
0.1. About these notes. These notes might be a little incomplete, but do touch on all
of the material that has been covered in class so far. There are a few exercises scattered
throughout the notes. I don’t expect these to be written up and turned in, but I am happy
to discuss them. (Some are repeated on a homework sheet, and for those I am expecting
solutions.) If an exercise has an asterisk or two next to it that means that it may be difficult
and/or vague.

0.2. A warning about notation. Notation varies a bit for linear codes, especially for
things like generator matrices, check matrices, and words/vectors/strings/messages. In this
course, a generator matrix for an (n,m) linear code, which has length n and rank (or dimen-
sion) m is always a n×m matrix of full rank, a check matrix always has n columns, and a
word/vector/string/message is always a “column vector”, even if we sometimes write some-
thing like v = (0, 0, 1, 0, 1, 1, 0) or w = 00101101. In particular for a generator matrix G and
a check matrix H, we encode with the multiplication Gv and check with the multiplication
Hw, and HG = 0.

Other authors might transpose things in different ways, and may end up writing wH or
vG or Hwᵀ or Gvᵀ.

1. Introduction: Error detection and correction

1.1. Motivational stuff. What is this all about? Error correcting codes are a method
of encoding data in a way so that errors in transmission can be automatically corrected.

Consider the following example. When you talk on a mobile phone, sometimes when there
is a poor signal or some other sort of interference, there is lots of static in the transmission.
Words may be garbled and impossible to understand. However, you have probably never
received a text message or an email which was improperly transmitted. Why is this? The
connection that your phone uses to send text messages suffers from the same static problems
as the voice connection. The connection may be very poor, and yet, when a text message is
sent and received we can be pretty certain that the message which is sent is the same as the
message which is received.

We might at first think that this kind of reliability comes from simply repeating the
message until it is correctly received. The receiver can acknowledge correct transmission by
sending back a message in return; however, we still have a problem: how is the receiver to
know that the message was correctly received? A computer sends a sequence of ones and
zeros; a computer receives a sequence of ones and zeros; how are we to know that they are
the same?

The problem is exacerbated when it takes a long time to send a message, or when the
message can only be sent once. It takes about seventeen and a half hours for a message sent
by the Voyager 1 probe to reach Earth (and another seventeen and a half for a response.)
When we store data on a computer hard drive, write it once and expect it be the same when
we read it later. (We can think of this as sending a message through time.) In these cases,
it is cumbersome or impossible to request retransmission, and we must take additional steps
to ensure correct transmission on the first try.

In the first case, then, we are concerned with error detection. In the second case, when we
know that an error has occurred, we are concerned with error correction. We will see that
these problems are similar, though error correction is somewhat more complicated. Both

1

2

problems are dealt with by choosing beforehand a specific set of allowable messages; if this
set of legal messages is chosen carefully, we will be able to automatically correct many errors
that occur in practice.

In short, then, the theory of error detecting and correcting codes is the theory of how to
encode arbitrary information in a special way, and then to decode it, and to do all of this in
such a way that the intermediate format is robust against errors from noise or degradation.

1.2. First examples. simple parity check. repetition. multidimensional parity check.
In these first examples, the symbols that we use in our code are 0s and 1s. We think of

these symbols as living in the field with two elements, F2, so that

0 + 0 = 0

0 + 1 = 1

1 + 1 = 0

and
0× 0 = 0

0× 1 = 0

1× 1 = 1.

Example 1.1 ((8, 7)-parity check). Take 7 bits and add one more so that the total number
of ones is 8, e.g.

0010101 −→ 00101011.

Or in general

e0, e1, . . . , e6 −→ e0, e1, . . . , e6,
∑

ek.

The receiver checks if the received word has an even number of ones. If it does not, it knows
that an error occurs. By itself, this is only an error detection code, and it can detect any
odd number of errors. In the presence of some extra information — namely, the location
where an error occurred — this code can be used to correct errors as well. For example, on a
computer, data may be spread out over multiple hard drives; using a parity check like this,
if each parity bit is stored on a different hard drive then any single hard drive can fail and
no data will be lost.

Example 1.2 (repetition code). A simple method to try to make sure that a message gets
through is to repeat it. If just one extra copy of a message is sent, then it can be used to
detect errors, but not correct errors. If there are two extra copies, then a “majority vote”
can be taken. We encode

0 −→ 000, 1 −→ 111.

If a receiver sees the message 010 it can make a pretty good guess that the message should
have been 000; in this way, the triple repetition code can correct any single error.

Example 1.3 (Multidimensional parity check). We can encode a message by imagining it in
a rectangular grid and then adding parity checks for each row and each column in the grid.
For example, we can encode a message of length 4 with a 2× 2 parity check:

e0 e1
e2 e3

−−−−−−−−−−−−→
e0 e1 e0 + e1
e2 e3 e2 + e3

e0 + e2 e1 + e3

3

e.g.,

0 1
1 0

−−−−−−−−−−−−→
0 1 1
1 0 1
1 1

Suppose that computer receives the encoded message

1 1 1
1 0 1
1 1

When we check all of the additional parity bits, we will notice that there is an error in the
topmost row and the leftmost column. There is one entry in the intersection of those two
columns, so changing it from a 1 to a 0 will make all of the parity checks pass. We should
also check what happens when one of the check bits is mistransmitted: in such a case, only
a single row or column will contain an error, so we will know that the error occurred in a
check bit and not in a message bit.

So this code can correct any single error. In contrast with the triple repetition code, which
will always miscorrect any double error, this code will also correctly notice the presence of
many errors instead of misrecognizing them as single errors and miscorrecting them.

It is also clear how to generalize this code to a k × l parity check for any k and l: we
simple think of the data is being put into a k by l array. Then the code takes a message of
length kl and encodes it as a message of length kl + k + l. We can also generalize to higher
dimensions and define a k1 × k2 × · · · kd multidimensional parity check.

Exercise 1.4. For a message encoded with the 2×2 parity check, write down an example of (i)
a double error that is not miscorrected and (ii) a double error which may be misinterpreted
as a single error, and hence miscorrected.

**Exercise 1.5. Think about a d-dimensional parity check. It may be a bit cumbersome to
write down — maybe you can find a nice way to do it. How many errors can it correct?
How many extra bits does it add to encode a message?

1.3. Some brief formal stuff. alphabet. code. encoder. decoder. minimum distance.
error detection. error correction. rate. rank. length.

Definition 1.6 (Alphabet). An alphabet A is a set of symbols.

For most of this course, we will use the binary alphabet F2, which consists of the symbols
0 and 1. We write this as F2 because it is very convenient to think of it as the field with 2
elements. In general, for any q which is a prime power, q = pk, there is a finite field with q
elements; these are nice alphabets to use in theory.

In “real life”, the alphabet used for a code will often be F2k for some k, since it is usually
most convenient for computers to work with things which are powers of 2. However, the
alphabet is taken to be the digits 0 through 9 in some real examples, and can in principle
be anything.

Definition 1.7 (Code). A (block) code C of length n with alphabet A is a subset of An =
A×A× · · · ×A; that is, it is a set of strings of symbols of length n. We call such strings of
symbols a string or a word or sometimes a vector. We refer to a word which is in the code
as a codeword. (Whether or not a given string is a codeword depends on context, of course.)

4

To make use of a code, we often want a way to map a message to a codeword, and a
codeword back to a message. We call such functions an encoder and a decoder.

Definition 1.8 (Encoder, Decoder, Rank). An encoder f(v) for a code C of length n is
an injective function from Am to C, where m ≤ n, and a corresponding decoder g(u) is a
function which inverts this. That is,

f : Am −→ C

and

g(f(v)) = v.

For a given code C, the largest m for which there exists an encoder with domain Am is called
the rank of the code.

We do not enforce any uniqueness on the encoder or decoder. For a given code there may
be multiple encoders and decoders. The domain and range of the decoder are also not fully
specified. The decoder need only be defined on the range of f . For the sorts of codes that
we are interested in here, though, we should think of the decoder as being defined on all of
An and taking values in some set Am ∪E; the decoder may detect errors by returning some
string which is not in Am, or it may correct errors by returning an element of Am even when
the input to the decoder is not a code word.

