Computing zeta functions of algebraic curves using Harvey's trace formula

> Madeleine Kyng UNSW

ANTS-XV University of Bristol August 2022

1 / 22

Develop a practical point-counting algorithm that can take as input a completely arbitrary curve.

- Input: An absolutely irreducible polynomial $\overline{F} \in \mathbb{F}_q[x, y]$ defining a plane curve X.
- **Output**: The zeta function $Z_{\widetilde{X}}(T)$ of the nonsingular projective curve \widetilde{X} that has the same function field as X.

Many practical algorithms have been developed for specific classes of curves (e.g., elliptic, hyperelliptic, nondegenerate).

・ロト ・ 国 ト ・ 国 ト ・ 国 ト

The best-known point-counting algorithm is Schoof's algorithm for elliptic curves.

This was the first polynomial-time algorithm for point-counting on elliptic curves.

An ℓ -adic algorithm — we count \mathbb{F}_q -points on E by computing tr(ϕ) (mod ℓ) modulo enough small primes ℓ to recover $\#E(\mathbb{F}_q)$ via CRT.

Has time complexity $\widetilde{O}((\log q)^5)$.

Descendants of Schoof have time complexity $\log(q)^{C(g)}$ — impractical for curves of genus g > 2. For g > 2, we would use a **Kedlaya-style** *p*-adic algorithm when applicable.

Kedlaya's algorithm [2001] applied to hyperelliptic curves.

Kedlaya's algorithm has time complexity $\widetilde{O}(g^4n^3p)$.

Kedlaya's algorithm was soon generalised to work for larger classes of curves; superelliptic curves, C_{ab} curves, nondegenerate plane curves.

Descendents of Kedlaya have time complexity polynomial in g and $n = \log_p(q)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

Tuitman's algorithm [2016] is the most general of the Kedlaya-style algorithms. It can be applied to any \overline{F} for which a "good" lift to characteristic zero is provided.

• Input: A "good lift" $F \in K[x, y]$ of $\overline{F} \in \mathbb{F}_q[x, y]$,

where K is a degree n number field in which p is inert,

defining a nonsingular curve \widetilde{X} over the field $\mathbb{Z}_{\mathcal{K}}/p\mathbb{Z}_{\mathcal{K}} \cong \mathbb{F}_q$.

- **Output**: The zeta function $Z_{\widetilde{X}}(T)$ of \widetilde{X} .
- Complexity: $\widetilde{O}(pd_1^6d_2^4n^3)$ where $d_1 = \deg_y(F)$ and $d_2 = \deg_x(F)$.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト ・

Lifting problem

Given $\overline{F} \in \mathbb{F}_q[x, y]$, how does one find a lift $F \in K[x, y]$ for Tuitman?

For p > 2 there always exists a "good" lift to \mathbb{Z}_q (not K), but in some cases it is difficult to compute.

Limitation of Tuitman's algorithm:

At present, Tuitman's algorithm cannot handle every \overline{F} , because there is no known method for computing a "good" lift for an **arbitrary** \overline{F} .

When \overline{F} defines a non-singular curve in the toric surface associated with $\Delta(\overline{F})$, a naive lift of \overline{F} almost always works.

Castryck, Tuitman and Vermuelen expanded the class of curves that Tuitman can deal with.

Castryck and Tuitman [2017] developed procedures for lifting curves of genus $g \leq 5$.

Castryck and Vermeulen [2020] developed procedures for lifting \overline{F} with deg_v(\overline{F}) \leq 5.

・ 日 ・ ・ 雪 ・ ・ 目 ・ ・ 日 ・

Our algorithm:

- Can accept **any** input \overline{F} .
- Has time complexity competitive with Tuitman's (though exponents are worse).
- Is relatively easy to understand and implement.

Main theorem

The new algorithm has the following properties:

- Input: An absolutely irreducible polynomial $\overline{F} \in \mathbb{F}_q[x, y]$ defining a plane curve X.
- **Output**: The zeta function $Z_{\widetilde{X}}(T)$ of the nonsingular projective curve \widetilde{X} that has the same function field as X.
- **Complexity**: $\widetilde{O}(d^{c_2}n^{c_1}p^{\frac{1}{2}})$ where $q = p^n$, $d = \deg(\overline{F})$, and c_1, c_2 are positive real constants.

Example 1

Consider one of the examples with $\deg_{\nu}(\bar{F}) = 5$ from my paper.

The curve has g = 12, q = p = 101, $d_1 = 5$, $d_2 = 35$, with Newton polygon:

On a computer with an Intel i9-12900K CPU, 128GB RAM, and RTX3090 GPU,

• Tuitman's code fails to compute $Z_{\widetilde{X}}(T)$ within 12 hours.

• Our code takes 2.3 minutes to compute $Z_{\widetilde{X}}(T)$.

Example 2

Consider one of the examples with $\deg_{\gamma}(\bar{F}) = 8$ and g > 5 from my paper.

The curve has g = 13, q = p = 13, $d_1 = 8$, $d_2 = 32$, with Newton polygon:

We do not know how to find a good lift of this curve for Tuitman's algorithm.

On a computer with an Intel i9-12900K CPU, and RTX3090 GPU,

• Our code takes 10.5 minutes to compute $Z_{\widetilde{X}}(T)$.

The new algorithm is composed of two sub-algorithms:

- 1. CountPlaneModel: count points on the plane model via Harvey's trace formula.
- 2. **ComputeCorrections**: determine the difference in point-counts for X and \widetilde{X} .

