Computing zeta functions of algebraic curves using Harvey's trace formula

Madeleine Kyng UNSW

ANTS-XV

University of Bristol
August 2022

The problem

Develop a practical point-counting algorithm that can take as input a completely arbitrary curve.

- Input: An absolutely irreducible polynomial $\bar{F} \in \mathbb{F}_{q}[x, y]$ defining a plane curve X.
- Output: The zeta function $Z_{\tilde{X}}(T)$ of the nonsingular projective curve \widetilde{X} that has the same function field as X.

Many practical algorithms have been developed for specific classes of curves (e.g., elliptic, hyperelliptic, nondegenerate).

Schoof's algorithm

The best-known point-counting algorithm is Schoof's algorithm for elliptic curves.
This was the first polynomial-time algorithm for point-counting on elliptic curves.
An ℓ-adic algorithm - we count \mathbb{F}_{q}-points on E by computing $\operatorname{tr}(\phi)(\bmod \ell)$ modulo enough small primes ℓ to recover $\# E\left(\mathbb{F}_{q}\right)$ via $C R T$.

Has time complexity $\widetilde{O}\left((\log q)^{5}\right)$.
Descendants of Schoof have time complexity $\log (q)^{C(g)}$ - impractical for curves of genus $g>2$.

Kedlaya's algorithm

For $g>2$, we would use a Kedlaya-style p-adic algorithm when applicable.
Kedlaya's algorithm [2001] applied to hyperelliptic curves.
Kedlaya's algorithm has time complexity $\widetilde{O}\left(g^{4} n^{3} p\right)$.
Kedlaya's algorithm was soon generalised to work for larger classes of curves; superelliptic curves, $C_{a b}$ curves, nondegenerate plane curves.

Descendents of Kedlaya have time complexity polynomial in g and $n=\log _{p}(q)$.

Tuitman's algorithm

Tuitman's algorithm [2016] is the most general of the Kedlaya-style algorithms. It can be applied to any \bar{F} for which a "good" lift to characteristic zero is provided.

- Input: A "good lift" $F \in K[x, y]$ of $\bar{F} \in \mathbb{F}_{q}[x, y]$,
where K is a degree n number field in which p is inert, defining a nonsingular curve \widetilde{X} over the field $\mathbb{Z}_{K} / p \mathbb{Z}_{K} \cong \mathbb{F}_{q}$.
- Output: The zeta function $Z_{\widetilde{X}}(T)$ of \widetilde{X}.
- Complexity: $\widetilde{O}\left(p d_{1}^{6} d_{2}^{4} n^{3}\right)$ where $d_{1}=\operatorname{deg}_{y}(F)$ and $d_{2}=\operatorname{deg}_{x}(F)$.

Applicability of Tuitman

Lifting problem

Given $\bar{F} \in \mathbb{F}_{q}[x, y]$, how does one find a lift $F \in K[x, y]$ for Tuitman?

For $p>2$ there always exists a "good" lift to \mathbb{Z}_{q} (not K), but in some cases it is difficult to compute.

Limitation of Tuitman's algorithm:

At present, Tuitman's algorithm cannot handle every \bar{F}, because there is no known method for computing a "good" lift for an arbitrary \bar{F}.

Recent progress on lifting

When \bar{F} defines a non-singular curve in the toric surface associated with $\Delta(\bar{F})$, a naive lift of \bar{F} almost always works.

Castryck, Tuitman and Vermuelen expanded the class of curves that Tuitman can deal with.
Castryck and Tuitman [2017] developed procedures for lifting curves of genus $g \leq 5$.
Castryck and Vermeulen [2020] developed procedures for lifting \bar{F} with $\operatorname{deg}_{y}(\bar{F}) \leq 5$.

The new algorithm

Our algorithm:

- Can accept any input \bar{F}.
- Has time complexity competitive with Tuitman's (though exponents are worse).
- Is relatively easy to understand and implement.

The main theorem

Main theorem

The new algorithm has the following properties:

- Input: An absolutely irreducible polynomial $\bar{F} \in \mathbb{F}_{q}[x, y]$ defining a plane curve X.
- Output: The zeta function $Z_{\widetilde{X}}(T)$ of the nonsingular projective curve \widetilde{X} that has the same function field as X.
- Complexity: $\widetilde{O}\left(d^{c_{2}} n^{c_{1}} p^{\frac{1}{2}}\right)$ where $q=p^{n}, d=\operatorname{deg}(\bar{F})$, and c_{1}, c_{2} are positive real constants.

Example 1

Consider one of the examples with $\operatorname{deg}_{y}(\bar{F})=5$ from my paper.
The curve has $g=12, q=p=101, d_{1}=5, d_{2}=35$, with Newton polygon:

On a computer with an Intel i9-12900K CPU, 128GB RAM, and RTX3090 GPU,

- Tuitman's code fails to compute $Z_{\widetilde{X}}(T)$ within 12 hours.
- Our code takes 2.3 minutes to compute $Z_{\widetilde{X}}(T)$.

Example 2

Consider one of the examples with $\operatorname{deg}_{y}(\bar{F})=8$ and $g>5$ from my paper.
The curve has $g=13, q=p=13, d_{1}=8, d_{2}=32$, with Newton polygon:

We do not know how to find a good lift of this curve for Tuitman's algorithm.
On a computer with an Intel i9-12900K CPU, and RTX3090 GPU,

- Our code takes 10.5 minutes to compute $Z_{\widetilde{X}}(T)$.

The new algorithm

The new algorithm is composed of two sub-algorithms:

1. CountPlaneModel: count points on the plane model via Harvey's trace formula.
2. ComputeCorrections: determine the difference in point-counts for X and \widetilde{X}.

Step 1: Count points with Harvey's trace formula

Theorem

Let $\bar{F} \in \mathbb{F}_{p}[x, y]$, and let X be the curve cut out by \bar{F}. Let $\Gamma=\Delta(\bar{F})$.
Let k, λ be positive integers, assume $p>\frac{\lambda}{k}$, and let F be a lift of \bar{F} to \mathbb{Z}_{p} with $\Delta(F)=\Gamma$.
We have

$$
\left|\left(X \cap \mathbb{T}^{2}\right)\left(\mathbb{F}_{p^{k}}\right)\right|=\left(p^{k}-1\right)^{2} \sum_{s=0}^{\lambda}(-1)^{s}\binom{\lambda}{s} \operatorname{tr}\left(M_{s}^{k}\right) \quad\left(\bmod p^{\lambda}\right),
$$

where

$$
\left(M_{s}\right)_{u, v}=\left[F^{(p-1) s}\right]_{p v-u}, \quad u, v \in s \Gamma .
$$

Proof of trace formula

The idea of the proof is to set up an indicator function

$$
H:\left(\mu_{p^{k}-1}\right)^{2} \rightarrow \mathbb{Z} / p^{\lambda} \mathbb{Z}
$$

that indicates whether $(a, b) \in\left(\mu_{p^{k}-1}\right)^{2}$ is a lift of a point in $X\left(\mathbb{F}_{p^{k}}\right)$.
If $p>\frac{\lambda}{k}$, then $H=\left(1-F^{p^{k}-1}\right)^{\lambda}$ works.
This gives

$$
\begin{aligned}
N_{k} & =\left(p^{k}-1\right)^{2} \sum_{s=0}^{\lambda}(-1)^{s}\binom{\lambda}{s}\left(\sum_{w \in \mathbb{Z}^{2}}\left[F^{s\left(p^{k}-1\right)}\right]_{\left(p^{k}-1\right) w}\right)\left(\bmod p^{\lambda}\right) \\
& =\left(p^{k}-1\right)^{2} \sum_{s=0}^{\lambda}(-1)^{s}\binom{\lambda}{s} \operatorname{tr}\left(M_{s}^{k}\right)\left(\bmod p^{\lambda}\right)
\end{aligned}
$$

Implementation of trace formula

A straightforward implementation of Harvey's trace formula lets us compute

$$
\left|X\left(\mathbb{F}_{q}\right)\right| \bmod p^{\lambda}, \ldots,\left|X\left(\mathbb{F}_{q^{R}}\right)\right| \bmod p^{\lambda}
$$

in time

$$
\widetilde{O}\left(R n^{2} p^{2} \lambda^{8} \operatorname{Vol}(\Gamma)^{3}\right)
$$

This time complexity assumes we compute the entries of the matrices M_{s} by computing the polynomials $F^{(p-1) s}$ in their entirety.

The p^{2} can be improved to $p^{\frac{1}{2}}$ by using Harvey's deformation recurrences.

Step 2: Make corrections

We can efficiently count points on the plane model.
We now see how we can make corrections.
One approach to doing this is to first compute $Z_{X}(T)$, and then remove factors from the numerator whose roots have the wrong absolute value to get $Z_{\widetilde{X}}(T)$.

We could compute $Z_{X}(T)$ by counting points in extensions of degree up to Bombieri's bound.
We will do better than this.

Relationship between curves

Let \bar{X} be the projective closure of the affine plane curve X defined by \bar{F}.
The normalisation morphism $\pi: \widetilde{X} \rightarrow \bar{X}$ restricts to an isomorphism

$$
\pi: \tilde{X} \backslash \pi^{-1}(S) \rightarrow \bar{X} \backslash S
$$

where S is the subscheme of singular points on \bar{X}.
Thus we can compute corrections by counting points of certain 0-dimensional subschemes of \bar{X} and \widetilde{X} related to S.

Computing corrections

To find the points on \widetilde{X} lying above S we take advantage of existing factorisation algorithms, namely the Montes algorithm.

Given $\bar{p}(x) \in \mathbb{F}_{q}[x]$ and a function field $L=\mathbb{F}_{q}(x)[y] /(\bar{F})$, the Montes algorithm efficiently finds the factorisation of $\bar{p}(x)$ in the integral closure \mathcal{O} of $\mathbb{F}_{q}[x]$ in L.

Complexity of Montes: $\widetilde{O}\left(d_{1}^{3}+d_{1}^{2} \log (q)\right)$.

Computing corrections via factorisation

Consider the situation for the affine curve.
For simplicity, assume that \bar{F} is monic in y.
The integral closure \mathcal{O} of $\mathbb{F}_{q}[x]$ in L is the coordinate ring of $\pi^{-1}(X)$.

The prime ideal factors of $\left(x-x_{0}\right)$ in \mathcal{O} are exactly the points on $\pi^{-1}(X)$ whose x-coordinate is x_{0}.

Computing corrections via factorisation

Let Y be the subscheme of \mathbb{P}^{1} containing ∞, the zeros of $\overline{a_{m}}(x)$, and all x-coordinates of singular points of X.

We define $Z \subseteq \bar{X}$ to be the points in $\bar{X} \backslash X$ together with the points on X whose x coordinate belongs to $Y \backslash\{\infty\}$.

We define $\tilde{Z} \subseteq \tilde{X}$ to be the points in \tilde{X} whose x-coordinate belongs to Y.

By our choice of Y and Z, we have

$$
\widetilde{Z}=\pi^{-1}(Z)
$$

Summary of our algorithm

The algorithm works as follows:

1. Trace formula: Count points on X in extensions of degree $k=1, \ldots, g$ to p-adic precision $\lambda=\left\lfloor a g / 2+\log _{p}(4 g)\right\rfloor+1$.
2. Resultant and GCD: Locate the set Y of "bad" points on \mathbb{P}^{1} for this X.
3. Factorise polynomials over finite fields: Adjust the point-counts from Step 1 to remove the points on X that lie above Y.
4. Factorise primes in function field: Adjust the point-counts from Step 3 to add the points on \widetilde{X} that lie above Y.
5. Compute the zeta function $Z_{\widetilde{X}}(T)$.

Thanks for listening!