One goal will be to describe codes for which there exist decoders with good error detection
and correction properties. We have in mind a model where a codeword is transmitted by
some method and an error occurs: some of the transmitted symbols become changed in
some way. Exactly what sort of error might occur is a subtle question, but a simple model
to have in mind is that every transmitted symbol might have some fixed probability of being
transformed into a random symbol, and that these probabilities are all independent. (We
might call this white noise.)

When an error occurs, we would, first of all, like to know the decoder to “know” that an
error has occurred. Moreover, we would like to correct this error, if possible. For the decoder
to know that an error has occurred simply means that the received word is not a codeword.
In the white noise model, we can see that a decoder might try to correct an error by finding
a codeword which is close to the received word, where white noise suggests that we should
consider two words as close if they have few different symbols. This distance is called the
Hamming distance.

Definition 1.9. For two strings u = (u0, u1, . . . , un−1) and v = (v0, v1, . . . , vn−1), the Ham-
ming distance d(u, v) is the number of entries in which they differ; that is, it is the number
of k for which uk 6= vk; that is

d(u, v) = # {k such that uk 6= vk} .

With a notion of distance, we can begin to think more about what it means for a code to
be capable of detecting and/or correcting errors. Error detection is a fairly simple matter: if
the input to the decoder is not a codeword, an error has occurred. Error correction may be
more subtle, but if we think that errors do not occur too frequently, then it is reasonable way

5

to correct errors is for the decoder to return the message that corresponds to the codeword
which is closest to the received string. 1

For any code and encoder, then, we can define the minimum distance decoder 2, which is
a decoder which does exactly what we just described.

Definition 1.10. For a code C with encoder f(v), a minimum distance decoder d(u) is a
function from An to Am ∪ E such that

d(u) = v such that d(f(v), u) = min
c∈C

d(c, u)

when such a v exists and is unique, and d(u) ∈ E otherwise.

The notion of a minimal distance decoder is a good thing to have in the back of one’s
mind, but it is not something we’ll work with again, and we will hardly mention it again. For
a given code, minimal distance decoding for every possible word is typically an extremely
difficult algorithmic problem. However, it is useful, for example, for the purposes of thinking
about the best possible performance that a code could have in a worst case scenario.

When it comes to a worst case scenario, it is useful to measure a code by the number of
errors is can correct or detect. To measure this, we want to know: if a number of errors
occur in the transmission of a code word, will it be mistaken for another code word? This
makes the notion of minimal distance a useful one for study.

Definition 1.11 (Minimal distance). The minimal distance d of a code C is the integer

d = min
u6=v
u,v∈C

d(u, v).

If a code word c is transmitted and d errors occur, then it is possible that the received
word will actually be another code word; if more than d/2 errors occur, then a minimal
distance decoder may mistake the received word for the wrong code word. For these reasons
we say that a code with minimal distance d can always detect the presence of d− 1 errors;
meanwhile, if at most (d− 1)/2 errors occur, then these errors can be corrected by replacing
the received word with the closest code word, so we say that this code can correct b(d− 1)/2c
errors.

2. Linear codes

field. vector space. linear code. generator matrix. check matrix. error syndrome...

We have already noted that it is useful for our alphabet to have some nice structure.
Even in our first examples, we used the operation of addition modulo 2. We will now start
to think of our alphabet as a finite field. Recall that a field is a set with addition and
multiplication such that every element has an additive inverse and all the nonzero elements
have a multiplicative inverse.

The most familiar finite fields are the integers mod a prime: Z/pZ. There is also a finite
field with q elements whenever q = pk is a prime power. Most of the theory of this section

1Specifically, if the probability of an error occurring in the transmission of a single symbol is p, we imagine
that p is rather small, and especially avoid the pathological situation where p >= 1/2.

2For the model that we just informally described, this might also be called a maximum likelihood decoder

6

will apply when the alphabet is any of these fields. In practice, because it is convenient for
computers to work with powers of 2, fields with 2k elements are commonly used.

Most of the examples will use the field F2, with two elements, and some constructions will
rely on the use of this field. However, we will eventually find it useful to use fields with more
elements even in the construction of binary codes.

