingular projective curve X̃ that has the
same function field as X .

Complexity: Õ(dc2nc1p
1
2) where q = pn, d = deg(F̄), and c1, c2 are positive real

constants.

Previous algorithms 9 / 22

Example 1

Consider one of the examples with degy (F̄) = 5 from my paper.

The curve has g = 12, q = p = 101, d1 = 5, d2 = 35, with Newton polygon:

On a computer with an Intel i9-12900K CPU, 128GB RAM, and RTX3090 GPU,

Tuitman’s code fails to compute Z
X̃

(T) within 12 hours.

Our code takes 2.3 minutes to compute Z
X̃

(T).

Previous algorithms 10 / 22

Example 2

Consider one of the examples with degy (F̄) = 8 and g > 5 from my paper.

The curve has g = 13, q = p = 13, d1 = 8, d2 = 32, with Newton polygon:

We do not know how to find a good lift of this curve for Tuitman’s algorithm.

On a computer with an Intel i9-12900K CPU, and RTX3090 GPU,

Our code takes 10.5 minutes to compute Z
X̃

(T).

Previous algorithms 11 / 22

The new algorithm

The new algorithm is composed of two sub-algorithms:

1. CountPlaneModel: count points on the plane model via Harvey’s trace formula.

2. ComputeCorrections: determine the difference in point-counts for X and X̃ .

The new algorithm 12 / 22

Step 1: Count points with Harvey’s trace formula

Theorem

Let F̄ ∈ Fp[x , y], and let X be the curve cut out by F̄ . Let Γ = ∆(F̄).

Let k , λ be positive integers, assume p > λ
k , and let F be a lift of F̄ to Zp with ∆(F) = Γ.

We have

|(X ∩ T2)(Fpk)| = (pk − 1)2
λ∑

s=0

(−1)s
(
λ

s

)
tr(Mk

s) (mod pλ),

where
(Ms)u, v = [F (p−1)s]pv−u, u, v ∈ sΓ.

.

Step 1 13 / 22

Proof of trace formula

The idea of the proof is to set up an indicator function

H : (µpk−1)2 → Z/pλZ

that indicates whether (a, b) ∈ (µpk−1)2 is a lift of a point in X (Fpk).

If p > λ
k , then H = (1− F pk−1)λ works.

This gives

Nk = (pk − 1)2
λ∑

s=0

(−1)s
(
λ

s

)∑
w∈Z2

[F s(pk−1)](pk−1)w

 (mod pλ)

= (pk − 1)2
λ∑

s=0

(−1)s
(
λ

s

)
tr(Mk

s) (mod pλ)

Step 1 14 / 22

Implementation of trace formula

A straightforward implementation of Harvey’s trace formula lets us compute

|X (Fq)| mod pλ, . . . , |X (FqR)| mod pλ

in time
Õ(R n2 p2 λ8 Vol(Γ)3)

This time complexity assumes we compute the entries of the matrices Ms by computing the
polynomials F (p−1)s in their entirety.

The p2 can be improved to p
1
2 by using Harvey’s deformation recurrences.

Step 1 15 / 22

Step 2: Make corrections

We can efficiently count points on the plane model.
We now see how we can make corrections.

One approach to doing this is to first compute ZX (T), and then remove factors from the
numerator whose roots have the wrong absolute value to get Z

X̃
(T).

We could compute ZX (T) by counting points in extensions of degree up to Bombieri’s bound.

We will do better than this.

Step 2 16 / 22

Relationship between curves

Let X be the projective closure of the affine plane curve X defined by F̄ .

The normalisation morphism π : X̃ → X restricts to an isomorphism

π : X̃ \ π−1(S)→ X \ S

where S is the subscheme of singular points on X .

Thus we can compute corrections by counting points of certain 0-dimensional subschemes of
X and X̃ related to S .

Step 2 17 / 22

Computing corrections

To find the points on X̃ lying above S we take advantage of existing factorisation
algorithms, namely the Montes algorithm.

Given p̄(x) ∈ Fq[x] and a function field L = Fq(x)[y]/(F̄), the Montes algorithm efficiently
finds the factorisation of p̄(x) in the integral closure O of Fq[x] in L.

Complexity of Montes: Õ(d3
1 + d2

1 log(q)).

Step 2 18 / 22

Computing corrections via factorisation

Consider the situation for the affine curve.

For simplicity, assume that F̄ is monic in y .

The integral closure O of Fq[x] in L is the co-
ordinate ring of π−1(X).

The prime ideal factors of (x − x0) in O are
exactly the points on π−1(X) whose
x-coordinate is x0.

Step 2 19 / 22

Computing corrections via factorisation

Let Y be the subscheme of P1 containing∞, the
zeros of am(x), and all x-coordinates of singular
points of X .

We define Z ⊆ X to be the points in X \ X
together with the points on X whose x-
coordinate belongs to Y \ {∞}.

We define Z̃ ⊆ X̃ to be the points in X̃ whose
x-coordinate belongs to Y .

By our choice of Y and Z , we have

Z̃ = π−1(Z).

Step 2 20 / 22

Summary of our algorithm

The algorithm works as follows:

1. Trace formula: Count points on X in extensions of degree k = 1, . . . , g

to p-adic precision λ = bag/2 + logp(4g)c+ 1.

2. Resultant and GCD: Locate the set Y of “bad” points on P1 for this X .

3. Factorise polynomials over finite fields: Adjust the point-counts from Step 1 to
remove the points on X that lie above Y .

4. Factorise primes in function field: Adjust the point-counts from Step 3 to add the
points on X̃ that lie above Y .

5. Compute the zeta function Z
X̃

(T).

Step 2 21 / 22

Thanks for listening!

	Previous algorithms
	The new algorithm
	Step 1
	Step 2

