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Motivation

Outline some recent results motivated by the following

Basic Question:
Given a, b ∈ Z, a, b ≥ 2, what can one say about

gcd (an − 1, bn − 1)

and in particular prove that an − 1 and bn − 1 are coprime for
infinitely many n.

Bugeaud, Corvaja & Zannier (2003): Let a, b ∈ Z, a, b ≥ 2, be
multiplicatively independent in Q∗, and let ε > 0. For sufficiently large n,

log gcd (an − 1, bn − 1) ≤ εn.
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In this talk we discuss the function field case, where the Basic Question
becomes: for f, g ∈ C[X], give upper bounds for

deg gcd (fn − 1, gn − 1) .

More generally, let (Fn)n≥1, (Gm)m≥1 be two interesting sequences of
polynomials in C[X]. We want uniform bounds for

deg gcd(Fn(X), Gm(X)) for all n,m ≥ 1.

Some examples include:

1 Fn = F (fn1 , . . . , f
n
` ), Gm = G(gm1 , . . . , g

m
` ), where

F,G ∈ C[X1, . . . , X`], fi, gj ∈ C[X].
2 (Fn), (Gm) are two linear recurrence sequences (LRS).
3 Fn = f (n) − c, Gm = g(m) − c, where f, g, c ∈ C[X], and

f (n)(X) := f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n copies

(X).

4 Combinations of the above, e.g., Fn = Xn − 1, Gm = f (m) − 1.
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Some of these GCD problems are intimately related to unlikely
intersection problems for parametric curves, such as, intersection of
curves with:

torsion points (= roots of unity);

division groups;

algebraic subgroups of Gn
m.

Alina Ostafe (UNSW) 4 / 37



Why are we interested?

These problems are just simply beautiful!

They also naturally appear in various algorithmic/cryptographic
applications. For example,

Sorenson & Webster (2017): finding strong pseudoprimes to several
bases simultaneously.

Luca & Shparlinski (2005): Lower bounds on

exponents of the group of points,
embedding degree,

of elliptic curves over high degree extensions of finite fields; both are
related to cryptography.

Links to the theory of exponential Diophantine equations, such as
Fm = Gn for two linear recurrence sequences and to the Skolem
Problem.
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Chang (2013) (plane curves), improving Voloch (2007, 2010), and
Chang, Kerr, Shparlinski and Zannier (2014) (algebraic varieties):
lower bounds for the order of points on curves or higher dimensional
varieties over Fp, as steps toward Poonen’s Conjecture.

Such bounds also lead to explicit constructions of elements of finite
fields of high order.

Some of the above results and ideas have been used by Bourgain,
Gamburd & Sarnak (2016) to describe the structure of solutions of
the Markoff equation in reductions modulo sufficiently large primes.
Building on these results Chen (2021) has essentially completed this
characterisation.

⇓

Fuchs, Lauter, Litman & Tran (2021): Markoff equation based
cryptographic hash function.

. . .
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Notation and Formal Set Up

α1, . . . , αs ∈ C∗ are multiplicatively independent (mult. indep.) if

αk11 · · ·α
ks
s 6= 1 ∀(k1, . . . , ks) ∈ Zs \ {0}.

Otherwise α1, . . . , αs are multiplicatively dependent (mult. dep.).

f1, . . . , fs ∈ C(X) are mult. indep. with constants if

fk11 · · · f
ks
s 6∈ C∗ ∀(k1, . . . , ks) ∈ Zs \ {0}.

Gn
m = (C∗)n the n-dimensional torus

(ω1, . . . , ωn) ∈ Gn
m is called torsion point if all ωi are roots of unity.
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Some unlikely intersection problems
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Underlying problem: Torsion points on plane curves

At the heart of the function field case, stays the following result
conjectured by Lang and proved by Ihara, Serre & Tate (1960s):

Let H(X,Y ) ∈ C[X,Y ] be irreducible, not of the form Xi − ρY j or
XiY j − ρ with a root of unity ρ. Then the curve H(X,Y ) = 0 has only
finitely many torsion points (ζ1, ζ2).