Theorem

Let
$$\overline{F} \in \mathbb{F}_p[x, y]$$
, and let X be the curve cut out by \overline{F} . Let $\Gamma = \Delta(\overline{F})$.

Let k, λ be positive integers, assume $p > \frac{\lambda}{k}$, and let F be a lift of \overline{F} to \mathbb{Z}_p with $\Delta(F) = \Gamma$.

We have

$$|(X \cap \mathbb{T}^2)(\mathbb{F}_{p^k})| = (p^k - 1)^2 \sum_{s=0}^{\lambda} (-1)^s \binom{\lambda}{s} \operatorname{tr}(M_s^k) \pmod{p^\lambda},$$

where

$$(M_s)_{u,v} = [F^{(p-1)s}]_{pv-u}, \quad u,v \in s\Gamma.$$

Proof of trace formula

The idea of the proof is to set up an indicator function

$$\mathsf{H}:(\mu_{p^k-1})^2 o\mathbb{Z}/p^\lambda\mathbb{Z}$$

that indicates whether $(a, b) \in (\mu_{p^k-1})^2$ is a lift of a point in $X(\mathbb{F}_{p^k})$.

If $p > \frac{\lambda}{k}$, then $H = (1 - F^{p^k - 1})^{\lambda}$ works.

This gives

$$N_{k} = (p^{k} - 1)^{2} \sum_{s=0}^{\lambda} (-1)^{s} {\lambda \choose s} \left(\sum_{w \in \mathbb{Z}^{2}} [F^{s(p^{k} - 1)}]_{(p^{k} - 1)w} \right) \pmod{p^{\lambda}}$$
$$= (p^{k} - 1)^{2} \sum_{s=0}^{\lambda} (-1)^{s} {\lambda \choose s} \operatorname{tr}(M_{s}^{k}) \pmod{p^{\lambda}}$$

A straightforward implementation of Harvey's trace formula lets us compute

$$|X(\mathbb{F}_q)| \mod p^{\lambda}, \ldots, |X(\mathbb{F}_{q^R})| \mod p^{\lambda}$$

in time

$$\widetilde{O}(R n^2 p^2 \lambda^8 \operatorname{Vol}(\Gamma)^3)$$

This time complexity assumes we compute the entries of the matrices M_s by computing the polynomials $F^{(p-1)s}$ in their entirety.

The p^2 can be improved to $p^{\frac{1}{2}}$ by using Harvey's deformation recurrences.

We can efficiently count points on the plane model. We now see how we can make corrections.

One approach to doing this is to first compute $Z_X(T)$, and then remove factors from the numerator whose roots have the wrong absolute value to get $Z_{\tilde{X}}(T)$.

We could compute $Z_X(T)$ by counting points in extensions of degree up to Bombieri's bound.

We will do better than this.

Let \overline{X} be the projective closure of the affine plane curve X defined by \overline{F} .

The normalisation morphism $\pi:\widetilde{X}\to\overline{X}$ restricts to an isomorphism

$$\pi:\widetilde{X}\setminus\pi^{-1}(S) o\overline{X}\setminus S$$

where S is the subscheme of singular points on \overline{X} .

Thus we can compute corrections by counting points of certain 0-dimensional subschemes of \overline{X} and \widetilde{X} related to S.

To find the points on \tilde{X} lying above S we take advantage of existing factorisation algorithms, namely the Montes algorithm.

Given $\bar{p}(x) \in \mathbb{F}_q[x]$ and a function field $L = \mathbb{F}_q(x)[y]/(\bar{F})$, the Montes algorithm efficiently finds the factorisation of $\bar{p}(x)$ in the integral closure \mathcal{O} of $\mathbb{F}_q[x]$ in L.

Complexity of Montes: $\widetilde{O}(d_1^3 + d_1^2 \log(q))$.

Computing corrections via factorisation

Consider the situation for the affine curve.

For simplicity, assume that \overline{F} is monic in y.

The integral closure \mathcal{O} of $\mathbb{F}_q[x]$ in L is the coordinate ring of $\pi^{-1}(X)$.

The prime ideal factors of $(x - x_0)$ in \mathcal{O} are exactly the points on $\pi^{-1}(X)$ whose *x*-coordinate is x_0 .

Computing corrections via factorisation

Let Y be the subscheme of \mathbb{P}^1 containing ∞ , the zeros of $\overline{a_m}(x)$, and all x-coordinates of singular points of X.

We define $Z \subseteq \overline{X}$ to be the points in $\overline{X} \setminus X$ together with the points on X whose xcoordinate belongs to $Y \setminus \{\infty\}$.

We define $\widetilde{Z} \subseteq \widetilde{X}$ to be the points in \widetilde{X} whose *x*-coordinate belongs to *Y*.

By our choice of Y and Z, we have

$$\widetilde{Z} = \pi^{-1}(Z).$$

Summary of our algorithm

The algorithm works as follows:

1. Trace formula: Count points on X in extensions of degree k = 1, ..., g

to *p*-adic precision $\lambda = \lfloor ag/2 + \log_p(4g) \rfloor + 1$.

- 2. **Resultant and GCD**: Locate the set Y of "bad" points on \mathbb{P}^1 for this X.
- 3. Factorise polynomials over finite fields: Adjust the point-counts from Step 1 to remove the points on X that lie above Y.
- 4. Factorise primes in function field: Adjust the point-counts from Step 3 to add the points on \widetilde{X} that lie above Y.
- 5. Compute the zeta function $Z_{\widetilde{X}}(T)$.

Thanks for listening!

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで