On some GCD, linear recurrences and unlikely intersection problems

Alina Ostafe

The University of New South Wales

Motivation

Outline some recent results motivated by the following

Basic Question:

Given $a, b \in \mathbb{Z}, a, b \geq 2$, what can one say about

$$
\operatorname{gcd}\left(a^{n}-1, b^{n}-1\right)
$$

and in particular prove that $a^{n}-1$ and $b^{n}-1$ are coprime for infinitely many n.

Bugeaud, Corvaja \& Zannier (2003): Let $a, b \in \mathbb{Z}, a, b \geq 2$, be multiplicatively independent in \mathbb{Q}^{*}, and let $\varepsilon>0$. For sufficiently large n.

Motivation

Outline some recent results motivated by the following

Basic Question:

Given $a, b \in \mathbb{Z}, a, b \geq 2$, what can one say about

$$
\operatorname{gcd}\left(a^{n}-1, b^{n}-1\right)
$$

and in particular prove that $a^{n}-1$ and $b^{n}-1$ are coprime for infinitely many n.

Bugeaud, Corvaja \& Zannier (2003): Let $a, b \in \mathbb{Z}, a, b \geq 2$, be multiplicatively independent in \mathbb{Q}^{*}, and let $\varepsilon>0$. For sufficiently large n,

$$
\log \operatorname{gcd}\left(a^{n}-1, b^{n}-1\right) \leq \varepsilon n
$$

In this talk we discuss the function field case, where the Basic Question becomes: for $f, g \in \mathbb{C}[X]$, give upper bounds for

$$
\operatorname{deg} \operatorname{gcd}\left(f^{n}-1, g^{n}-1\right)
$$

More generally, let $\left(F_{n}\right)_{n \geq 1},\left(G_{m}\right)_{m \geq 1}$ be two interesting sequences of polynomials in $\mathbb{C}[X]$. We want uniform bounds for

$$
\text { deg } \operatorname{ged}\left(F_{n}(X), G_{m}(X)\right) \text { for all } n, m \geq 1
$$

Some examples include:

(2) $\left(F_{n}\right),\left(G_{m}\right)$ are two linear recurrence sequences (LRS).

In this talk we discuss the function field case, where the Basic Question becomes: for $f, g \in \mathbb{C}[X]$, give upper bounds for

$$
\operatorname{deg} \operatorname{gcd}\left(f^{n}-1, g^{n}-1\right)
$$

More generally, let $\left(F_{n}\right)_{n \geq 1},\left(G_{m}\right)_{m \geq 1}$ be two interesting sequences of polynomials in $\mathbb{C}[X]$. We want uniform bounds for

$$
\operatorname{deg} \operatorname{gcd}\left(F_{n}(X), G_{m}(X)\right) \quad \text { for all } n, m \geq 1
$$

Some examples include:

n copies

In this talk we discuss the function field case, where the Basic Question becomes: for $f, g \in \mathbb{C}[X]$, give upper bounds for

$$
\operatorname{deg} \operatorname{gcd}\left(f^{n}-1, g^{n}-1\right)
$$

More generally, let $\left(F_{n}\right)_{n \geq 1},\left(G_{m}\right)_{m \geq 1}$ be two interesting sequences of polynomials in $\mathbb{C}[X]$. We want uniform bounds for

$$
\operatorname{deg} \operatorname{gcd}\left(F_{n}(X), G_{m}(X)\right) \quad \text { for all } n, m \geq 1
$$

Some examples include:
(1) $F_{n}=F\left(f_{1}^{n}, \ldots, f_{\ell}^{n}\right), G_{m}=G\left(g_{1}^{m}, \ldots, g_{\ell}^{m}\right)$, where $F, G \in \mathbb{C}\left[X_{1}, \ldots, X_{\ell}\right], f_{i}, g_{j} \in \mathbb{C}[X]$.

n copies

In this talk we discuss the function field case, where the Basic Question becomes: for $f, g \in \mathbb{C}[X]$, give upper bounds for

$$
\operatorname{deg} \operatorname{gcd}\left(f^{n}-1, g^{n}-1\right)
$$

More generally, let $\left(F_{n}\right)_{n \geq 1},\left(G_{m}\right)_{m \geq 1}$ be two interesting sequences of polynomials in $\mathbb{C}[X]$. We want uniform bounds for

$$
\operatorname{deg} \operatorname{gcd}\left(F_{n}(X), G_{m}(X)\right) \quad \text { for all } n, m \geq 1
$$

Some examples include:
(1) $F_{n}=F\left(f_{1}^{n}, \ldots, f_{\ell}^{n}\right), G_{m}=G\left(g_{1}^{m}, \ldots, g_{\ell}^{m}\right)$, where $F, G \in \mathbb{C}\left[X_{1}, \ldots, X_{\ell}\right], f_{i}, g_{j} \in \mathbb{C}[X]$.
(2) $\left(F_{n}\right),\left(G_{m}\right)$ are two linear recurrence sequences (LRS).
(3) $F_{n}=f^{(n)}-c, G_{m}=g^{(m)}-c$, where

n copies

In this talk we discuss the function field case, where the Basic Question becomes: for $f, g \in \mathbb{C}[X]$, give upper bounds for

$$
\operatorname{deg} \operatorname{gcd}\left(f^{n}-1, g^{n}-1\right)
$$

More generally, let $\left(F_{n}\right)_{n \geq 1},\left(G_{m}\right)_{m \geq 1}$ be two interesting sequences of polynomials in $\mathbb{C}[X]$. We want uniform bounds for

$$
\operatorname{deg} \operatorname{gcd}\left(F_{n}(X), G_{m}(X)\right) \quad \text { for all } n, m \geq 1
$$

Some examples include:
(1) $F_{n}=F\left(f_{1}^{n}, \ldots, f_{\ell}^{n}\right), G_{m}=G\left(g_{1}^{m}, \ldots, g_{\ell}^{m}\right)$, where

$$
F, G \in \mathbb{C}\left[X_{1}, \ldots, X_{\ell}\right], f_{i}, g_{j} \in \mathbb{C}[X]
$$

(2) $\left(F_{n}\right),\left(G_{m}\right)$ are two linear recurrence sequences (LRS).
(3) $F_{n}=f^{(n)}-c, G_{m}=g^{(m)}-c$, where $f, g, c \in \mathbb{C}[X]$, and

$$
f^{(n)}(X):=\underbrace{f \circ f \circ \cdots \circ f}_{n \text { copies }}(X) .
$$

In this talk we discuss the function field case, where the Basic Question becomes: for $f, g \in \mathbb{C}[X]$, give upper bounds for

$$
\operatorname{deg} \operatorname{gcd}\left(f^{n}-1, g^{n}-1\right)
$$

More generally, let $\left(F_{n}\right)_{n \geq 1},\left(G_{m}\right)_{m \geq 1}$ be two interesting sequences of polynomials in $\mathbb{C}[X]$. We want uniform bounds for

$$
\operatorname{deg} \operatorname{gcd}\left(F_{n}(X), G_{m}(X)\right) \quad \text { for all } n, m \geq 1
$$

Some examples include:
(1) $F_{n}=F\left(f_{1}^{n}, \ldots, f_{\ell}^{n}\right), G_{m}=G\left(g_{1}^{m}, \ldots, g_{\ell}^{m}\right)$, where $F, G \in \mathbb{C}\left[X_{1}, \ldots, X_{\ell}\right], f_{i}, g_{j} \in \mathbb{C}[X]$.
(2) $\left(F_{n}\right),\left(G_{m}\right)$ are two linear recurrence sequences (LRS).
(3) $F_{n}=f^{(n)}-c, G_{m}=g^{(m)}-c$, where $f, g, c \in \mathbb{C}[X]$, and

$$
f^{(n)}(X):=\underbrace{f \circ f \circ \cdots \circ f}_{n \text { copies }}(X) .
$$

(9) Combinations of the above, e.g., $F_{n}=X^{n}-1, G_{m}=f^{(m)}-1$.

Some of these GCD problems are intimately related to unlikely intersection problems for parametric curves, such as, intersection of curves with:

- torsion points (= roots of unity);
- division groups;
- algebraic subgroups of \mathbb{G}_{m}^{n}.

Why are we interested?

These problems are just simply beautiful!

They also naturally appear in various algorithmic/cryptographic applications. For example,

- Sorenson \& Webster (2017): finding strong pseudoprimes to several bases simultaneously.
- Luca \& Shparlinski (2005): Lower bounds on
- exponents of the group of points,
- embedding degree,
of elliptic curves over high degree extensions of finite fields; both are related to cryptography.
- Links to the theory of exponential Diophantine equations, such as $F_{m}=G_{n}$ for two linear recurrence sequences and to the Skolem Problem.

Why are we interested?

These problems are just simply beautifu!!

They also naturally appear in various algorithmic/cryptographic applications. For example,

- Sorenson \& Webster (2017): finding strong pseudoprimes to several bases simultaneously.
- Luca \& Shparlinski (2005): Lower bounds on
- exponents of the group of points,
- embedding degree,
of elliptic curves over high degree extensions of finite fields; both are related to cryptography.
- Links to the theory of exponential Diophantine equations, such as $F_{m}=G_{n}$ for two linear recurrence sequences and to the Skolem Problem

Why are we interested?

These problems are just simply beautifu!!

They also naturally appear in various algorithmic/cryptographic applications. For example,

- Sorenson \& Webster (2017): finding strong pseudoprimes to several bases simultaneously.
- Luca \& Shparlinski (2005): Lower bounds on
- exponents of the group of points,
- embedding degree,
of elliptic curves over high degree extensions of finite fields; both are related to cryptography.
- Links to the theory of exponential Diophantine equations, such as $F_{m}=G_{n}$ for two linear recurrence sequences and to the Skolem Problem.

Why are we interested?

These problems are just simply beautiful!

They also naturally appear in various algorithmic/cryptographic applications. For example,

- Sorenson \& Webster (2017): finding strong pseudoprimes to several bases simultaneously.
- Luca \& Shparlinski (2005): Lower bounds on
- exponents of the group of points,
- embedding degree,
of elliptic curves over high degree extensions of finite fields; both are related to cryptography.
- Links to the theory of exponential Diophantine equations, such as $F_{m}=G_{n}$ for two linear recurrence sequences and to the Skolem Problem.
- Chang (2013) (plane curves), improving Voloch $(2007,2010)$, and Chang, Kerr, Shparlinski and Zannier (2014) (algebraic varieties): lower bounds for the order of points on curves or higher dimensional varieties over $\overline{\mathbb{F}}_{p}$, as steps toward Poonen's Conjecture.
Such bounds also lead to explicit constructions of elements of finite fields of high order.
- Some of the above results and ideas have been used by Bourgain, Gamburd \& Sarnak (2016) to describe the structure of solutions of the Markoff equation in reductions modulo sufficiently large primes. Building on these results Chen (2021) has essentially completed this characterisation.

Fuchs, Lauter, Litman \& Tran (2021): Markoff equation based cryptographic hash function

- Chang (2013) (plane curves), improving Voloch $(2007,2010)$, and Chang, Kerr, Shparlinski and Zannier (2014) (algebraic varieties): lower bounds for the order of points on curves or higher dimensional varieties over $\overline{\mathbb{F}}_{p}$, as steps toward Poonen's Conjecture.
Such bounds also lead to explicit constructions of elements of finite fields of high order.
- Some of the above results and ideas have been used by Bourgain, Gamburd \& Sarnak (2016) to describe the structure of solutions of the Markoff equation in reductions modulo sufficiently large primes. Building on these results Chen (2021) has essentially completed this characterisation.

$$
\Downarrow
$$

Fuchs, Lauter, Litman \& Tran (2021): Markoff equation based cryptographic hash function.

Notation and Formal Set Up

- $\alpha_{1}, \ldots, \alpha_{s} \in \mathbb{C}^{*}$ are multiplicatively independent (mult. indep.) if

$$
\alpha_{1}^{k_{1}} \cdots \alpha_{s}^{k_{s}} \neq 1 \quad \forall\left(k_{1}, \ldots, k_{s}\right) \in \mathbb{Z}^{s} \backslash\{\mathbf{0}\} .
$$

Otherwise $\alpha_{1}, \ldots, \alpha_{s}$ are multiplicatively dependent (mult. dep.). - $f_{1}, \ldots, f_{s} \in \mathbb{C}(X)$ are mult. indep. with constants if

- $\mathbb{G}_{m}^{n}=\left(\mathbb{C}^{*}\right)^{n}$ the n-dimensional torus $\left(\omega_{1}, \ldots, \omega_{n}\right) \in \mathbb{G}_{m}^{n}$ is called torsion point if all ω_{i} are roots of unity.

Notation and Formal Set Up

- $\alpha_{1}, \ldots, \alpha_{s} \in \mathbb{C}^{*}$ are multiplicatively independent (mult. indep.) if

$$
\alpha_{1}^{k_{1}} \cdots \alpha_{s}^{k_{s}} \neq 1 \quad \forall\left(k_{1}, \ldots, k_{s}\right) \in \mathbb{Z}^{s} \backslash\{\mathbf{0}\} .
$$

Otherwise $\alpha_{1}, \ldots, \alpha_{s}$ are multiplicatively dependent (mult. dep.).

- $\mathbb{G}_{m}^{n}=\left(\mathbb{C}^{*}\right)^{n}$ the n-dimensional torus $\left(\omega_{1}, \ldots, \omega_{n}\right) \in \mathbb{G}_{m}^{n}$ is called torsion point if all ω_{i} are roots of unity.

Notation and Formal Set Up

- $\alpha_{1}, \ldots, \alpha_{s} \in \mathbb{C}^{*}$ are multiplicatively independent (mult. indep.) if

$$
\alpha_{1}^{k_{1}} \cdots \alpha_{s}^{k_{s}} \neq 1 \quad \forall\left(k_{1}, \ldots, k_{s}\right) \in \mathbb{Z}^{s} \backslash\{\mathbf{0}\} .
$$

Otherwise $\alpha_{1}, \ldots, \alpha_{s}$ are multiplicatively dependent (mult. dep.).

- $f_{1}, \ldots, f_{s} \in \mathbb{C}(X)$ are mult. indep. with constants if

$$
f_{1}^{k_{1}} \cdots f_{s}^{k_{s}} \notin \mathbb{C}^{*} \quad \forall\left(k_{1}, \ldots, k_{s}\right) \in \mathbb{Z}^{s} \backslash\{\mathbf{0}\} .
$$

- $\mathbb{G}_{m}^{n}=\left(\mathbb{C}^{*}\right)^{n}$ the n-dimensional torus $\left(\omega_{1}, \ldots, \omega_{n}\right) \in \mathbb{G}_{m}^{n}$ is called torsion point if all ω_{i} are roots of unity.

Notation and Formal Set Up

- $\alpha_{1}, \ldots, \alpha_{s} \in \mathbb{C}^{*}$ are multiplicatively independent (mult. indep.) if

$$
\alpha_{1}^{k_{1}} \cdots \alpha_{s}^{k_{s}} \neq 1 \quad \forall\left(k_{1}, \ldots, k_{s}\right) \in \mathbb{Z}^{s} \backslash\{\mathbf{0}\} .
$$

Otherwise $\alpha_{1}, \ldots, \alpha_{s}$ are multiplicatively dependent (mult. dep.).

- $f_{1}, \ldots, f_{s} \in \mathbb{C}(X)$ are mult. indep. with constants if

$$
f_{1}^{k_{1}} \cdots f_{s}^{k_{s}} \notin \mathbb{C}^{*} \quad \forall\left(k_{1}, \ldots, k_{s}\right) \in \mathbb{Z}^{s} \backslash\{\mathbf{0}\} .
$$

- $\mathbb{G}_{m}^{n}=\left(\mathbb{C}^{*}\right)^{n}$ the n-dimensional torus
$\left(\omega_{1}, \ldots, \omega_{n}\right) \in \mathbb{G}_{m}^{n}$ is called torsion point if all ω_{i} are roots of unity.

Some unlikely intersection problems

Underlying problem: Torsion points on plane curves

At the heart of the function field case, stays the following result conjectured by Lang and proved by Ihara, Serre \& Tate (1960s):
 such that

for some $k, \ell \geq 1$

Underlying problem: Torsion points on plane curves

At the heart of the function field case, stays the following result conjectured by Lang and proved by Ihara, Serre \& Tate (1960s):

Let $H(X, Y) \in \mathbb{C}[X, Y]$ be irreducible, not of the form $X^{i}-\rho Y^{j}$ or $X^{i} Y^{j}-\rho$ with a root of unity ρ. Then the curve $H(X, Y)=0$ has only finitely many torsion points $\left(\zeta_{1}, \zeta_{2}\right)$.

such that

Underlying problem: Torsion points on plane curves

At the heart of the function field case, stays the following result conjectured by Lang and proved by Ihara, Serre \& Tate (1960s):

Let $H(X, Y) \in \mathbb{C}[X, Y]$ be irreducible, not of the form $X^{i}-\rho Y^{j}$ or $X^{i} Y^{j}-\rho$ with a root of unity ρ. Then the curve $H(X, Y)=0$ has only finitely many torsion points $\left(\zeta_{1}, \zeta_{2}\right)$.

Beukers \& Smyth (2002): bound for the number of torsion points Corvaja \& Zannier (2008): bound for maximal order of torsion points
Remark: Since the orders are bounded we can effectively find all such
points.
Reformulation of Lang's problem for plane rational curves: Let
$f, g \in \mathbb{C}(X)$ be mult. indep. Then there are at most finitely many $\alpha \in \mathbb{C}$ such that

Underlying problem: Torsion points on plane curves

At the heart of the function field case, stays the following result conjectured by Lang and proved by Ihara, Serre \& Tate (1960s):

Let $H(X, Y) \in \mathbb{C}[X, Y]$ be irreducible, not of the form $X^{i}-\rho Y^{j}$ or $X^{i} Y^{j}-\rho$ with a root of unity ρ. Then the curve $H(X, Y)=0$ has only finitely many torsion points $\left(\zeta_{1}, \zeta_{2}\right)$.

Beukers \& Smyth (2002): bound for the number of torsion points Corvaja \& Zannier (2008): bound for maximal order of torsion points Remark: Since the orders are bounded we can effectively find all such points.

Reformulation of Lang's problem for plane rational curves: Let be mult. indep. Then there are at most finitely many $\alpha \in \mathbb{C}$ such that

Underlying problem: Torsion points on plane curves

At the heart of the function field case, stays the following result conjectured by Lang and proved by Ihara, Serre \& Tate (1960s):

Let $H(X, Y) \in \mathbb{C}[X, Y]$ be irreducible, not of the form $X^{i}-\rho Y^{j}$ or $X^{i} Y^{j}-\rho$ with a root of unity ρ. Then the curve $H(X, Y)=0$ has only finitely many torsion points $\left(\zeta_{1}, \zeta_{2}\right)$.

Beukers \& Smyth (2002): bound for the number of torsion points Corvaja \& Zannier (2008): bound for maximal order of torsion points

Remark: Since the orders are bounded we can effectively find all such points.

Reformulation of Lang's problem for plane rational curves: Let $f, g \in \mathbb{C}(X)$ be mult. indep. Then there are at most finitely many $\alpha \in \mathbb{C}$ such that

$$
f(\alpha)^{k}=g(\alpha)^{\ell}=1 \quad \text { for some } k, \ell \geq 1
$$

Unimodular points on rational curves

Instead of looking only at roots of unity, one can ask more generally about finiteness of $\alpha \in \mathbb{C}$ such that

$$
|f(\alpha)|=|g(\alpha)|=1
$$

Corvaja, Masser \& Zannier (2013): finiteness result for $f(x)=x$,
\square

Pakovich \& Shparlinski (2020)

Let $f, g \in \mathbb{C}(x)$. Then one has
unless f and g are special (defined in terms of Blaschke products).
Remark 1: If $f, g \in \mathbb{C}[X]$, then
special $=f$ and g are mult. dep.
Remark 2: Writing $\alpha=a+i b$ we obtain a system of two equations in a and b. Hence once we know the finiteness of solutions we can effectively

Unimodular points on rational curves

Instead of looking only at roots of unity, one can ask more generally about finiteness of $\alpha \in \mathbb{C}$ such that

$$
|f(\alpha)|=|g(\alpha)|=1
$$

Corvaja, Masser \& Zannier (2013): finiteness result for $f(x)=x$, $g \in \mathbb{C}[x]$.

Pakovich \& Shparlinski (2020)

Let $f, g \in \mathbb{C}(x)$. Then one has
unless f and g are special (defined in terms of Blaschke products)
Remark 1: If $f, g \in \mathbb{C}[X]$, then
special $=f$ and g are mult. dep.
Remark 2: Writing $\alpha=a+i b$ we obtain a system of two equations in a and b. Hence once we know the finiteness of solutions we can effectively

Unimodular points on rational curves

Instead of looking only at roots of unity, one can ask more generally about finiteness of $\alpha \in \mathbb{C}$ such that

$$
|f(\alpha)|=|g(\alpha)|=1
$$

Corvaja, Masser \& Zannier (2013): finiteness result for $f(x)=x$, $g \in \mathbb{C}[x]$.

Pakovich \& Shparlinski (2020)

Let $f, g \in \mathbb{C}(x)$. Then one has

$$
\#\{\alpha \in \mathbb{C}:|f(\alpha)|=|g(\alpha)|=1\} \leq(\operatorname{deg} f+\operatorname{deg} g)^{2}
$$

unless f and g are special (defined in terms of Blaschke products).
Remark 1: If $f, g \in \mathbb{C}[X]$, then
special $=f$ and g are mult. dep.
Remark 2: Writing $\alpha=a+i b$ we obtain a system of two equations in a and b. Hence once we know the finiteness of solutions we can effectively find them all

Unimodular points on rational curves

Instead of looking only at roots of unity, one can ask more generally about finiteness of $\alpha \in \mathbb{C}$ such that

$$
|f(\alpha)|=|g(\alpha)|=1
$$

Corvaja, Masser \& Zannier (2013): finiteness result for $f(x)=x$, $g \in \mathbb{C}[x]$.

Pakovich \& Shparlinski (2020)

Let $f, g \in \mathbb{C}(x)$. Then one has

$$
\#\{\alpha \in \mathbb{C}:|f(\alpha)|=|g(\alpha)|=1\} \leq(\operatorname{deg} f+\operatorname{deg} g)^{2}
$$

unless f and g are special (defined in terms of Blaschke products).
Remark 1: If $f, g \in \mathbb{C}[X]$, then

$$
\text { special }=f \text { and } g \text { are mult. dep. }
$$

Remark 2: Writing $\alpha=a+i b$ we obtain a system of two equations in a and b. Hence once we know the finiteness of solutions we can effectively find them all.

Intersection of curves with algebraic subgroups

Bombieri, Masser \& Zannier (1999)

Let $f_{1}, \ldots, f_{s} \in \overline{\mathbb{Q}}(X)$ be mult. indep. with constants. Then

$$
\mathcal{S}_{f_{1}, \ldots, f_{s}}(\overline{\mathbb{Q}})=\left\{\alpha \in \overline{\mathbb{Q}}: f_{1}(\alpha), \ldots, f_{s}(\alpha) \text { are mult. dep. }\right\}
$$

is a set of bounded Weil height.

Remarks:

- $\mathcal{S}_{f_{1}, \ldots, f_{s}}(\overline{\mathbb{Q}})$ is an infinite set.
- The proof is effective and gives explicit bound for the height.
- The condition on f_{1}, \ldots, f_{s} being mult. indep. with constants is necessary, that is, it is not enough to be just mult. indep.

but there are infinitely many dependent values $\left(2^{m+1}, 2^{2 m}\right)$ for which the height is unbounded as $m \rightarrow \infty$

Intersection of curves with algebraic subgroups

Bombieri, Masser \& Zannier (1999)

Let $f_{1}, \ldots, f_{s} \in \overline{\mathbb{Q}}(X)$ be mult. indep. with constants. Then

$$
\mathcal{S}_{f_{1}, \ldots, f_{s}}(\overline{\mathbb{Q}})=\left\{\alpha \in \overline{\mathbb{Q}}: f_{1}(\alpha), \ldots, f_{s}(\alpha) \text { are mult. dep. }\right\}
$$

is a set of bounded Weil height.

Remarks:

- $\mathcal{S}_{f_{1}, \ldots, f_{s}}(\overline{\mathbb{Q}})$ is an infinite set.
- The proof is effective and gives explicit bound for the height.
- The condition on f_{1}, \ldots, f_{s} being mult. indep. with constants is necessary, that is, it is not enough to be just mult. indep.

but there are infinitely many dependent values $\left(2^{m+1}, 2^{2 m}\right)$ for which the
height is unbounded as $m \rightarrow \infty$

Intersection of curves with algebraic subgroups

Bombieri, Masser \& Zannier (1999)

Let $f_{1}, \ldots, f_{s} \in \overline{\mathbb{Q}}(X)$ be mult. indep. with constants. Then

$$
\mathcal{S}_{f_{1}, \ldots, f_{s}}(\overline{\mathbb{Q}})=\left\{\alpha \in \overline{\mathbb{Q}}: f_{1}(\alpha), \ldots, f_{s}(\alpha) \text { are mult. dep. }\right\}
$$

is a set of bounded Weil height.

Remarks:

- $\mathcal{S}_{f_{1}, \ldots, f_{s}}(\overline{\mathbb{Q}})$ is an infinite set.
- The proof is effective and gives explicit bound for the height.
- The condition on f_{1}, \ldots, f_{s} being mult. indep. with constants is necessary, that is, it is not enough to be just mult. indep.

but there are infinitely many dependent values $\left(2^{m+1}, 2^{2 m}\right)$ for which the
height is unbounded as $m \rightarrow \infty$

Intersection of curves with algebraic subgroups

Bombieri, Masser \& Zannier (1999)

Let $f_{1}, \ldots, f_{s} \in \overline{\mathbb{Q}}(X)$ be mult. indep. with constants. Then

$$
\mathcal{S}_{f_{1}, \ldots, f_{s}}(\overline{\mathbb{Q}})=\left\{\alpha \in \overline{\mathbb{Q}}: f_{1}(\alpha), \ldots, f_{s}(\alpha) \text { are mult. dep. }\right\}
$$

is a set of bounded Weil height.

Remarks:

- $\mathcal{S}_{f_{1}, \ldots, f_{s}}(\overline{\mathbb{Q}})$ is an infinite set.
- The proof is effective and gives explicit bound for the height.
- The condition on f_{1}, \ldots, f_{s} being mult. indep. with constants is necessary, that is, it is not enough to be just mult. indep.

Example: Let $f_{1}(X)=2 X, f_{2}(X)=X^{2}$. Then f_{1}, f_{2} are mult. indep., but there are infinitely many dependent values $\left(2^{m+1}, 2^{2 m}\right)$ for which the height is unbounded as $m \rightarrow \infty$.

Achieving finiteness

Maurin (2008)

Let $f_{1}, \ldots, f_{s} \in \overline{\mathbb{Q}}(X)$ be mult. indep. Then there are at most finitely many $\alpha \in \overline{\mathbb{Q}}$ such that

$$
f_{1}(\alpha)^{a_{1}} \cdots f_{s}(\alpha)^{a_{s}}=f_{1}(\alpha)^{b_{1}} \cdots f_{s}(\alpha)^{b_{s}}=1
$$

for some linearly independent vectors $\left(a_{1}, \ldots, a_{s}\right),\left(b_{1}, \ldots, b_{s}\right) \in \mathbb{Z}^{s}$.

Bombieri, Masser \& Zannier (1999, 2003): Proved this conclusion under the assumption that $f_{1}, \ldots, f_{s} \in \overline{\mathbb{Q}}(X)$ are being mult. indep. modulo constants, and then extended their result to \mathbb{C}.

Bombieri, Habegger, Masser \& Zannier (2010): gave a different proof (which is also effective) of Maurin's result.

Achieving finiteness

Maurin (2008)

Let $f_{1}, \ldots, f_{s} \in \overline{\mathbb{Q}}(X)$ be mult. indep. Then there are at most finitely many $\alpha \in \overline{\mathbb{Q}}$ such that

$$
f_{1}(\alpha)^{a_{1}} \cdots f_{s}(\alpha)^{a_{s}}=f_{1}(\alpha)^{b_{1}} \cdots f_{s}(\alpha)^{b_{s}}=1
$$

for some linearly independent vectors $\left(a_{1}, \ldots, a_{s}\right),\left(b_{1}, \ldots, b_{s}\right) \in \mathbb{Z}^{s}$.

Bombieri, Masser \& Zannier (1999, 2003): Proved this conclusion under the assumption that $f_{1}, \ldots, f_{s} \in \overline{\mathbb{Q}}(X)$ are being mult. indep. modulo constants, and then extended their result to \mathbb{C}.

Bombieri, Habegger, Masser \& Zannier (2010): gave a different proof (which is also effective) of Maurin's result.

Achieving finiteness

Maurin (2008)

Let $f_{1}, \ldots, f_{s} \in \overline{\mathbb{Q}}(X)$ be mult. indep. Then there are at most finitely many $\alpha \in \overline{\mathbb{Q}}$ such that

$$
f_{1}(\alpha)^{a_{1}} \cdots f_{s}(\alpha)^{a_{s}}=f_{1}(\alpha)^{b_{1}} \cdots f_{s}(\alpha)^{b_{s}}=1
$$

for some linearly independent vectors $\left(a_{1}, \ldots, a_{s}\right),\left(b_{1}, \ldots, b_{s}\right) \in \mathbb{Z}^{s}$.

Bombieri, Masser \& Zannier (1999, 2003): Proved this conclusion under the assumption that $f_{1}, \ldots, f_{s} \in \overline{\mathbb{Q}}(X)$ are being mult. indep. modulo constants, and then extended their result to \mathbb{C}.

Bombieri, Habegger, Masser \& Zannier (2010): gave a different proof (which is also effective) of Maurin's result.

Corollary: Let Γ be a finitely generated subgroup of $\overline{\mathbb{Q}}^{*}$ and $f_{1}, \ldots, f_{s} \in \overline{\mathbb{Q}}(X)$ mult. indep. modulo Γ. Then there are at most finitely many $\alpha \in \overline{\mathbb{Q}}$ such that

$$
f_{1}(\alpha)^{a_{1}} \cdots f_{s}(\alpha)^{a_{s}}, f_{1}(\alpha)^{b_{1}} \cdots f_{s}(\alpha)^{b_{s}} \in \Gamma
$$

for some linearly independent vectors

$$
\left(a_{1}, \ldots, a_{s}\right),\left(b_{1}, \ldots, b_{s}\right) \in \mathbb{Z}^{s}
$$

Bounded height for zeros of polynomial recurrences

As a direct consequence of a more general result:

Amoroso, Masser \& Zannier (2017)

Let $a_{i}, f_{i} \in \overline{\mathbb{Q}}(X), i=1, \ldots, k$, be nonzero rational functions such that f_{s} / f_{r} is non-constant for any $1 \leq r<s \leq k$. There exists an effectively computable constant C, which depends on $a_{1}, \ldots, a_{k}, f_{1}, \ldots, f_{k}$ such that if for any $n \geq C$ and any $\alpha \in \overline{\mathbb{Q}}$ one has

$$
F_{n}(\alpha)=\sum_{i=1}^{k} a_{i}(\alpha) f_{i}(\alpha)^{n}=0
$$

then

$$
h(\alpha) \leq C
$$

Remarks:

- If $a_{i}, f_{i} \in \overline{\mathbb{Q}}[X]$, for every given D there are only finitely many monic $h \in \overline{\mathbb{Q}}[X]$ of degree D such that $h \mid F_{n}$ for some n (if $F_{n}(X) \neq 0$).
- If $a_{i} \in \mathbb{Q}$, then this is an instance of unlikely intersection, that is, we look at points P on a parametric curve such that $[n] P \in V$, where V is a hyperplane.

Kulkarni, Mavraki \& Nguyen (2015): obtained a result of similar flavour.

Open Problem

Let

where $a_{i}, b_{i}, f_{i}, g_{i} \in \overline{\mathbb{Q}}[X]$. Show that, under some natural conditions,
\square

Remarks:

- If $a_{i}, f_{i} \in \overline{\mathbb{Q}}[X]$, for every given D there are only finitely many monic $h \in \overline{\mathbb{Q}}[X]$ of degree D such that $h \mid F_{n}$ for some n (if $F_{n}(X) \neq 0$).
- If $a_{i} \in \overline{\mathbb{Q}}$, then this is an instance of unlikely intersection, that is, we look at points P on a parametric curve such that $[n] P \in V$, where V is a hyperplane.

Kulkarni, Mavraki \& Nguyen (2015): obtained a result of similar flavour.

Open Problem

\square
where $a_{i}, b_{i}, f_{i}, g_{i} \in \overline{\mathbb{Q}}[X]$. Show that, under some natural conditions,

Remarks:

- If $a_{i}, f_{i} \in \overline{\mathbb{Q}}[X]$, for every given D there are only finitely many monic $h \in \overline{\mathbb{Q}}[X]$ of degree D such that $h \mid F_{n}$ for some n (if $F_{n}(X) \neq 0$).
- If $a_{i} \in \overline{\mathbb{Q}}$, then this is an instance of unlikely intersection, that is, we look at points P on a parametric curve such that $[n] P \in V$, where V is a hyperplane.

Kulkarni, Mavraki \& Nguyen (2015): obtained a result of similar flavour.

Open Problem

where $a_{i}, b_{i}, f_{i}, g_{i} \in \overline{\mathbb{Q}}[X]$. Show that, under some natural conditions,

Remarks:

- If $a_{i}, f_{i} \in \overline{\mathbb{Q}}[X]$, for every given D there are only finitely many monic $h \in \overline{\mathbb{Q}}[X]$ of degree D such that $h \mid F_{n}$ for some n (if $F_{n}(X) \neq 0$).
- If $a_{i} \in \overline{\mathbb{Q}}$, then this is an instance of unlikely intersection, that is, we look at points P on a parametric curve such that $[n] P \in V$, where V is a hyperplane.

Kulkarni, Mavraki \& Nguyen (2015): obtained a result of similar flavour.

Open Problem

Let

$$
F_{n}=\sum_{i=1}^{k} a_{i}(X) f_{i}(X)^{n}, \quad G_{n}=\sum_{i=1}^{\ell} b_{i}(X) g_{i}(X)^{n}, \quad n \geq 0
$$

where $a_{i}, b_{i}, f_{i}, g_{i} \in \overline{\mathbb{Q}}[X]$. Show that, under some natural conditions,

$$
\#\left\{\alpha \in \overline{\mathbb{Q}}: F_{n}(\alpha)=G_{m}(\alpha)=0 \text { for some } n, m \geq 1\right\}<\infty
$$

GCD problems in function fields

$\operatorname{gcd}\left(f^{n}-1, g^{n}-1\right)$ over \mathbb{C}

Ailon \& Rudnick (2004)

Let $f, g \in \mathbb{C}[X]$ be mult. indep. over $\mathbb{C}(X)$. For all $n \geq 1$, there exists $h \in \mathbb{C}[X]$ such that

$$
\operatorname{gcd}\left(f^{n}-1, g^{n}-1\right) \mid h
$$

If in addition,

$$
\operatorname{gcd}(f-1, g-1)=1,
$$

then there is a finite union of arithmetic progressions $\cup d_{i} \mathbb{N}, d_{i} \geq 2$, such that for n outside these progressions,

$$
\operatorname{gcd}\left(f^{n}-1, g^{n}-1\right)=1
$$

Torsion points on plane curves

Remark: By Beukers \& Smyth (2002)

 $\operatorname{deg} h \leq\left(11(\operatorname{deg} f+\operatorname{deg} g)^{2}\right)^{\min (\operatorname{deg} f, \operatorname{deg} g)}$
$\operatorname{gcd}\left(f^{n}-1, g^{n}-1\right)$ over \mathbb{C}

Ailon \& Rudnick (2004)

Let $f, g \in \mathbb{C}[X]$ be mult. indep. over $\mathbb{C}(X)$. For all $n \geq 1$, there exists $h \in \mathbb{C}[X]$ such that

$$
\operatorname{gcd}\left(f^{n}-1, g^{n}-1\right) \mid h
$$

If in addition,

$$
\operatorname{gcd}(f-1, g-1)=1
$$

then there is a finite union of arithmetic progressions $\cup d_{i} \mathbb{N}, d_{i} \geq 2$, such that for n outside these progressions,

$$
\operatorname{gcd}\left(f^{n}-1, g^{n}-1\right)=1
$$

Torsion points on plane curves

Remark: By Beukers \& Smyth (2002):
$\operatorname{deg} h \leq\left(11(\operatorname{deg} f+\operatorname{deg} g)^{2}\right)^{\min (\operatorname{deg} f, \operatorname{deg} g)}$

$\operatorname{gcd}\left(f^{n}-1, g^{n}-1\right)$ over \mathbb{C}

Ailon \& Rudnick (2004)

Let $f, g \in \mathbb{C}[X]$ be mult. indep. over $\mathbb{C}(X)$. For all $n \geq 1$, there exists $h \in \mathbb{C}[X]$ such that

$$
\operatorname{gcd}\left(f^{n}-1, g^{n}-1\right) \mid h
$$

If in addition,

$$
\operatorname{gcd}(f-1, g-1)=1
$$

then there is a finite union of arithmetic progressions $\cup d_{i} \mathbb{N}, d_{i} \geq 2$, such that for n outside these progressions,

$$
\operatorname{gcd}\left(f^{n}-1, g^{n}-1\right)=1
$$

Torsion points on plane curves

Remark: By Beukers \& Smyth (2002):

$$
\operatorname{deg} h \leq\left(11(\operatorname{deg} f+\operatorname{deg} g)^{2}\right)^{\min (\operatorname{deg} f, \operatorname{deg} g)}
$$

Let $S \subset \mathbb{C}$ be a finite set and let $u, v \in \mathbb{C}(X)$ be mult. indep. rational functions with all their zeroes and poles in S.

Corvaja \& Zannier (2008):

$$
\operatorname{deg} \operatorname{gcd}(u-1, v-1)<_{S} \max (\operatorname{deg} u, \operatorname{deg} v)^{2 / 3}
$$

If we take $f, g \in \mathbb{C}[X]$ mult. indep., and $u=f^{n}, v=g^{n}$, then one gets $\operatorname{deg} \operatorname{gcd}\left(f^{n}-1, g^{n}-1\right) \ll n^{2 / 3}$
which improves the trivial bound $\ll n$.
Pemark: Although apparently weaker, one can still recover the Ailon-Rudnick result from this bound (when $f, g \in \overline{\mathbb{Q}}[X]$).

Let $S \subset \mathbb{C}$ be a finite set and let $u, v \in \mathbb{C}(X)$ be mult. indep. rational functions with all their zeroes and poles in S.

Corvaja \& Zannier (2008):

$$
\operatorname{deg} \operatorname{gcd}(u-1, v-1)<_{S} \max (\operatorname{deg} u, \operatorname{deg} v)^{2 / 3}
$$

If we take $f, g \in \mathbb{C}[X]$ mult. indep., and $u=f^{n}, v=g^{n}$, then one gets

$$
\operatorname{deg} \operatorname{gcd}\left(f^{n}-1, g^{n}-1\right) \ll n^{2 / 3}
$$

which improves the trivial bound $\ll n$.
Remark: Although apparently weaker, one can still recover the Ailon-Rudnick result from this bound (when $f, g \in \overline{\mathbb{Q}}[X]$).

Let $S \subset \mathbb{C}$ be a finite set and let $u, v \in \mathbb{C}(X)$ be mult. indep. rational functions with all their zeroes and poles in S.

Corvaja \& Zannier (2008):

$$
\operatorname{deg} \operatorname{gcd}(u-1, v-1)<_{S} \max (\operatorname{deg} u, \operatorname{deg} v)^{2 / 3}
$$

If we take $f, g \in \mathbb{C}[X]$ mult. indep., and $u=f^{n}, v=g^{n}$, then one gets

$$
\operatorname{deg} \operatorname{gcd}\left(f^{n}-1, g^{n}-1\right) \ll n^{2 / 3}
$$

which improves the trivial bound $\ll n$.
Remark: Although apparently weaker, one can still recover the Ailon-Rudnick result from this bound (when $f, g \in \overline{\mathbb{Q}}[X]$).

$\operatorname{gcd}\left(f^{n}-1, g^{n}-1\right)$ over \mathbb{F}_{q}

The exact analogue of the Ailon-Rudnick result does not hold over \mathbb{F}_{q}. Let $f, g \in \mathbb{F}_{q}[X]$ nonconstant polynomials.

In this case, one needs to impose more restrictions on n as, for example,

However, Silverman (2004) has observed that even forbidding cheating

 with powers of p does not save us.Example: Silverman (2004)
Let $f(X)=X, g(X)=X+1$ and $n=p^{k}-1$. Then $\operatorname{deg} \operatorname{gcd}\left(f^{n}-1, g^{n}-1\right)=n-1$

$\operatorname{gcd}\left(f^{n}-1, g^{n}-1\right)$ over \mathbb{F}_{q}

The exact analogue of the Ailon-Rudnick result does not hold over \mathbb{F}_{q}. Let $f, g \in \mathbb{F}_{q}[X]$ nonconstant polynomials.

In this case, one needs to impose more restrictions on n as, for example,

$$
\operatorname{gcd}\left(f^{n p^{k}}-1, g^{n p^{k}}-1\right)=\operatorname{gcd}\left(f^{n}-1, g^{n}-1\right)^{p^{k}}
$$

However, Silverman (2004) has observed that even forbidding cheating with powers of p does not save us.

Example: Silverman (2004)
Let $f(X)=X, g(X)=X+1$ and $n=p^{k}-1$. Then $\operatorname{dog} \operatorname{gcd}\left(f^{n}-1, g^{n}-1\right)=n-1$

$\operatorname{gcd}\left(f^{n}-1, g^{n}-1\right)$ over \mathbb{F}_{q}

The exact analogue of the Ailon-Rudnick result does not hold over \mathbb{F}_{q}. Let $f, g \in \mathbb{F}_{q}[X]$ nonconstant polynomials.

In this case, one needs to impose more restrictions on n as, for example,

$$
\operatorname{gcd}\left(f^{n p^{k}}-1, g^{n p^{k}}-1\right)=\operatorname{gcd}\left(f^{n}-1, g^{n}-1\right)^{p^{k}}
$$

However, Silverman (2004) has observed that even forbidding cheating with powers of p does not save us.

Example: Silverman (2004)
Let $f(X)=X, g(X)=X+1$ and $n=p^{k}-1$. Then $\operatorname{deg} \operatorname{gcd}\left(f^{n}-1, g^{n}-1\right)=n-1$

$\operatorname{gcd}\left(f^{n}-1, g^{n}-1\right)$ over \mathbb{F}_{q}

The exact analogue of the Ailon-Rudnick result does not hold over \mathbb{F}_{q}. Let $f, g \in \mathbb{F}_{q}[X]$ nonconstant polynomials.

In this case, one needs to impose more restrictions on n as, for example,

$$
\operatorname{gcd}\left(f^{n p^{k}}-1, g^{n p^{k}}-1\right)=\operatorname{gcd}\left(f^{n}-1, g^{n}-1\right)^{p^{k}}
$$

However, Silverman (2004) has observed that even forbidding cheating with powers of p does not save us.

Example: Silverman (2004)
Let $f(X)=X, g(X)=X+1$ and $n=p^{k}-1$. Then

$$
\operatorname{deg} \operatorname{gcd}\left(f^{n}-1, g^{n}-1\right)=n-1
$$

since any $\alpha \in \mathbb{F}_{p^{k}} \backslash\{0,-1\}$ is a root.

More generally, we have:
Silverman (2004): for any nonconstant polynomials $f, g \in \mathbb{F}_{q}[X]$, there exists a constant $c=c(f, g)>0$ such that for infinitely many n,

$$
\operatorname{deg} \operatorname{gcd}\left(f^{n}-1, g^{n}-1\right) \geq c n
$$

Corvaja \& Zannier (2013): Let $S \subset \overline{\mathbb{F}}_{q}$ be a finite set and let $u, v \in \mathbb{F}_{q}(X)$ be mult. indep. rational functions modulo \mathbb{F}_{q}^{*}, with nonzero differentials and with all their zeroes and poles in S. We also denote $d=\max (\operatorname{deg} u, \operatorname{deg} v)$. Then,

Nontrivial: when $d \ll p$.
Demark: If $d^{4} \ll p^{3}$, the result is the same as over \mathbb{C}.

More generally, we have:
Silverman (2004): for any nonconstant polynomials $f, g \in \mathbb{F}_{q}[X]$, there exists a constant $c=c(f, g)>0$ such that for infinitely many n,

$$
\operatorname{deg} \operatorname{gcd}\left(f^{n}-1, g^{n}-1\right) \geq c n
$$

Corvaja \& Zannier (2013): Let $S \subset \overline{\mathbb{F}}_{q}$ be a finite set and let $u, v \in \mathbb{F}_{q}(X)$ be mult. indep. rational functions modulo \mathbb{F}_{q}^{*}, with nonzero differentials and with all their zeroes and poles in S. We also denote $d=\max (\operatorname{deg} u, \operatorname{deg} v)$. Then,

$$
\operatorname{deg} \operatorname{gcd}(u-1, v-1)<_{S} \max \left(d^{2 / 3}, d^{2} / p\right)
$$

Nontrivial: when $d \ll p$.

More generally, we have:
Silverman (2004): for any nonconstant polynomials $f, g \in \mathbb{F}_{q}[X]$, there exists a constant $c=c(f, g)>0$ such that for infinitely many n,

$$
\operatorname{deg} \operatorname{gcd}\left(f^{n}-1, g^{n}-1\right) \geq c n
$$

Corvaja \& Zannier (2013): Let $S \subset \overline{\mathbb{F}}_{q}$ be a finite set and let $u, v \in \mathbb{F}_{q}(X)$ be mult. indep. rational functions modulo \mathbb{F}_{q}^{*}, with nonzero differentials and with all their zeroes and poles in S. We also denote $d=\max (\operatorname{deg} u, \operatorname{deg} v)$. Then,

$$
\operatorname{deg} \operatorname{gcd}(u-1, v-1)<_{S} \max \left(d^{2 / 3}, d^{2} / p\right)
$$

Nontrivial: when $d \ll p$.

More generally, we have:
Silverman (2004): for any nonconstant polynomials $f, g \in \mathbb{F}_{q}[X]$, there exists a constant $c=c(f, g)>0$ such that for infinitely many n,

$$
\operatorname{deg} \operatorname{gcd}\left(f^{n}-1, g^{n}-1\right) \geq c n
$$

Corvaja \& Zannier (2013): Let $S \subset \overline{\mathbb{F}}_{q}$ be a finite set and let $u, v \in \mathbb{F}_{q}(X)$ be mult. indep. rational functions modulo \mathbb{F}_{q}^{*}, with nonzero differentials and with all their zeroes and poles in S. We also denote $d=\max (\operatorname{deg} u, \operatorname{deg} v)$. Then,

$$
\operatorname{deg} \operatorname{gcd}(u-1, v-1)<_{S} \max \left(d^{2 / 3}, d^{2} / p\right)
$$

Nontrivial: when $d \ll p$.
Remark: If $d^{4} \ll p^{3}$, the result is the same as over \mathbb{C}.

For $u=x^{d}$ and $v=(1-x)^{d}$ this is a question about the number of solutions to

$$
x+y=1
$$

in variables from the subgroup of $\overline{\mathbb{F}}_{q}^{*}$ of order d. This dates back to
Garcia \& Voloch (1988)
Heath-Brown \& Konyagin (2000)
Ghioca, Hsia \& Tucker (2017): several other extensions, for example proving finiteness result for the set of roots of gcd's of the form

$$
\operatorname{gcd}\left(f_{1}^{n}-g_{1}, f_{2}^{m}-g_{2}\right), \quad n, m \geq 1
$$

where $f_{1}, f_{2}, g_{1}, g_{2} \in \mathbb{F}[X](\mathbb{F}$ is a field of char $p>0)$ are fixed and f_{1} and f_{2} are algebraically independent over \mathbb{F}_{p}.

For $u=x^{d}$ and $v=(1-x)^{d}$ this is a question about the number of solutions to

$$
x+y=1
$$

in variables from the subgroup of $\overline{\mathbb{F}}_{q}^{*}$ of order d. This dates back to
Garcia \& Voloch (1988)
Heath-Brown \& Konyagin (2000)
Ghioca, Hsia \& Tucker (2017): several other extensions, for example proving finiteness result for the set of roots of gcd's of the form

For $u=x^{d}$ and $v=(1-x)^{d}$ this is a question about the number of solutions to

$$
x+y=1
$$

in variables from the subgroup of $\overline{\mathbb{F}}_{q}^{*}$ of order d. This dates back to
Garcia \& Voloch (1988)
Heath-Brown \& Konyagin (2000)
Ghioca, Hsia \& Tucker (2017): several other extensions, for example proving finiteness result for the set of roots of gcd's of the form

$$
\operatorname{gcd}\left(f_{1}^{n}-g_{1}, f_{2}^{m}-g_{2}\right), \quad n, m \geq 1
$$

where $f_{1}, f_{2}, g_{1}, g_{2} \in \mathbb{F}[X](\mathbb{F}$ is a field of char $p>0)$ are fixed and f_{1} and f_{2} are algebraically independent over \mathbb{F}_{p}.

Coming back to \mathbb{C}

Corvaja \& Zannier (2008):

$$
\operatorname{deg} \operatorname{gcd}(u-1, v-1)<_{S} \max (\operatorname{deg} u, \operatorname{deg} v)^{2 / 3}
$$

Question: For $f_{1}, \ldots, f_{s}, g_{1}, \ldots, g_{r} \in \mathbb{C}[X]$, can we have a uniform bound when

$$
u=f_{1}^{n_{1}} \cdots f_{s}^{n_{s}} \quad \text { and } \quad v=g_{1}^{m_{1}} \cdots g_{r}^{m_{r}}
$$

for all $n_{1}, \ldots, n_{s}, m_{1}, \ldots, m_{r}$?
If one restricts the polynomials to being defined over number fields, one can achieve uniformness, even in the more general case of

$$
\operatorname{gcd}\left(h_{1}\left(f_{1}^{n_{1}} \cdots f_{s}^{n_{s}}\right), h_{2}\left(g_{1}^{m_{1}} \cdots g_{r}^{m_{j}}\right)\right), \quad n_{i}, m_{j} \geq 0
$$

Coming back to \mathbb{C}

Corvaja \& Zannier (2008):

$$
\operatorname{deg} \operatorname{gcd}(u-1, v-1)<_{S} \max (\operatorname{deg} u, \operatorname{deg} v)^{2 / 3}
$$

Question: For $f_{1}, \ldots, f_{s}, g_{1}, \ldots, g_{r} \in \mathbb{C}[X]$, can we have a uniform bound when

$$
u=f_{1}^{n_{1}} \cdots f_{s}^{n_{s}} \quad \text { and } \quad v=g_{1}^{m_{1}} \cdots g_{r}^{m_{r}}
$$

for all $n_{1}, \ldots, n_{s}, m_{1}, \ldots, m_{r}$?
If one restricts the polynomials to being defined over number fields, one can achieve uniformness, even in the more general case of

$$
\operatorname{gcd}\left(h_{1}\left(f_{1}^{n_{1}} \cdots f_{s}^{n_{s}}\right), h_{2}\left(g_{1}^{m_{1}} \cdots g_{r}^{m_{r}}\right)\right), \quad n_{i}, m_{j} \geq 0
$$

A.O. \& Shparlinski (2020)

Let $\Gamma \subseteq \overline{\mathbb{Q}}^{*}$ be a finitely generated group and $f_{1}, \ldots, f_{s}, g_{1}, \ldots, g_{r} \in \overline{\mathbb{Q}}[X]$ mult. indep. modulo Γ. Then there exists $H \in \overline{\mathbb{Q}}[X]$ such that for any monic $h_{1}, h_{2} \in \overline{\mathbb{Q}}[X]$ of fixed degree, with roots in Γ, one has

$$
\operatorname{gcd}\left(h_{1}\left(f_{1}^{n_{1}} \cdots f_{s}^{n_{s}}\right), h_{2}\left(g_{1}^{m_{1}} \cdots g_{r}^{m_{r}}\right)\right) \mid H .
$$

Considering the factorisations of h_{1} and h_{2} into linear factors, we reduce the problem to looking at

$$
\mathcal{D}_{\mathrm{n}, \mathrm{~m}}=\operatorname{gcd}\left(f_{1}^{n_{1}} \cdots f_{s}^{n_{s}}-\omega_{1}, g_{1}^{m_{1}} \cdots g_{r}^{m_{r}}-\omega_{2}\right)
$$

for any roots ω_{1} and ω_{2} of h_{1} and h_{2}, respectively, for any

$$
\mathbf{n}=\left(n_{1}, \ldots, n_{s}\right), \quad \mathbf{m}=\left(m_{1}, \ldots, m_{s}\right)
$$

A.O. \& Shparlinski (2020)

Let $\Gamma \subseteq \overline{\mathbb{Q}}^{*}$ be a finitely generated group and $f_{1}, \ldots, f_{s}, g_{1}, \ldots, g_{r} \in \overline{\mathbb{Q}}[X]$ mult. indep. modulo Γ. Then there exists $H \in \overline{\mathbb{Q}}[X]$ such that for any monic $h_{1}, h_{2} \in \overline{\mathbb{Q}}[X]$ of fixed degree, with roots in Γ, one has

$$
\operatorname{gcd}\left(h_{1}\left(f_{1}^{n_{1}} \cdots f_{s}^{n_{s}}\right), h_{2}\left(g_{1}^{m_{1}} \cdots g_{r}^{m_{r}}\right)\right) \mid H .
$$

Considering the factorisations of h_{1} and h_{2} into linear factors, we reduce the problem to looking at

$$
\mathcal{D}_{\mathbf{n}, \mathbf{m}}=\operatorname{gcd}\left(f_{1}^{n_{1}} \cdots f_{s}^{n_{s}}-\omega_{1}, g_{1}^{m_{1}} \cdots g_{r}^{m_{r}}-\omega_{2}\right)
$$

for any roots ω_{1} and ω_{2} of h_{1} and h_{2}, respectively, for any

$$
\mathbf{n}=\left(n_{1}, \ldots, n_{s}\right), \quad \mathbf{m}=\left(m_{1}, \ldots, m_{s}\right)
$$

A.O. \& Shparlinski (2020)

Let $\Gamma \subseteq \overline{\mathbb{Q}}^{*}$ be a finitely generated group and $f_{1}, \ldots, f_{s}, g_{1}, \ldots, g_{r} \in \overline{\mathbb{Q}}[X]$ mult. indep. modulo Γ. Then there exists $H \in \overline{\mathbb{Q}}[X]$ such that for any monic $h_{1}, h_{2} \in \overline{\mathbb{Q}}[X]$ of fixed degree, with roots in Γ, one has

$$
\operatorname{gcd}\left(h_{1}\left(f_{1}^{n_{1}} \cdots f_{s}^{n_{s}}\right), h_{2}\left(g_{1}^{m_{1}} \cdots g_{r}^{m_{r}}\right)\right) \mid H
$$

Considering the factorisations of h_{1} and h_{2} into linear factors, we reduce the problem to looking at

$$
\mathcal{D}_{\mathbf{n}, \mathbf{m}}=\operatorname{gcd}\left(f_{1}^{n_{1}} \cdots f_{s}^{n_{s}}-\omega_{1}, g_{1}^{m_{1}} \cdots g_{r}^{m_{r}}-\omega_{2}\right)
$$

for any roots ω_{1} and ω_{2} of h_{1} and h_{2}, respectively, for any

$$
\mathbf{n}=\left(n_{1}, \ldots, n_{s}\right), \quad \mathbf{m}=\left(m_{1}, \ldots, m_{s}\right) .
$$

Intersection of parametric curves with algebraic subgroups

Maurin (2008)

There are finitely many $\alpha \in \overline{\mathbb{Q}}$ such that

Controlling multiplicities via Mason's (1984) polynomial ABC

One can construct the polynomial $H_{\omega_{1}, \omega_{2}} \in \overline{\mathbb{Q}}[X]$ such that $\operatorname{gcd}\left(f_{1}^{n_{1}} \cdots f_{s}^{n_{s}}-\omega_{1}, g_{1}^{m_{1}} \cdots g_{r}^{m_{r}}-\omega_{2}\right) \mid H_{\omega_{1}, \omega_{2}}$.

```
Remark: If s=r=1, Bérczes, Evertse, Györy & Pontreau (2013):
``` \(h(\alpha),[\mathbb{K}(\alpha): \mathbb{K}]<_{f, \mathbb{K}, \Gamma} 1 \Longrightarrow\) We get an explicit bound for \(\operatorname{deg} H_{\omega}\)

\section*{Maurin (2008)}
\(\Downarrow\)

There are finitely many \(\alpha \in \overline{\mathbb{Q}}\) such that
\[
(X-\alpha) \mid \mathcal{D}_{\mathbf{n}, \mathbf{m}}=\operatorname{gcd}\left(f_{1}^{n_{1}} \cdots f_{s}^{n_{s}}-\omega_{1}, g_{1}^{m_{1}} \cdots g_{r}^{m_{r}}-\omega_{2}\right) .
\]

Controlling multiplicities via Mason's (1984) polynomial ABC

One can construct the polynomial \(H_{\omega_{1}, \omega_{2}} \in \overline{\mathbb{Q}}[X]\) such that

\section*{Maurin (2008)}
\(\Downarrow\)

There are finitely many \(\alpha \in \overline{\mathbb{Q}}\) such that
\[
(X-\alpha) \mid \mathcal{D}_{\mathbf{n}, \mathbf{m}}=\operatorname{gcd}\left(f_{1}^{n_{1}} \cdots f_{s}^{n_{s}}-\omega_{1}, g_{1}^{m_{1}} \cdots g_{r}^{m_{r}}-\omega_{2}\right) .
\]
\[
+
\]

Controlling multiplicities via Mason's (1984) polynomial ABC

One can construct the polynomial \(H_{\omega_{1}, \omega_{2}} \in \overline{\mathbb{Q}}[X]\) such that

\section*{Maurin (2008)}

There are finitely many \(\alpha \in \overline{\mathbb{Q}}\) such that
\[
(X-\alpha) \mid \mathcal{D}_{\mathbf{n}, \mathbf{m}}=\operatorname{gcd}\left(f_{1}^{n_{1}} \cdots f_{s}^{n_{s}}-\omega_{1}, g_{1}^{m_{1}} \cdots g_{r}^{m_{r}}-\omega_{2}\right) .
\]
\[
+
\]

Controlling multiplicities via Mason's (1984) polynomial ABC \(\Downarrow\)

One can construct the polynomial \(H_{\omega_{1}, \omega_{2}} \in \overline{\mathbb{Q}}[X]\) such that
\[
\operatorname{gcd}\left(f_{1}^{n_{1}} \cdots f_{s}^{n_{s}}-\omega_{1}, g_{1}^{m_{1}} \cdots g_{r}^{m_{r}}-\omega_{2}\right) \mid H_{\omega_{1}, \omega_{2}}
\]

\section*{Maurin (2008)}

There are finitely many \(\alpha \in \overline{\mathbb{Q}}\) such that
\[
(X-\alpha) \mid \mathcal{D}_{\mathbf{n}, \mathbf{m}}=\operatorname{gcd}\left(f_{1}^{n_{1}} \cdots f_{s}^{n_{s}}-\omega_{1}, g_{1}^{m_{1}} \cdots g_{r}^{m_{r}}-\omega_{2}\right) .
\]
\(+\)
Controlling multiplicities via Mason's (1984) polynomial ABC \(\Downarrow\)

One can construct the polynomial \(H_{\omega_{1}, \omega_{2}} \in \overline{\mathbb{Q}}[X]\) such that
\[
\operatorname{gcd}\left(f_{1}^{n_{1}} \cdots f_{s}^{n_{s}}-\omega_{1}, g_{1}^{m_{1}} \cdots g_{r}^{m_{r}}-\omega_{2}\right) \mid H_{\omega_{1}, \omega_{2}}
\]

Remark: If \(s=r=1\), Bérczes, Evertse, Györy \& Pontreau (2013): \(h(\alpha),[\mathbb{K}(\alpha): \mathbb{K}]<_{f, \mathbb{K}, \Gamma} 1 \Longrightarrow\) We get an explicit bound for \(\operatorname{deg} H_{\omega_{1}, \omega_{2}}\).

Levin \& Wang (2019): Let \(F, G \in \mathbb{C}\left[X_{1}, \ldots, X_{\ell}\right]\) be nonconstant and coprime, such that not both vanish at \(\mathbf{0} \in \mathbb{C}^{\ell}\). Let \(g_{1}, \ldots, g_{\ell} \in \mathbb{C}[X]\) be mult. indep. with constants. For any \(\varepsilon>0\), one has
\[
\operatorname{deg} \operatorname{gcd}\left(F\left(g_{1}^{k}, \ldots, g_{\ell}^{k}\right), G\left(g_{1}^{k}, \ldots, g_{\ell}^{k}\right)\right)<\varepsilon k
\]
provided that \(k\) is large enough.
Remarks

Levin \& Wang (2019): Let \(F, G \in \mathbb{C}\left[X_{1}, \ldots, X_{\ell}\right]\) be nonconstant and coprime, such that not both vanish at \(\mathbf{0} \in \mathbb{C}^{\ell}\). Let \(g_{1}, \ldots, g_{\ell} \in \mathbb{C}[X]\) be mult. indep. with constants. For any \(\varepsilon>0\), one has
\[
\operatorname{deg} \operatorname{gcd}\left(F\left(g_{1}^{k}, \ldots, g_{\ell}^{k}\right), G\left(g_{1}^{k}, \ldots, g_{\ell}^{k}\right)\right)<\varepsilon k
\]
provided that \(k\) is large enough.

\section*{Remarks:}
- If \(F=h_{1}\left(X_{1} \cdots X_{r}\right)\) and \(G=h_{2}\left(X_{r+1} \cdots X_{\ell}\right)\), then A.O. \& Shparlinski (2020) give a uniform bound independent of \(k\).
- The results of Levin \& Wang (2019) are more general, applying to meromorphic functions \(g_{1}, \ldots, g_{\ell}\), and they are based on Nevanlinna theory: \(\operatorname{gcd}=\) common zeros.
 recurrence sequence (LRS), and similarly \(G\), which brings us to

Levin \& Wang (2019): Let \(F, G \in \mathbb{C}\left[X_{1}, \ldots, X_{\ell}\right]\) be nonconstant and coprime, such that not both vanish at \(\mathbf{0} \in \mathbb{C}^{\ell}\). Let \(g_{1}, \ldots, g_{\ell} \in \mathbb{C}[X]\) be mult. indep. with constants. For any \(\varepsilon>0\), one has
\[
\operatorname{deg} \operatorname{gcd}\left(F\left(g_{1}^{k}, \ldots, g_{\ell}^{k}\right), G\left(g_{1}^{k}, \ldots, g_{\ell}^{k}\right)\right)<\varepsilon k
\]
provided that \(k\) is large enough.

\section*{Remarks:}
- If \(F=h_{1}\left(X_{1} \cdots X_{r}\right)\) and \(G=h_{2}\left(X_{r+1} \cdots X_{\ell}\right)\), then A.O. \& Shparlinski (2020) give a uniform bound independent of \(k\).
- The results of Levin \& Wang (2019) are more general, applying to meromorphic functions \(g_{1}, \ldots, g_{\ell}\), and they are based on Nevanlinna theory: gcd \(=\) common zeros.
recurrence sequence (LRS), and similarly \(G\), which brings us to

Levin \& Wang (2019): Let \(F, G \in \mathbb{C}\left[X_{1}, \ldots, X_{\ell}\right]\) be nonconstant and coprime, such that not both vanish at \(\mathbf{0} \in \mathbb{C}^{\ell}\). Let \(g_{1}, \ldots, g_{\ell} \in \mathbb{C}[X]\) be mult. indep. with constants. For any \(\varepsilon>0\), one has
\[
\operatorname{deg} \operatorname{gcd}\left(F\left(g_{1}^{k}, \ldots, g_{\ell}^{k}\right), G\left(g_{1}^{k}, \ldots, g_{\ell}^{k}\right)\right)<\varepsilon k
\]
provided that \(k\) is large enough.

\section*{Remarks:}
- If \(F=h_{1}\left(X_{1} \cdots X_{r}\right)\) and \(G=h_{2}\left(X_{r+1} \cdots X_{\ell}\right)\), then A.O. \& Shparlinski (2020) give a uniform bound independent of \(k\).
- The results of Levin \& Wang (2019) are more general, applying to meromorphic functions \(g_{1}, \ldots, g_{\ell}\), and they are based on Nevanlinna theory: gcd \(=\) common zeros.
- If \(F=\sum_{i=1}^{\ell} a_{i} X_{i}\) and \(G=\sum_{i=1}^{\ell} b_{i} Y_{i}\), then \(F\left(g_{1}^{k}, \ldots, g_{\ell}^{k}\right)\) is a linear recurrence sequence (LRS), and similarly \(G\), which brings us to ...

\section*{GCD of LRS}

Let \(\left(F_{n}\right)_{n=1}^{\infty},\left(G_{n}\right)_{n=1}^{\infty}\) be two simple LRS defined by
\[
F_{n}=\sum_{i=1}^{k} a_{i}(X) f_{i}(X)^{n}, \quad G_{n}=\sum_{i=1}^{\ell} b_{i}(X) g_{i}(X)^{n}, \quad n \geq 0
\]
where \(a_{i}, b_{i}, f_{i}, g_{i} \in \overline{\mathbb{Q}}[X]\).

\section*{Open Problem}

\section*{Show that, under some natural conditions,}

\section*{This would show that there are at most finitely many \(\alpha \in \overline{\mathbb{Q}}\) such that}

\section*{GCD of LRS}

Let \(\left(F_{n}\right)_{n=1}^{\infty},\left(G_{n}\right)_{n=1}^{\infty}\) be two simple LRS defined by
\[
F_{n}=\sum_{i=1}^{k} a_{i}(X) f_{i}(X)^{n}, \quad G_{n}=\sum_{i=1}^{\ell} b_{i}(X) g_{i}(X)^{n}, \quad n \geq 0
\]
where \(a_{i}, b_{i}, f_{i}, g_{i} \in \overline{\mathbb{Q}}[X]\).

\section*{Open Problem}

Show that, under some natural conditions,
\[
\#\left\{\alpha \in \overline{\mathbb{Q}}: F_{n}(\alpha)=G_{m}(\alpha)=0 \text { for some } n, m \geq 1\right\}<\infty
\]

This would show that there are at most finitely many \(\alpha \in \overline{\mathbb{Q}}\) such that
\[
(X-\alpha) \mid \operatorname{gcd}\left(F_{n}(X), G_{m}(X)\right) \quad \text { for some } n, m \geq 1
\]

\section*{GCD of LRS}

Let \(\left(F_{n}\right)_{n=1}^{\infty},\left(G_{n}\right)_{n=1}^{\infty}\) be two simple LRS defined by
\[
F_{n}=\sum_{i=1}^{k} a_{i}(X) f_{i}(X)^{n}, \quad G_{n}=\sum_{i=1}^{\ell} b_{i}(X) g_{i}(X)^{n}, \quad n \geq 0
\]
where \(a_{i}, b_{i}, f_{i}, g_{i} \in \overline{\mathbb{Q}}[X]\).

\section*{Open Problem}

Show that, under some natural conditions,
\[
\#\left\{\alpha \in \overline{\mathbb{Q}}: F_{n}(\alpha)=G_{m}(\alpha)=0 \text { for some } n, m \geq 1\right\}<\infty
\]

This would show that there are at most finitely many \(\alpha \in \overline{\mathbb{Q}}\) such that
\[
(X-\alpha) \mid \operatorname{gcd}\left(F_{n}(X), G_{m}(X)\right) \quad \text { for some } n, m \geq 1
\]

\section*{GCD of LRS}

Let \(\left(F_{n}\right)_{n=1}^{\infty},\left(G_{n}\right)_{n=1}^{\infty}\) be two simple LRS defined by
\[
F_{n}=\sum_{i=1}^{k} a_{i}(X) f_{i}(X)^{n}, \quad G_{n}=\sum_{i=1}^{\ell} b_{i}(X) g_{i}(X)^{n}, \quad n \geq 0
\]
where \(a_{i}, b_{i}, f_{i}, g_{i} \in \overline{\mathbb{Q}}[X]\).

\section*{Open Problem}

Show that, under some natural conditions,
\[
\#\left\{\alpha \in \overline{\mathbb{Q}}: F_{n}(\alpha)=G_{m}(\alpha)=0 \text { for some } n, m \geq 1\right\}<\infty
\]

This would show that there are at most finitely many \(\alpha \in \overline{\mathbb{Q}}\) such that
\[
(X-\alpha) \mid \operatorname{gcd}\left(F_{n}(X), G_{m}(X)\right) \quad \text { for some } n, m \geq 1
\]

What we really really want is to show, under some conditions, that
\[
\operatorname{deg} \operatorname{gcd}\left(F_{n}(X), G_{m}(X)\right) \ll 1 \quad \text { for all } n, m \geq 1
\]
which would be a uniform function field analogue of the results on gcd's of LRS over number fields.

If \(k=2\) this follows immediately from Bombieri, Masser \& Zannier (1999)
and our previous discussion.
If \(1 /\) > 2 . no results.

What we really really want is to show, under some conditions, that
\[
\operatorname{deg} \operatorname{gcd}\left(F_{n}(X), G_{m}(X)\right) \ll 1 \quad \text { for all } n, m \geq 1
\]
which would be a uniform function field analogue of the results on gcd's of LRS over number fields.

If \(k=2\) this follows immediately from Bombieri, Masser \& Zannier (1999) and our previous discussion.

If \(k>2\) : no results.

What we really really want is to show, under some conditions, that
\[
\operatorname{deg} \operatorname{gcd}\left(F_{n}(X), G_{m}(X)\right) \ll 1 \quad \text { for all } n, m \geq 1
\]
which would be a uniform function field analogue of the results on gcd's of LRS over number fields.

If \(k=2\) this follows immediately from Bombieri, Masser \& Zannier (1999) and our previous discussion.

If \(k>2\) : no results.

\section*{Skolem Problem}

A motivation for the above result comes also from:

\section*{Skolem Problem}

Given an \(\operatorname{LRS}\left\{u_{n}\right\}, n \geq 0\), defined over \(\mathbb{C}\), decide if there is \(n \geq 1\) such that \(u_{n}=0\).

Let us define
\[
\mathcal{S}\left(\left\{u_{n}\right\}\right)=\left\{n \in \mathbb{N}: u_{n}=0\right\} .
\]

\section*{Skolem-Mahler-Lech}

The set \(\mathcal{S}\left(\left\{u_{n}\right\}\right)\) is the union of finitely many arithmetic progressions and a finite set. If \(\left\{u_{n}\right\}\) is non-degenerate, then \(S\left(\left\{u_{n}\right\}\right)\) is finite.
(\(\left\{u_{n}\right\}\) is non-degenerate if the ratio of any two distinct roots of the characteristic polynomial is not a root of unity.)

\section*{Skolem Problem}

A motivation for the above result comes also from:

\section*{Skolem Problem}

Given an LRS \(\left\{u_{n}\right\}, n \geq 0\), defined over \(\mathbb{C}\), decide if there is \(n \geq 1\) such that \(u_{n}=0\).

Let us define
\[
\mathcal{S}\left(\left\{u_{n}\right\}\right)=\left\{n \in \mathbb{N}: u_{n}=0\right\} .
\]

\section*{Skolem-Mahler-Lech}

The set \(\mathcal{S}\left(\left\{u_{m}\right\}\right)\) is the union of finitely many arithmetic progressions and a finite set. If \(\left\{u_{n}\right\}\) is non-degenerate, then \(S\left(\left\{u_{n}\right\}\right)\) is finite.
(\(\left\{u_{n}\right\}\) is non-degenerate if the ratio of any two distinct roots of the characteristic polynomial is not a root of unity.)

\section*{Skolem Problem}

A motivation for the above result comes also from:

\section*{Skolem Problem}

Given an \(\operatorname{LRS}\left\{u_{n}\right\}, n \geq 0\), defined over \(\mathbb{C}\), decide if there is \(n \geq 1\) such that \(u_{n}=0\).

Let us define
\[
\mathcal{S}\left(\left\{u_{n}\right\}\right)=\left\{n \in \mathbb{N}: u_{n}=0\right\} .
\]

\section*{Skolem-Mahler-Lech}

The set \(\mathcal{S}\left(\left\{u_{n}\right\}\right)\) is the union of finitely many arithmetic progressions and a finite set. If \(\left\{u_{n}\right\}\) is non-degenerate, then \(S\left(\left\{u_{n}\right\}\right)\) is finite.
(\(\left\{u_{n}\right\}\) is non-degenerate if the ratio of any two distinct roots of the characteristic polynomial is not a root of unity.)

There are many results giving bounds for the number of arith. progressions or for \(\# \mathcal{S}\left(u_{n}\right)\) (when finite), including:
van der Poorten \& Schlickewei (1990), Schmidt (1999, 2000), Evertse, Schlickewei \& Schmidt (2002)

Amoroso \& Viada (2000): significantly (by an exponential) improved the previously known bounds.

Remark: All these bounds depend only on the order of \(\left\{u_{n}\right\}\)
There are also non-uniform bounds that depend on the characteristic roots of the non-degenerate LRS, e.g. van der Poorten \& Schlickewei (1991).

The Skolem Problem has been settled in the following cases:
Mignotte, Shorey \& Tijdeman (1981), Vereshchagin (1985), Chonev, Ouaknine \& Worrell (2016): LRS of orders 2, 3 and 4

Sha (2019): for simple LRS, of any order, with at most two dominant roots, gave explicit lower bound for \(N\) such that \(u_{n} \neq 0\) for all \(n>N\)

There are many results giving bounds for the number of arith. progressions or for \(\# \mathcal{S}\left(u_{n}\right)\) (when finite), including:
van der Poorten \& Schlickewei (1990), Schmidt (1999, 2000), Evertse, Schlickewei \& Schmidt (2002)

There are many results giving bounds for the number of arith. progressions or for \(\# \mathcal{S}\left(u_{n}\right)\) (when finite), including:
van der Poorten \& Schlickewei (1990), Schmidt (1999, 2000), Evertse, Schlickewei \& Schmidt (2002)

Amoroso \& Viada (2009): significantly (by an exponential) improved the previously known bounds.

There are many results giving bounds for the number of arith. progressions or for \(\# \mathcal{S}\left(u_{n}\right)\) (when finite), including:
van der Poorten \& Schlickewei (1990), Schmidt (1999, 2000), Evertse, Schlickewei \& Schmidt (2002)

Amoroso \& Viada (2009): significantly (by an exponential) improved the previously known bounds.

Remark: All these bounds depend only on the order of \(\left\{u_{n}\right\}\).

There are many results giving bounds for the number of arith. progressions or for \(\# \mathcal{S}\left(u_{n}\right)\) (when finite), including:
van der Poorten \& Schlickewei (1990), Schmidt (1999, 2000), Evertse, Schlickewei \& Schmidt (2002)

Amoroso \& Viada (2009): significantly (by an exponential) improved the previously known bounds.

Remark: All these bounds depend only on the order of \(\left\{u_{n}\right\}\).
There are also non-uniform bounds that depend on the characteristic roots of the non-degenerate LRS, e.g. van der Poorten \& Schlickewei (1991).

The Skolem Problem has been settled in the following cases:
Mignotte, Shorey \& Tijdeman (1984), Vereshchagin (1985), Chonev, Ouaknine \& Worrell (2016): LRS of orders 2, 3 and 4 Sha (2019): for simple LRS, of any order, with at most two dominant roots, gave explicit lower bound for \(N\) such that \(u_{n} \neq 0\) for all \(n>N\)

There are many results giving bounds for the number of arith. progressions or for \(\# \mathcal{S}\left(u_{n}\right)\) (when finite), including:
van der Poorten \& Schlickewei (1990), Schmidt (1999, 2000), Evertse, Schlickewei \& Schmidt (2002)

Amoroso \& Viada (2009): significantly (by an exponential) improved the previously known bounds.

Remark: All these bounds depend only on the order of \(\left\{u_{n}\right\}\).
There are also non-uniform bounds that depend on the characteristic roots of the non-degenerate LRS, e.g. van der Poorten \& Schlickewei (1991).

The Skolem Problem has been settled in the following cases:
Mignotte, Shorey \& Tijdeman (1984), Vereshchagin (1985), Chonev,
Ouaknine \& Worrell (2016): LRS of orders 2, 3 and 4
Sha (2019): for simple LRS, of any order, with at most two dominant roots, gave explicit lower bound for \(N\) such that \(u_{n} \neq 0\) for all \(n>N\)

There are many results giving bounds for the number of arith. progressions or for \(\# \mathcal{S}\left(u_{n}\right)\) (when finite), including:
van der Poorten \& Schlickewei (1990), Schmidt (1999, 2000), Evertse, Schlickewei \& Schmidt (2002)

Amoroso \& Viada (2009): significantly (by an exponential) improved the previously known bounds.

Remark: All these bounds depend only on the order of \(\left\{u_{n}\right\}\).
There are also non-uniform bounds that depend on the characteristic roots of the non-degenerate LRS, e.g. van der Poorten \& Schlickewei (1991).

The Skolem Problem has been settled in the following cases:
Mignotte, Shorey \& Tijdeman (1984), Vereshchagin (1985), Chonev, Ouaknine \& Worrell (2016): LRS of orders 2, 3 and 4

Sha (2019): for simple LRS, of any order, with at most two dominant roots, gave explicit lower bound for \(N\) such that \(u_{n} \neq 0\) for all \(n>N\)

There are many results giving bounds for the number of arith. progressions or for \(\# \mathcal{S}\left(u_{n}\right)\) (when finite), including:
van der Poorten \& Schlickewei (1990), Schmidt (1999, 2000), Evertse, Schlickewei \& Schmidt (2002)

Amoroso \& Viada (2009): significantly (by an exponential) improved the previously known bounds.

Remark: All these bounds depend only on the order of \(\left\{u_{n}\right\}\).
There are also non-uniform bounds that depend on the characteristic roots of the non-degenerate LRS, e.g. van der Poorten \& Schlickewei (1991).

The Skolem Problem has been settled in the following cases:
Mignotte, Shorey \& Tijdeman (1984), Vereshchagin (1985), Chonev, Ouaknine \& Worrell (2016): LRS of orders 2, 3 and 4

Sha (2019): for simple LRS, of any order, with at most two dominant roots, gave explicit lower bound for \(N\) such that \(u_{n} \neq 0\) for all \(n>N\).

\section*{Universal Skolem Sets}

Instead of imposing restrictions on the LRS (eg, order, dominance of roots, etc), one can restrict the domain of search to so-caled:

\section*{Definition (Universal Skolem Set)}

An infinite set \(\mathcal{T} \subseteq \mathbb{N}\) is a Universal Skolem Set if there is an effective procedure that given an \(L R S\), decides if it has a zero \(n \in \mathcal{T}\).

Luca, Ouaknine \& Worrell (2022)
- Let

Then the set \(\mathcal{T}=\left\{s_{n}: n \in \mathbb{N}\right\}\) is a Universal Skolem Set. However, this is a sparse set of density zero.
- More involved construction of a Universal Skolem Set which is of positive lower density, and conditionally on some assumptions on the distributions of primes, they prove this set if of density 1

\section*{Universal Skolem Sets}

Instead of imposing restrictions on the LRS (eg, order, dominance of roots, etc), one can restrict the domain of search to so-caled:

\section*{Definition (Universal Skolem Set)}

An infinite set \(\mathcal{T} \subseteq \mathbb{N}\) is a Universal Skolem Set if there is an effective procedure that given an \(L R S\), decides if it has a zero \(n \in \mathcal{T}\).

Luca, Ouaknine \& Worrell (2022):
- Let
\[
s_{0}=1, \quad s_{n}=n!+s_{\lfloor\sqrt{\log n}\rfloor}, \quad n>0
\]

Then the set \(\mathcal{T}=\left\{s_{n}: n \in \mathbb{N}\right\}\) is a Universal Skolem Set. However, this is a sparse set of density zero.
- More involved construction of a Universal Skolem Set which is of positive lower density, and conditionally on some assumptions on the distributions of primes, they prove this set if of density 1

\section*{Universal Skolem Sets}

Instead of imposing restrictions on the LRS (eg, order, dominance of roots, etc), one can restrict the domain of search to so-caled:

\section*{Definition (Universal Skolem Set)}

An infinite set \(\mathcal{T} \subseteq \mathbb{N}\) is a Universal Skolem Set if there is an effective procedure that given an LRS, decides if it has a zero \(n \in \mathcal{T}\).

Luca, Ouaknine \& Worrell (2022):
- Let
\[
s_{0}=1, \quad s_{n}=n!+s_{\lfloor\sqrt{\log n}\rfloor}, \quad n>0
\]

Then the set \(\mathcal{T}=\left\{s_{n}: n \in \mathbb{N}\right\}\) is a Universal Skolem Set. However, this is a sparse set of density zero.
- More involved construction of a Universal Skolem Set which is of positive lower density, and conditionally on some assumptions on the distributions of primes, they prove this set if of density 1.

\section*{Skolem Problem for specialisations of LRS}

Let
\[
\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right), \mathbf{f}=\left(f_{1}, \ldots, f_{k}\right) \in \overline{\mathbb{Q}}(X)^{k}
\]
and consider the linear recurrence sequences as above
\[
F_{n}(X)=\sum_{i=1}^{k} a_{i}(X) f_{i}(X)^{n}, \quad n \geq 0
\]

We give a bound for the largest zero in (all but a set of bounded height of) specialisations of \(F_{n}(X), n \geq 1\)

Skolem Problem is effectively decidable for specialisations as above.
Remark: The Skolem Problem is settled over functions fields by Fuchs \& Pethö (2005).

\section*{Skolem Problem for specialisations of LRS}

Let
\[
\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right), \mathbf{f}=\left(f_{1}, \ldots, f_{k}\right) \in \overline{\mathbb{Q}}(X)^{k}
\]
and consider the linear recurrence sequences as above
\[
F_{n}(X)=\sum_{i=1}^{k} a_{i}(X) f_{i}(X)^{n}, \quad n \geq 0
\]

We give a bound for the largest zero in (all but a set of bounded height of) specialisations of \(F_{n}(X), n \geq 1\).
\[
\Downarrow
\]

Skolem Problem is effectively decidable for specialisations as above.

\section*{Skolem Problem for specialisations of LRS}

Let
\[
\mathbf{a}=\left(a_{1}, \ldots, a_{k}\right), \mathbf{f}=\left(f_{1}, \ldots, f_{k}\right) \in \overline{\mathbb{Q}}(X)^{k}
\]
and consider the linear recurrence sequences as above
\[
F_{n}(X)=\sum_{i=1}^{k} a_{i}(X) f_{i}(X)^{n}, \quad n \geq 0
\]

We give a bound for the largest zero in (all but a set of bounded height of) specialisations of \(F_{n}(X), n \geq 1\).

Skolem Problem is effectively decidable for specialisations as above.
Remark: The Skolem Problem is settled over functions fields by Fuchs \& Pethö (2005).

\section*{Bound on the zeros}

We define the set
\(\mathcal{E}_{\mathbf{a}, \mathbf{f}}=\left\{\alpha \in \overline{\mathbb{Q}}: f_{i}(\alpha) / f_{j}(\alpha)\right.\) is a root of unity for some \(1 \leq i<j \leq k\) or \(a_{i}(\alpha)=0\) or \(f_{i}(\alpha)=0\) for some \(\left.1 \leq i \leq k\right\}\).

\section*{A.O. \& Shparlinski (2020)}

Let \(a_{i}, f_{i} \in \overline{\mathbb{Q}}(Z), i=1, \ldots, k\), be nonzero of degree at most \(d\) such that \(f_{i} / f_{j}\) is non-constant for any \(1 \leq i<j \leq k\). Assume that for any \(1 \leq r<s<t \leq k\), the pairs \(\left(f_{s} / f_{r}, f_{t} / f_{r}\right)\) are "non-exceptional". For all but at most \(d^{2} k^{3}\) elements \(\alpha \in \overline{\mathbb{Q}} \backslash \mathcal{E}_{\mathbf{a}, \mathrm{f}}\) any zero \(n \in \mathbb{N}\) of the equation
\[
F_{n}(\alpha)=0
\]
satisfies
\[
n \leq \exp \left(C D_{\alpha}^{4}\right)
\]
where \(D_{\alpha}=\) degree of the smallest Galois field \(\mathbb{K}\) with \(\alpha \in \mathbb{K}\) and \(C=C\left(a_{i}, f_{i}\right)\).

\section*{Application}

\section*{A.O. \& Shparlinski (2020)}

Let \(a_{i}, f_{i} \in \overline{\mathbb{Q}}[X], i=1, \ldots, k\), be as above and such that \(\operatorname{gcd}\left(a_{1} f_{1}, \ldots, a_{k} f_{k}\right)=1\). Then the splitting field \(\mathbb{L}_{n}\) of the polynomial
\[
F_{n}(X)=\sum_{i=1}^{k} a_{i} f_{i}^{n}
\]
is of degree
\[
\left[\mathbb{L}_{n}: \mathbb{Q}\right] \geq c_{0}(\log n)^{1 / 4}
\]
where \(c_{0}\) is an effective constant depending only on \(a_{1}, f_{1}, \ldots, a_{k}, f_{k}\).

Remark: Apart form a finite set of polynomials, the degrees of the irreducible factors over \(\mathbb{Q}\) of \(F_{n}\) tends to \(\infty\).

This is an explicit version of

given by Amoroso, Masser \& Zannier (2017).

\section*{Application}

\section*{A.O. \& Shparlinski (2020)}

Let \(a_{i}, f_{i} \in \overline{\mathbb{Q}}[X], i=1, \ldots, k\), be as above and such that \(\operatorname{gcd}\left(a_{1} f_{1}, \ldots, a_{k} f_{k}\right)=1\). Then the splitting field \(\mathbb{L}_{n}\) of the polynomial
\[
F_{n}(X)=\sum_{i=1}^{k} a_{i} f_{i}^{n}
\]
is of degree
\[
\left[\mathbb{L}_{n}: \mathbb{Q}\right] \geq c_{0}(\log n)^{1 / 4}
\]
where \(c_{0}\) is an effective constant depending only on \(a_{1}, f_{1}, \ldots, a_{k}, f_{k}\).

Remark: Apart form a finite set of polynomials, the degrees of the irreducible factors over \(\mathbb{Q}\) of \(F_{n}\) tends to \(\infty\).

This is an explicit version of
\[
\left[\mathbb{L}_{n}: \mathbb{Q}\right] \rightarrow \infty, \quad \text { as } n \rightarrow \infty,
\]
given by Amoroso, Masser \& Zannier (2017).

\section*{Main tools}

Let \(\alpha \in \overline{\mathbb{Q}} \backslash \mathcal{E}_{\mathbf{a}, \mathrm{f}}\) such that \(F_{n}(\alpha)=\sum_{i=1}^{k} a_{i}(\alpha) f_{i}(\alpha)^{n}=0\).
- The characteristic roots \(f_{i}(\alpha)\) with
\[
\left|f_{i}(\alpha)\right|=\max \left\{\left|f_{1}(\alpha)\right|, \ldots,\left|f_{k}(\alpha)\right|\right\}
\]

\section*{are called dominant roots.}
- If one has only one dominant root, it is easy to bound \(n\) as above.
- If one has only two dominant roots: we use Sha \((2019) \Longrightarrow\) \(n \leq \exp \left(C D_{\alpha}^{4}(h(\alpha)+1)\right)\).
- Amoroso, Masser \& Zannier (2017): the set of \(\alpha \in \mathbb{Q}\) as above is a set of bounded Weil height \(\Longrightarrow n \leq \exp \left(C D_{\alpha}^{4}\right)\)

\section*{Main tools}

Let \(\alpha \in \overline{\mathbb{Q}} \backslash \mathcal{E}_{\mathbf{a}, \mathbf{f}}\) such that \(F_{n}(\alpha)=\sum_{i=1}^{k} a_{i}(\alpha) f_{i}(\alpha)^{n}=0\).
- The characteristic roots \(f_{i}(\alpha)\) with
\[
\left|f_{i}(\alpha)\right|=\max \left\{\left|f_{1}(\alpha)\right|, \ldots,\left|f_{k}(\alpha)\right|\right\}
\]
are called dominant roots.
- If one has only one dominant root, it is easy to bound \(n\) as above.
- If one has only two dominant roots: we use Sha (2019) \(\Longrightarrow\) \(n \leq \exp \left(C D_{\alpha}^{4}(h(\alpha)+1)\right)\).
- Amoroso, Masser \& Zannier (2017): the set of \(\alpha \in \overline{\mathbb{Q}}\) as above is a set of bounded Weil height \(\Longrightarrow n \leq \exp \left(C D_{\alpha}^{4}\right)\)

\section*{Main tools}

Let \(\alpha \in \overline{\mathbb{Q}} \backslash \mathcal{E}_{\mathbf{a}, \mathbf{f}}\) such that \(F_{n}(\alpha)=\sum_{i=1}^{k} a_{i}(\alpha) f_{i}(\alpha)^{n}=0\).
- The characteristic roots \(f_{i}(\alpha)\) with
\[
\left|f_{i}(\alpha)\right|=\max \left\{\left|f_{1}(\alpha)\right|, \ldots,\left|f_{k}(\alpha)\right|\right\}
\]
are called dominant roots.
- If one has only one dominant root, it is easy to bound \(n\) as above.
- If one has only two dominant roots: we use Sha \((2019) \Longrightarrow\) \(n \leq \exp \left(C D_{\alpha}^{4}(h(\alpha)+1)\right)\)
- Amoroso, Masser \& Zannier (2017): the set of \(\alpha \in \mathbb{Q}\) as above is a set of bounded Weil height \(\Longrightarrow n \leq \exp \left(C D_{\alpha}^{4}\right)\)

\section*{Main tools}

Let \(\alpha \in \overline{\mathbb{Q}} \backslash \mathcal{E}_{\mathbf{a}, \mathbf{f}}\) such that \(F_{n}(\alpha)=\sum_{i=1}^{k} a_{i}(\alpha) f_{i}(\alpha)^{n}=0\).
- The characteristic roots \(f_{i}(\alpha)\) with
\[
\left|f_{i}(\alpha)\right|=\max \left\{\left|f_{1}(\alpha)\right|, \ldots,\left|f_{k}(\alpha)\right|\right\}
\]
are called dominant roots.
- If one has only one dominant root, it is easy to bound \(n\) as above.
- If one has only two dominant roots: we use Sha (2019) \(\Longrightarrow\) \(n \leq \exp \left(C D_{\alpha}^{4}(h(\alpha)+1)\right)\).
- Amoroso, Masser \& Zannier (2017): the set of \(\alpha \in \overline{\mathbb{Q}}\) as above is a set of bounded Weil height \(\Longrightarrow n \leq \exp \left(C D_{\alpha}^{4}\right)\)

\section*{Main tools}

Let \(\alpha \in \overline{\mathbb{Q}} \backslash \mathcal{E}_{\mathbf{a}, \mathrm{f}}\) such that \(F_{n}(\alpha)=\sum_{i=1}^{k} a_{i}(\alpha) f_{i}(\alpha)^{n}=0\).
- The characteristic roots \(f_{i}(\alpha)\) with
\[
\left|f_{i}(\alpha)\right|=\max \left\{\left|f_{1}(\alpha)\right|, \ldots,\left|f_{k}(\alpha)\right|\right\}
\]
are called dominant roots.
- If one has only one dominant root, it is easy to bound \(n\) as above.
- If one has only two dominant roots: we use Sha (2019) \(\Longrightarrow\) \(n \leq \exp \left(C D_{\alpha}^{4}(h(\alpha)+1)\right)\).
- Amoroso, Masser \& Zannier (2017): the set of \(\alpha \in \overline{\mathbb{Q}}\) as above is a set of bounded Weil height \(\Longrightarrow n \leq \exp \left(C D_{\alpha}^{4}\right)\).

\section*{At least three dominant roots}

This means: \(\left|f_{r}(\alpha)\right|=\left|f_{s}(\alpha)\right|=\left|f_{t}(\alpha)\right|\) for some \(1 \leq r<s<t \leq k\), or equivalently,
\[
\frac{\left|f_{s}(\alpha)\right|}{\left|f_{r}(\alpha)\right|}=\frac{\left|f_{t}(\alpha)\right|}{\left|f_{r}(\alpha)\right|}=1 .
\]

Unimodular points on plane curves

\section*{Pakovich \& Shparlinski (2020) \\ Let \(\left(f_{1}(X), f_{2}(X)\right) \in \mathbb{C}(X)\) be of degrees \(n_{1}\) and \(n_{2}\), respectively. Then \\ }
unless \(\left(f_{1}(X), f_{2}(X)\right)\) is "exceptional"

\section*{At least three dominant roots}

This means: \(\left|f_{r}(\alpha)\right|=\left|f_{s}(\alpha)\right|=\left|f_{t}(\alpha)\right|\) for some \(1 \leq r<s<t \leq k\), or equivalently,
\[
\frac{\left|f_{s}(\alpha)\right|}{\left|f_{r}(\alpha)\right|}=\frac{\left|f_{t}(\alpha)\right|}{\left|f_{r}(\alpha)\right|}=1 .
\]

介

Unimodular points on plane curves

\section*{Pakovich \& Shparlinski (2020) \\ Let \(\left(f_{1}(X), f_{2}(X)\right) \in \mathbb{C}(X)\) be of degrees \(n_{1}\) and \(n_{2}\), respectively. Then \(\#\left\{\alpha \in \mathbb{C}:\left|f_{1}(\alpha)\right|=\left|f_{2}(\alpha)\right|=1\right\} \leq\left(\operatorname{deg} f_{1}+\operatorname{deg} f_{2}\right)^{2}\),}
\(\square\)

\section*{At least three dominant roots}

This means: \(\left|f_{r}(\alpha)\right|=\left|f_{s}(\alpha)\right|=\left|f_{t}(\alpha)\right|\) for some \(1 \leq r<s<t \leq k\), or equivalently,
\[
\frac{\left|f_{s}(\alpha)\right|}{\left|f_{r}(\alpha)\right|}=\frac{\left|f_{t}(\alpha)\right|}{\left|f_{r}(\alpha)\right|}=1 .
\]
\(\Uparrow\)

Unimodular points on plane curves

\section*{Pakovich \& Shparlinski (2020)}

Let \(\left(f_{1}(X), f_{2}(X)\right) \in \mathbb{C}(X)\) be of degrees \(n_{1}\) and \(n_{2}\), respectively. Then
\[
\#\left\{\alpha \in \mathbb{C}:\left|f_{1}(\alpha)\right|=\left|f_{2}(\alpha)\right|=1\right\} \leq\left(\operatorname{deg} f_{1}+\operatorname{deg} f_{2}\right)^{2}
\]
unless \(\left(f_{1}(X), f_{2}(X)\right)\) is "exceptional".

\section*{Questions}
- Uniform bound: We would like to obtain a bound which is independent of \(\alpha\), when \(\alpha\) is restricted to special subsets of \(\overline{\mathbb{Q}}\), such as the set of all roots of unity. This in particular would imply that the set
\[
\left\{\alpha \in \overline{\mathbb{Q}}: \alpha^{n}=1, F_{m}(\alpha)=0 \text { for some } n, m \geq 1\right\}
\]
is finite.
\[
\operatorname{deg} \operatorname{gcd}\left(X^{n}-1, F_{m}(X)\right) \ll 1 \quad \text { for all } n, m \geq 1
\]

More generally, one can ask about the finiteness of the set
\[
\left\{\alpha \in \mathbb{K}^{c}: F_{n}(\alpha)=0 \text { for some } n \geq 1\right\}
\]
where \(\mathbb{K}^{c}\) is the cyclotomic closure of \(\mathbb{K}\) (one achieves this in the multiplicative case - O., Sha, Shparlinski \& Zannier (2019)).
- Generalisation to \(S\)-unit equations: Let \(\Gamma\) be a finitely generated subgroup of \(\overline{\mathbb{Q}}(X)\) and fix \(a_{1}, \ldots, a_{k} \in \overline{\mathbb{Q}}(X)\).

Amoroso, Masser \& Zannier (2017): for any \(u_{1}, \ldots, u_{k} \in \Gamma\) such that
\[
u_{i} / u_{j} \notin \overline{\mathbb{Q}}, \quad 1 \leq i<j \leq k, \quad \text { and } \quad \sum_{i=1}^{k} a_{i} u_{i} \neq 0
\]
the set
\[
\mathcal{S}\left(a_{1}, \ldots, a_{k} ; \Gamma\right)=\left\{\alpha \in \overline{\mathbb{Q}}: \sum_{i=1}^{k} a_{i}(\alpha) u_{i}(\alpha)=0\right\}
\]
is of bounded height (depending only on \(a_{1}, \ldots, a_{k}\) and \(\Gamma\)).
A solution \(\alpha \in \mathcal{S}\left(a_{1}, \ldots, a_{k} ; \Gamma\right)\) is called primitive if \(u_{i}(\alpha)=1\) for some \(i=1, \ldots, k\).

Is it true, under some natural conditions on \(\Gamma\), that outside of a set of \(\alpha \in \overline{\mathbb{Q}}\) of bounded height for every primitive \(\alpha \in \mathcal{S}\left(a_{1}, \ldots, a_{k} ; \Gamma\right)\), \(\max _{i=1, \ldots, k} \operatorname{deg} u_{i}(\alpha)\) is bounded only in terms of the degree \([\mathbb{Q}(\alpha): \mathbb{Q}]\), the coefficients \(a_{1}, \ldots, a_{k}\) and the generators of \(\Gamma\) ?```