Beukers & Smyth (2002): bound for the number of torsion points
Corvaja & Zannier (2008): bound for maximal order of torsion points

Remark: Since the orders are bounded we can effectively find all such
points.

Reformulation of Lang’s problem for plane rational curves: Let
f, g ∈ C(X) be mult. indep. Then there are at most finitely many α ∈ C
such that

f(α)k = g(α)` = 1 for some k, ` ≥ 1.
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Unimodular points on rational curves

Instead of looking only at roots of unity, one can ask more generally about
finiteness of α ∈ C such that

|f(α)| = |g(α)| = 1.

Corvaja, Masser & Zannier (2013): finiteness result for f(x) = x,
g ∈ C[x].

Pakovich & Shparlinski (2020)

Let f, g ∈ C(x). Then one has

#{α ∈ C : |f(α)| = |g(α)| = 1} ≤ (deg f + deg g)2,

unless f and g are special (defined in terms of Blaschke products).

Remark 1: If f, g ∈ C[X], then

special = f and g are mult. dep.

Remark 2: Writing α = a+ ib we obtain a system of two equations in a
and b. Hence once we know the finiteness of solutions we can effectively
find them all.
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Intersection of curves with algebraic subgroups

Bombieri, Masser & Zannier (1999)

Let f1, . . . , fs ∈ Q(X) be mult. indep. with constants. Then

Sf1,...,fs(Q) = {α ∈ Q : f1(α), . . . , fs(α) are mult. dep.}

is a set of bounded Weil height.

Remarks:

Sf1,...,fs(Q) is an infinite set.

The proof is effective and gives explicit bound for the height.

The condition on f1, . . . , fs being mult. indep. with constants is
necessary, that is, it is not enough to be just mult. indep.

Example: Let f1(X) = 2X, f2(X) = X2. Then f1, f2 are mult. indep.,
but there are infinitely many dependent values (2m+1, 22m) for which the
height is unbounded as m→∞.
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Achieving finiteness

Maurin (2008)

Let f1, . . . , fs ∈ Q(X) be mult. indep. Then there are at most finitely
many α ∈ Q such that

f1(α)a1 · · · fs(α)as = f1(α)b1 · · · fs(α)bs = 1

for some linearly independent vectors (a1, . . . , as), (b1, . . . , bs) ∈ Zs.

Bombieri, Masser & Zannier (1999, 2003): Proved this conclusion under
the assumption that f1, . . . , fs ∈ Q(X) are being mult. indep. modulo
constants, and then extended their result to C.

Bombieri, Habegger, Masser & Zannier (2010): gave a different proof
(which is also effective) of Maurin’s result.
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Bombieri, Habegger, Masser & Zannier (2010): gave a different proof
(which is also effective) of Maurin’s result.
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Corollary: Let Γ be a finitely generated subgroup of Q∗ and

f1, . . . , fs ∈ Q(X) mult. indep. modulo Γ. Then there are at most
finitely many α ∈ Q such that

f1(α)a1 · · · fs(α)as , f1(α)b1 · · · fs(α)bs ∈ Γ

for some linearly independent vectors

(a1, . . . , as), (b1, . . . , bs) ∈ Zs.
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Bounded height for zeros of polynomial recurrences

As a direct consequence of a more general result:

Amoroso, Masser & Zannier (2017)

Let ai, fi ∈ Q(X), i = 1, . . . , k, be nonzero rational functions such that
fs/fr is non-constant for any 1 ≤ r < s ≤ k. There exists an effectively
computable constant C, which depends on a1, . . . , ak, f1, . . . , fk such that
if for any n ≥ C and any α ∈ Q one has

Fn(α) =

k∑
i=1

ai(α)fi(α)n = 0,

then
h(α) ≤ C.
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Remarks:

If ai, fi ∈ Q[X], for every given D there are only finitely many monic
h ∈ Q[X] of degree D such that h | Fn for some n (if Fn(X) 6= 0).

If ai ∈ Q, then this is an instance of unlikely intersection, that is, we
look at points P on a parametric curve such that [n]P ∈ V , where V
is a hyperplane.

Kulkarni, Mavraki & Nguyen (2015): obtained a result of similar flavour.

Open Problem

Let

Fn =

k∑
i=1

ai(X)fi(X)n, Gn =
∑̀
i=1

bi(X)gi(X)n, n ≥ 0,

where ai, bi, fi, gi ∈ Q[X]. Show that, under some natural conditions,

#{α ∈ Q : Fn(α) = Gm(α) = 0 for some n,m ≥ 1} <∞.
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GCD problems in function fields
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gcd(fn − 1, gn − 1) over C

Ailon & Rudnick (2004)

Let f, g ∈ C[X] be mult. indep. over C(X). For all n ≥ 1, there exists
h ∈ C[X] such that

gcd(fn − 1, gn − 1) | h.
If in addition,

gcd(f − 1, g − 1) = 1,

then there is a finite union of arithmetic progressions ∪diN, di ≥ 2, such
that for n outside these progressions,

gcd(fn − 1, gn − 1) = 1.

⇑
Torsion points on plane curves

Remark: By Beukers & Smyth (2002):

deg h ≤
(
11(deg f + deg g)2

)min(deg f,deg g)
.
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Let S ⊂ C be a finite set and let u, v ∈ C(X) be mult. indep. rational
functions with all their zeroes and poles in S.

Corvaja & Zannier (2008):

deg gcd(u− 1, v − 1)�S max(deg u,deg v)2/3.

If we take f, g ∈ C[X] mult. indep., and u = fn, v = gn, then one gets

deg gcd(fn − 1, gn − 1)� n2/3

which improves the trivial bound � n.

Remark: Although apparently weaker, one can still recover the
Ailon-Rudnick result from this bound (when f, g ∈ Q[X]).
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gcd(fn − 1, gn − 1) over Fq
The exact analogue of the Ailon-Rudnick result does not hold over Fq.

Let f, g ∈ Fq[X] nonconstant polynomials.

In this case, one needs to impose more restrictions on n as, for example,

gcd
(
fnp

k − 1, gnp
k − 1

)
= gcd (fn − 1, gn − 1)p

k

.

However, Silverman (2004) has observed that even forbidding cheating
with powers of p does not save us.

Example: Silverman (2004)

Let f(X) = X, g(X) = X + 1 and n = pk − 1. Then

deg gcd (fn − 1, gn − 1) = n− 1

since any α ∈ Fpk \ {0,−1} is a root.
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More generally, we have:

Silverman (2004): for any nonconstant polynomials f, g ∈ Fq[X], there
exists a constant c = c(f, g) > 0 such that for infinitely many n,

deg gcd (fn − 1, gn − 1) ≥ cn.

Corvaja & Zannier (2013): Let S ⊂ Fq be a finite set and let
u, v ∈ Fq(X) be mult. indep. rational functions modulo F∗q , with nonzero
differentials and with all their zeroes and poles in S. We also denote
d = max(deg u,deg v). Then,

deg gcd(u− 1, v − 1)�S max
(
d2/3, d2/p

)
.

Nontrivial: when d� p.

Remark: If d4 � p3, the result is the same as over C.
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For u = xd and v = (1− x)d this is a question about the number of
solutions to

x+ y = 1

in variables from the subgroup of F∗q of order d. This dates back to

Garcia & Voloch (1988)
Heath-Brown & Konyagin (2000)

Ghioca, Hsia & Tucker (2017): several other extensions, for example
proving finiteness result for the set of roots of gcd’s of the form

gcd (fn1 − g1, f
m
2 − g2) , n,m ≥ 1,

where f1, f2, g1, g2 ∈ F[X] (F is a field of char p > 0) are fixed and f1 and
f2 are algebraically independent over Fp.
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Coming back to C

Corvaja & Zannier (2008):

deg gcd(u− 1, v − 1)�S max(deg u,deg v)2/3.

Question: For f1, . . . , fs, g1, . . . , gr ∈ C[X], can we have a uniform
bound when

u = fn1
1 · · · f

ns
s and v = gm1

1 · · · gmr
r

for all n1, . . . , ns,m1, . . . ,mr?

If one restricts the polynomials to being defined over number fields, one
can achieve uniformness, even in the more general case of

gcd (h1(fn1
1 · · · f

ns
s ), h2(gm1

1 · · · gmr
r )) , ni,mj ≥ 0.
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A.O. & Shparlinski (2020)

Let Γ ⊆ Q∗ be a finitely generated group and f1, . . . , fs, g1, . . . , gr ∈ Q[X]
mult. indep. modulo Γ. Then there exists H ∈ Q[X] such that for any
monic h1, h2 ∈ Q[X] of fixed degree, with roots in Γ, one has

gcd (h1(fn1
1 · · · f

ns
s ), h2(gm1

1 · · · gmr
r )) | H.

Considering the factorisations of h1 and h2 into linear factors, we reduce
the problem to looking at

Dn,m = gcd (fn1
1 · · · f

ns
s − ω1, g

m1
1 · · · gmr

r − ω2)

for any roots ω1 and ω2 of h1 and h2, respectively, for any

n = (n1, . . . , ns), m = (m1, . . . ,ms).

⇑

Intersection of parametric curves with algebraic subgroups
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Maurin (2008)

⇓

There are finitely many α ∈ Q such that

(X − α) | Dn,m = gcd (fn1
1 · · · f

ns
s − ω1, g

m1
1 · · · gmr

r − ω2) .

+

Controlling multiplicities via Mason’s (1984) polynomial ABC

⇓

One can construct the polynomial Hω1,ω2 ∈ Q[X] such that

gcd (fn1
1 · · · f

ns
s − ω1, g

m1
1 · · · gmr

r − ω2) | Hω1,ω2 .

Remark: If s = r = 1, Bérczes, Evertse, Györy & Pontreau (2013):
h(α), [K(α) : K]�f,K,Γ 1 =⇒ We get an explicit bound for degHω1,ω2 .
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Levin & Wang (2019): Let F,G ∈ C[X1, . . . , X`] be nonconstant and
coprime, such that not both vanish at 0 ∈ C`. Let g1, . . . , g` ∈ C[X] be
mult. indep. with constants. For any ε > 0, one has

deg gcd
(
F (gk1 , . . . , g

k
` ), G(gk1 , . . . , g

k
` )
)
< εk

provided that k is large enough.

Remarks:

If F = h1(X1 · · ·Xr) and G = h2(Xr+1 · · ·X`), then A.O. &
Shparlinski (2020) give a uniform bound independent of k.

The results of Levin & Wang (2019) are more general, applying to
meromorphic functions g1, . . . , g`, and they are based on Nevanlinna
theory: gcd = common zeros.

If F =
∑`

i=1 aiXi and G =
∑`

i=1 biYi, then F (gk1 , . . . , g
k
` ) is a linear

recurrence sequence (LRS), and similarly G, which brings us to . . .
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GCD of LRS

Let (Fn)∞n=1, (Gn)∞n=1 be two simple LRS defined by

Fn =

k∑
i=1

ai(X)fi(X)n, Gn =
∑̀
i=1

bi(X)gi(X)n, n ≥ 0,

where ai, bi, fi, gi ∈ Q[X].

Open Problem

Show that, under some natural conditions,

#{α ∈ Q : Fn(α) = Gm(α) = 0 for some n,m ≥ 1} <∞

This would show that there are at most finitely many α ∈ Q such that

(X − α) | gcd(Fn(X), Gm(X)) for some n,m ≥ 1.
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What we really really want .... is to show, under some conditions, that

deg gcd(Fn(X), Gm(X))� 1 for all n,m ≥ 1,

which would be a uniform function field analogue of the results on gcd’s of
LRS over number fields.

If k = 2 this follows immediately from Bombieri, Masser & Zannier (1999)
and our previous discussion.

If k > 2: no results.

Alina Ostafe (UNSW) 27 / 37



What we really really want .... is to show, under some conditions, that

deg gcd(Fn(X), Gm(X))� 1 for all n,m ≥ 1,

which would be a uniform function field analogue of the results on gcd’s of
LRS over number fields.

If k = 2 this follows immediately from Bombieri, Masser & Zannier (1999)
and our previous discussion.

If k > 2: no results.

Alina Ostafe (UNSW) 27 / 37



What we really really want .... is to show, under some conditions, that

deg gcd(Fn(X), Gm(X))� 1 for all n,m ≥ 1,

which would be a uniform function field analogue of the results on gcd’s of
LRS over number fields.

If k = 2 this follows immediately from Bombieri, Masser & Zannier (1999)
and our previous discussion.

If k > 2: no results.

Alina Ostafe (UNSW) 27 / 37



Skolem Problem

A motivation for the above result comes also from:

Skolem Problem

Given an LRS {un}, n ≥ 0, defined over C, decide if there is n ≥ 1 such
that un = 0.

Let us define
S({un}) = {n ∈ N : un = 0}.

Skolem-Mahler-Lech

The set S({un}) is the union of finitely many arithmetic progressions and
a finite set. If {un} is non-degenerate, then S({un}) is finite.

({un} is non-degenerate if the ratio of any two distinct roots of the
characteristic polynomial is not a root of unity.)
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There are many results giving bounds for the number of arith. progressions
or for #S(un) (when finite), including:

van der Poorten & Schlickewei (1990), Schmidt (1999, 2000), Evertse,
Schlickewei & Schmidt (2002)

Amoroso & Viada (2009): significantly (by an exponential) improved the
previously known bounds.

Remark: All these bounds depend only on the order of {un}.

There are also non-uniform bounds that depend on the characteristic roots
of the non-degenerate LRS, e.g. van der Poorten & Schlickewei (1991).

The Skolem Problem has been settled in the following cases:

Mignotte, Shorey & Tijdeman (1984), Vereshchagin (1985), Chonev,
Ouaknine & Worrell (2016): LRS of orders 2, 3 and 4

Sha (2019): for simple LRS, of any order, with at most two dominant
roots, gave explicit lower bound for N such that un 6= 0 for all n > N .
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Universal Skolem Sets

Instead of imposing restrictions on the LRS (eg, order, dominance of
roots, etc), one can restrict the domain of search to so-caled:

Definition (Universal Skolem Set)

An infinite set T ⊆ N is a Universal Skolem Set if there is an effective
procedure that given an LRS, decides if it has a zero n ∈ T .

Luca, Ouaknine & Worrell (2022):

Let
s0 = 1, sn = n! + sb

√
lognc, n > 0.

Then the set T = {sn : n ∈ N} is a Universal Skolem Set. However,
this is a sparse set of density zero.

More involved construction of a Universal Skolem Set which is of
positive lower density, and conditionally on some assumptions on the
distributions of primes, they prove this set if of density 1.
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Skolem Problem for specialisations of LRS

Let
a = (a1, . . . , ak) , f = (f1, . . . , fk) ∈ Q(X)k,

and consider the linear recurrence sequences as above

Fn(X) =

k∑
i=1

ai(X)fi(X)n, n ≥ 0.

We give a bound for the largest zero in (all but a set of bounded height
of) specialisations of Fn(X), n ≥ 1.

⇓

Skolem Problem is effectively decidable for specialisations as above.

Remark: The Skolem Problem is settled over functions fields by Fuchs &
Pethö (2005).
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Bound on the zeros

We define the set

Ea,f = {α ∈ Q : fi(α)/fj(α) is a root of unity for some 1 ≤ i < j ≤ k
or ai(α) = 0 or fi(α) = 0 for some 1 ≤ i ≤ k}.

A.O. & Shparlinski (2020)

Let ai, fi ∈ Q(Z), i = 1, . . . , k, be nonzero of degree at most d such that
fi/fj is non-constant for any 1 ≤ i < j ≤ k. Assume that for any
1 ≤ r < s < t ≤ k, the pairs (fs/fr, ft/fr) are “non-exceptional”. For all
but at most d2k3 elements α ∈ Q \ Ea,f any zero n ∈ N of the equation

Fn(α) = 0

satisfies
n ≤ exp

(
CD4

α

)
,

where Dα = degree of the smallest Galois field K with α ∈ K and
C = C(ai, fi).
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Application

A.O. & Shparlinski (2020)

Let ai, fi ∈ Q[X], i = 1, . . . , k, be as above and such that
gcd(a1f1, . . . , akfk) = 1. Then the splitting field Ln of the polynomial

Fn(X) =

k∑
i=1

aif
n
i

is of degree
[Ln : Q] ≥ c0(log n)1/4,

where c0 is an effective constant depending only on a1, f1, . . . , ak, fk.

Remark: Apart form a finite set of polynomials, the degrees of the
irreducible factors over Q of Fn tends to ∞.

This is an explicit version of

[Ln : Q]→∞, as n→∞,
given by Amoroso, Masser & Zannier (2017).
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Main tools

Let α ∈ Q \ Ea,f such that Fn(α) =
∑k

i=1 ai(α)fi(α)n = 0.

The characteristic roots fi(α) with

|fi(α)| = max{|f1(α)|, . . . , |fk(α)|}

are called dominant roots.

If one has only one dominant root, it is easy to bound n as above.

If one has only two dominant roots: we use Sha (2019) =⇒
n ≤ exp

(
CD4

α(h(α) + 1)
)
.

Amoroso, Masser & Zannier (2017): the set of α ∈ Q as above is a
set of bounded Weil height =⇒ n ≤ exp

(
CD4

α

)
.
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(
CD4

α(h(α) + 1)
)
.

Amoroso, Masser & Zannier (2017): the set of α ∈ Q as above is a
set of bounded Weil height =⇒ n ≤ exp

(
CD4

α

)
.
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At least three dominant roots

This means: |fr(α)| = |fs(α)| = |ft(α)| for some 1 ≤ r < s < t ≤ k, or
equivalently,

|fs(α)|
|fr(α)|

=
|ft(α)|
|fr(α)|

= 1.

⇑

Unimodular points on plane curves

Pakovich & Shparlinski (2020)

Let (f1(X), f2(X)) ∈ C(X) be of degrees n1 and n2, respectively. Then

#{α ∈ C : |f1(α)| = |f2(α)| = 1} ≤ (deg f1 + deg f2)2,

unless (f1(X), f2(X)) is “exceptional”.
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Questions

Uniform bound: We would like to obtain a bound which is
independent of α, when α is restricted to special subsets of Q, such
as the set of all roots of unity. This in particular would imply that the
set

{α ∈ Q : αn = 1, Fm(α) = 0 for some n,m ≥ 1},

is finite.
⇓

deg gcd (Xn − 1, Fm(X))� 1 for all n,m ≥ 1.

More generally, one can ask about the finiteness of the set

{α ∈ Kc : Fn(α) = 0 for some n ≥ 1},

where Kc is the cyclotomic closure of K (one achieves this in the
multiplicative case – O., Sha, Shparlinski & Zannier (2019)).

Alina Ostafe (UNSW) 36 / 37



Generalisation to S-unit equations: Let Γ be a finitely generated
subgroup of Q(X) and fix a1, . . . , ak ∈ Q(X).

Amoroso, Masser & Zannier (2017): for any u1, . . . , uk ∈ Γ such that

ui/uj 6∈ Q, 1 ≤ i < j ≤ k, and
k∑
i=1

aiui 6= 0,

the set

S(a1, . . . , ak; Γ) =

{
α ∈ Q :

k∑
i=1

ai(α)ui(α) = 0

}
is of bounded height (depending only on a1, . . . , ak and Γ).

A solution α ∈ S(a1, . . . , ak; Γ) is called primitive if ui(α) = 1 for
some i = 1, . . . , k.

Is it true, under some natural conditions on Γ, that outside of a set of
α ∈ Q of bounded height for every primitive α ∈ S(a1, . . . , ak; Γ),
maxi=1,...,k deg ui(α) is bounded only in terms of the degree
[Q(α) : Q], the coefficients a1, . . . , ak and the generators of Γ?
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