Now, when our alphabet is a field F , the set of strings F n has the structure of a vector
space, which means that we can add two strings or multiply a string by an element of F .
Once we can do this, a useful notion is that of a linear code, which is simply a code which
is also a subspace of F n.

Definition 2.1. A linear code C of length n and rank (or dimension) m over a finite field
F is a subset of F n of size |F |n such that w1 + w2 and aw are codewords whenever w1, w2,
and w are codewords and a ∈ F .

In other words, an (n,m)-linear code is a vector subspace of F n of dimension m.

There are two natural ways to specify an m-dimensional subspace of an n-dimensional
vector space which are useful first notions for constructing and analyzing linear codes. The
first is to specify an injective linear map from Fm to F n, or, more concretely, an n × m
matrix of rank m. The second is to specify the subspace as the kernel of a surjective map
from F n to F n−m, or, again more concretely, as the (right) kernel of an (n−m)× n matrix
with rank n−m. We call the first sort of matrix a generator matrix, and the second a check
matrix.

Definition 2.2. A generator matrix G for an (n,m)-linear code C is a matrix such that
w ∈ C if and only if w = Gv for some v ∈ Fm.

Definition 2.3. A check matrix H for an (n,m)-linear code C is a matrix such that w ∈ C
if and only if Hw = 0.

Perhaps some examples will be illustrative. The (8, 7)-parity check code, the triple repe-
tition code, and the multidimensional parity check code are all examples of linear codes.

Example 2.4 ((8, 7)-parity check). The (8, 7)-parity check has a generator matrix

G =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 1 1 1 1 1 1


and check matrix

H =
(

1 1 1 1 1 1 1 1
)
.

Example 2.5. The triple repetition code has a generator matrix

G =

 1
1
1



7

and check matrix

H =

(
1 0 1
0 1 1

)
.

Example 2.6. The linear code with check matrix

G =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1


and check matrix

H =


1 1 0 0 1 0 0 0
0 0 1 1 0 1 0 0
1 0 1 0 0 0 1 0
0 1 0 1 0 0 0 1


is equivalent to the 2× 2 parity check code.

In this last example our wording was slightly different than in the first two examples.
When we gave the example of the 2× 2 parity check, we did not write the check bits in any
specific order. It should be clear that it makes no difference in which order we place these
bits, even if the issue of exactly what it means for two codes to be equivalent might be more
subtle.

Note that the generator and check matrices for a code are not unique. For the parity check
matrix, for example, we could instead use the generator matrix

1 1 1 1 1 1 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


,

or the matrix 

1 0 0 0 0 0 0
1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
0 0 0 0 0 0 1


,

8

which both map F7
2 to the exact same subset of F8

2 as the previous matrix. Similarly, there
may be many different check matrices for a fixed code. In fact, it should be a straightforward
linear algebra exercise to see, for example, that

Proposition 2.7. Any n × m matrix G of rank m whose columns are code words for the
(n,m) linear code C is a generating matrix for C.

Similarly, any (n−m)×n matrix H of rank (n−m) for which HG = 0 is a check matrix
for C.

Exercise 2.8. Make sure that you understand why the above statements are true.

However, it is nice when we have a generator matrix which consists of the identity matrix
at the top, because then if no errors occur the message may be decoded by simply looking
at the first m symbols in the code word. We say that such a matrix a systematic generating
matrix. When we have a systematic generating matrix, it is particularly easy to write down
a corresponding check matrix.

Theorem 2.9. If a linear code is specified by a generating matrix G in the form

G =

(
Im
A

)
,

where Im is the m×m identity matrix, then a check matrix for the code is given by

H = (−A|In−m).

Proof. This is just an exercise in matrix multiplication. H has the correct rank, so we just
need to check that HG = 0. �

2.1. Minimum distance for linear codes. Calculating the minimum distance of a code
can be a rather difficult problem. If a code has no structure at all, we might think that we
should simply check each pair of codewords and find the distance between them. Fortunately,
for linear codes the situation is not quite so bad as that, though the general problem of finding
the minimal distance of a linear code can still be quite hard.

Two basic facts give us something to work with.

Theorem 2.10. The minimum distance of a linear code is the same as the minimal weight
of a nonzero vector. That is,

min
u,v∈C
u6=v

d(u, v) = min
w∈C
w 6=0

wt(w)

If this were the whole story, we might still have to write down every codeword to deter-
mine the minimum distance. This might be acceptable for small codes, but will get rather
cumbersome for very large codes. 3

Theorem 2.11. The minimum distance d of a linear code with check matrix H is the least
integer such that every d− 1 columns of H are linearly independent and some d columns are
linearly dependent.

3Food for thought: suppose that a binary code has rank 200, so that it has 2200 different codewords. Will
a computer ever be able to write down all the different codewords?

9

Note that for binary codes, a set of vectors is linearly independent if and only if no subset
of these vectors sums to zero. If we examine the check matrix we wrote down earlier for the
2 × 2 parity check code, for example, we can see that no two columns are the same, so the
minimum distance is at least 3. It is not hard to also find three different columns which sum
to zero, so the minimum distance is exactly 3.

Even given a check matrix, it gets very difficult to determine the minimum distance of a
linear code quickly as the matrix size grows, unless perhaps if the minimum distance happens
to be very small. This is not a problem we will be able to solve in general (in fact, it is not
a problem that anyone knows how to solve in general), but at the very least it is possible to
exploit the above theorem to construct codes with large minimum distance by writing down
check matrices in clever ways.

2.2. Error syndromes. We now turn our attention briefly to the problem of how to actually
correct errors when they occur. In general, when we receive a message which is not a
codeword, we would like to hope that only a small number of errors has occurred, so the
general problem is: Given a vector v ∈ F n which is not a codeword, can we find the codeword
which is closest to v, or else determine that there is no such unique vector?

Once again, the structure of linear codes gives us something to work with. We should
think of our incorrect vector as v as

v = c+ e,

where c is a codeword and e is the error vector. There are many different possible represen-
tations of v in this form, and we seek the ones where wt(e) is as small as possible. We will
know that v is not a codeword because Hv 6= 0. Now, if we write v = c+ e, then we have

Hv = H(c+ e) = Hc+He = He,

as Hc = 0 for the codeword c. Thus we see the important principle that the result of
multiplying the check matrix by the received string depends only on the error and not on
the codeword that v should have been. We give a name to this quantity:

Definition 2.12 (Error syndrome). The error syndrome of a vector v and check matrix H
is the vector Hv.

We emphasize the point we made above as

Theorem 2.13. The error syndrome of a vector v depends only the error. That is, Hv =
H(v − c) for any codeword c.

Let’s look at an example before proceeding too much further. We return to the check
matrix that we wrote down earlier for the 2× 2 parity check code

H =


1 1 0 0 1 0 0 0
0 0 1 1 0 1 0 0
1 0 1 0 0 0 1 0
0 1 0 1 0 0 0 1


and the example error correction that we gave when we first wrote down this code. We
examine the vector v = (1, 1, 1, 0, 1, 1, 1, 1), and compute the error syndromeHv = (1, 0, 1, 0).
We now want to find a vector of small weight which has the same syndrome. This is
easy to do — as the syndrome is a column in the check matrix we can easily see that

10

e = (1, 0, 0, 0, 0, 0, 0, 0) has exactly the same syndrome. Thus c = v + e is a codeword, and
we have found a codeword which is distance 1 away from v.

Note that for a binary code, a single error will always result in a syndrome which is a
column in the check matrix, and for a code over Fq a single error will always result in a
syndrome which is a multiple of a column in the check matrix.

In general, if we want to correct a double error, we may need to examine the syndromes
for all vectors of weight 2; if we want to correct three errors we may need to examine the
syndromes for all errors of weight 3, and so on. Once again, we run into trouble fairly
quickly, but the situation is not too bad. A decoder might store a table of error syndromes
for vector of small weight which will allow it to quickly do a table lookup. For example, for
a binary code of length 128 there are 349632 different nonzero vectors of weight ≤ 3, and a
computer should be able to keep a table of these in under 50 megabytes. This suggests that
it is reasonable for a computer to correct 3 errors in a length 128 just by looking up error
syndromes in a table.

As the code length and the number of errors that we want to correct grows, however, the
number of different possible error syndromes will grow much too fast for such simple methods
to be of use, and we will need other methods of error correction. I hope we’ll examine some
small examples of clever constructions of check matrices which allow for better algorithms,
but we will not have much time to look deeply at the subject of practical error correction
algorithms.

2.3. Equivalence of codes. We have been a little loose so far when we speak of something
like “the” 2× 2 parity check code. When we first gave the example of the code by drawing
a picture, it was clear what subset of pictures we were talking about. However, when we
want to consider this code as a subset of F8

2, we need to choose some ordering of the message
bits and check bits. It should be clear that the ordering of the bits isn’t of any fundamental
importance.

For this reason we call two linear codes equivalent equivalent if it is possible to move from
one to the other by permuting the positions of the code and multiplying all of the symbols
in some position by some fixed element of the base field. In terms of the generator matrix
for the code, this means that permuting the rows of the generator matrix gives an equivalent
code and multiplying one of the rows of the generator matrix by an element of the base field
also gives an equivalent code.

We don’t focus on this too much, but for when we speak of “the” k × l parity check code
or “the” Hamming code (in the next section) we are really referring to an equivalence class
of codes.

2.4. Hamming codes. hamming codes. generator and check matrix. how to correct errors.
extended hamming code.

We now continue our examination of linear codes by considering what the best sort of
single error correction might look like.

Definition 2.14. The (2k− 1, 2k−k− 1) binary Hamming code is the code with alphabet F2

determined by the k × (2k − 1) check matrix whose columns consist of every nonzero vector
in (Fk2).

11

Example 2.15. A (7, 4) Hamming code with check matrix in standard form is given by

H =

 1 1 0 1 1 0 0
0 1 1 1 0 1 0
1 0 1 1 0 0 1

 .

The Hamming code has minimal distance 3, so it can correct any single error. An inter-
esting property of the Hamming code is explored in the following exercise.

Exercise 2.16. Prove that any vector in F2k−1
2 is either a code word for the (2k−1, 2k−k−1)-

Hamming code or else is distance one away from a code word.
Hint: This can be done by counting; first count the number of codewords, then count the

number of things that are distance one away from a codeword, and then count the number

of vectors in F2k−1
2 . How are they related?

This may be a good opportunity to point a rather general method for easily increasing
the minimal distance of a code in some situations. Suppose we wish to modified the above
check matrix to get something with minimum distance 4. It is already the case that any pair
of columns is distinct, so we need to make it so that any three columns do not sum to zero.
Suppose that we had a row of all 1s: then only an even number of columns can sum to zero.
Thus, the check matrix 

1 1 0 1 1 0 0
0 1 1 1 0 1 0
1 0 1 1 0 0 1
1 1 1 1 1 1 1


gives a code with minimum distance 4. This extra column made the code smaller by removing
many code words. However, we can easily augment this matrix now by adding a new row:

1 1 0 1 1 0 0 0
0 1 1 1 0 1 0 0
1 0 1 1 0 0 1 0
1 1 1 1 1 1 1 1

 .

This is known as the (8, 4) extended Hamming code. More generally,

Definition 2.17. A (2k, 2k−k−1) extended Hamming code is a code determined by a check
matrix H of size (k + 1) × 2k with a row of all 1s and which, when removed this row is
removed, consists of every (column) vector in Fk2.

The extended Hamming code has an important practical advantage over the regular Ham-
ming code. A system using the Hamming code will always “correct” any number of errors
that occur; if more than one error occurs, messages will be incorrectly decoded. A decoder
for the extended Hamming code, however, can notice the presence of double errors while still
correcting any single error.

The construction of the extended Hamming code can be mimicked for any code with odd
minimum distance.

12

Proposition 2.18. If H is a check matrix for a binary code with minimal distance d, where
d is odd, then the matrix

H ′ =

 H
0
0
...
0

1 1 · · · 1 1

 ,

is a check matrix for a code with minimum distance d+ 1.

Exercise 2.19. Prove the above proposition.

2.5. Hamming codes over fields other than F2. Over F2, two vectors are linearly inde-
pendent if and only if they are different. This does not continue to hold when we consider
vector spaces over larger fields. If we want to construct a code analogous to the binary Ham-
ming code over a field that is not F2, then, we have to keep this in mind. Other that this
difference, there is a straightforward construction of codes over other fields which mimics the
construction of Hamming codes: instead of choosing every single vector in F k as a column
in the check matrix, we choose a nonzero vector for each “line” through zero in F k.

A line through zero in F k is just a set of vectors L such that av ∈ L whenever a ∈ F and
v ∈ L; in other words, it is a one dimensional subspace of F k. It is not hard to see that,
as in standard Euclidean geometry, two lines which intersect twice are identical, and it is
also evident that every line through zero contains q points, where q = |F |. As these lines
intersect exactly once, they must otherwise form a disjoint cover of the rest of F k. In other
words, the number of lines n satisfies

n(q − 1) = qk − 1,

or

n =
qk − 1

q − 1
.

This is enough information to describe a check matrix for the q-ary Hamming code, which
is an analogue of the binary Hamming code over a field with q elements. The check matrix
should have n columns, where n is as above, where each column is chosen from one of the n
lines through the origin.

Definition 2.20 (q-ary Hamming code). The q-ary Hamming code is the linear code over

the field Fq which has a check matrix with qk−1
q−1 columns, where each column is chosen from

a different line through zero in Fnq .

The check matrix has dimension k × n and rank k, so the length of q-ary Hamming code
is n = (qk − 1)/(q − 1) and the rank of the code is n− k = (qk − 1)/(q − 1)− k. Note that
when q = 2, these parameters exactly match the binary Hamming code.

Example 2.21 (A ternary Hamming code). Here we give example check and generator ma-
trices for some ternary Hamming codes. “Ternary” means that q = 3, and the alphabet is
F3 = Z/3Z = {0, 1, 2}. Let’s try k = 2, so we should have 4 columns of height 2. We can
choose two of the columns to be (1, 0) and (0, 1), which are clearly linearly independent.

13

Another which is independent of each of these is (1, 1) and another which is independent of
any of those three is (1, 2). This gives a check matrix

H =

(
1 1 1 0
2 1 0 1

)
.

Since we’ve written this in standard form, we can easily write a generator matrix

G =


1 0
0 1
1 1
2 1

 ,

and we can multiply this generator matrix by the 9 different vectors in F2
3 to get the 9

codewords

(0, 0, 0, 0)

(0, 1, 1, 1)

(0, 2, 2, 2)

(1, 0, 1, 2)

(1, 2, 0, 1)

(2, 0, 2, 1)

(1, 1, 2, 0)

(1, 2, 0, 1)

(2, 1, 0, 2).

This is small enough that if we stare at it for a bit we can verify that is it indeed linear and
that it has minimum distance 3.

If we keep q = 3 and let k = 3, we get a check matrix with 13 columns and height 3. For
example,

H =

 1 1 1 1 1 0 1 1 0 1 1 0 0
2 2 1 1 0 1 2 0 1 1 0 1 0
2 1 2 1 2 2 0 1 1 0 0 0 1


does the trick.

Why should we bother looking at codes over fields other than F2 when computers work in
binary? One answer is “why not?”. We look at such codes because we can. Coding theory
can be approached from a purely theoretical perspective, and it studies questions which are
interesting in their own right.

A different answer is that working over fields other than F2 can give us more freedom to
construct codes, and maybe these codes will be better than binary codes in some ways, even
for practical use. Of particular interest here is the base field F2k , which is a reasonable thing
for computers to work with.

We can think of a long binary message as a string of elements of F2k by breaking it up
into chunks of length k and then use a code where the alphabet is F2k . Such an encoding
will then have the property that k consecutive bit errors will effect at most 2 symbols in
the code word, so a code which can correct 2 consecutive (alphabet) errors will be able to

14

correct any k consecutive bit errors. (We would be able to construct such a code right now
by interleaving two Hamming codes over F2k .) Long strings of consecutive errors are a real
life problem, and techniques to deal with them go by the term burst error correction.

(Once upon a time, there were small, flat, circular, shiny objects known as compact discs,
which were used to record things like music and games. A problem with them was that they
would get dirty or scratched. By encoding data with interleaved Reed-Solomon codes over
a field F2k , though, they were able to correct many of the large consecutive errors caused by
scratches and dirt and achieve a reasonable level of reliability. In fact, errors caused by a
scratch as wide as 2 mm would be fully correctable with this coding scheme.)

3. Using algebra

Up to now, we have been considering vector spaces over finite fields as nothing but vector
spaces. However, there are some natural sets which form vector spaces over finite fields, and
considering our messages and codewords as living in such sets adds extra structure that we
can exploit to better construct and decode codes. The two natural vector spaces over a field
F that we will consider are polynomials with coefficients in F and extension fields of F .

If F is any field, then the set of polynomials with coefficients in F and degree < k forms a
k dimensional vector space. In fact, we can easily map codewords of length k to polynomials
of degree < k with the identification

(c0, c1, . . . , ck−1) −→ c0 + c1x+ · · ·+ ck−1x
k−1.

Adding two polynomials or multiplying a polynomial by a scalar is exactly the same as adding
to codewords or multiplying a codeword by a scalar, so we haven’t lost anything. On the
other hand, when we think of codewords as polynomials, perhaps we have gained something:
we know how to multiply two polynomials to get another polynomial, polynomials have
roots, there is a Euclidean algorithm for polynomials, etc.

When the context is clear, we will now consider the above mapping between codewords
and polynomials as implied.

Knowing how to multiply polynomials, we can define a function from Fm to F n by a
polynomial g(x) of degree n −m: we consider w ∈ Fm as a polynomial of degree < m and
multiplying by g to get a polynomial of degree < n. This gives a subset of F n which is in fact
a linear subspace, so it is a linear code. We call a code constructed in this way a polynomial
code, and we call g(x) a generator polynomial for the code.

Definition 3.1. A polynomial code C of length n is a code which consists of all polynomials
of degree < n which are divisible by some fixed generator polynomial g(x); that is,

C = {f ∈ F [x] such that deg(f) < n and g(x)|f(x)},

or

C = {q(x)g(x) such that h ∈ F [x] and deg(q) ≤ n−m}.

It should be an easy exercise to see that every polynomial code is a linear code, and that
if g(x) has degree n−m and messages have length m, then codewords have length n, so the
above definition describes an (n,m)-linear code.

Exercise 3.2. Prove that polynomial code is a linear code.

15

Example 3.3. As an example, we can consider the length 7 polynomial code with generator
polynomial g(x) = 1 + x + x2 ∈ F2[x]. We take messages of length 4, so our codewords
consist of g(x) multiplied by all of the polynomials in F2[x] of degree 3 or less:

0(1 + x+ x3) = 0 = 0000000

1(1 + x+ x3) = 1 + x+ x3 = 1101000

x(1 + x+ x3) = x+ x2 + x4 = 0110100

(1 + x)(1 + x+ x3) = 1 + x2 + x3 + x4 = 1011100

x2(1 + x+ x3) = x2 + x3 + x5 = 0011010

(1 + x2)(1 + x+ x3) = 1 + x+ x2 + x5 = 1110010

(x+ x2)(1 + x+ x3) = x+ x3 + x4 + x5 = 0101110

(1 + x+ x2)(1 + x+ x3) = 1 + x4 + x5 = 1000110

x3(1 + x+ x3) = x3 + x4 + x6 = 0001101

(1 + x3)(1 + x+ x3) = 1 + x+ x4 + x6 = 1100101

(x+ x3)(1 + x+ x3) = x+ x2 + x3 + x6 = 0111001

(1 + x+ x3)(1 + x+ x3) = 1 + x2 + x6 = 1010001

(x2 + x3)(1 + x+ x3) = x2 + x4 + x5 + x6 = 0010111

(1 + x2 + x3)(1 + x+ x3) = 1 + x+ x2 + x3 + x4 + x5 + x6 = 1111111

(x+ x2 + x3)(1 + x+ x3) = x+ x5 + x6 = 0100011

(1 + x+ x2 + x3)(1 + x+ x3) = 1 + x3 + x5 + x6 = 1001011.

We have 16 codewords in a binary code of length 7 and minimum distance 3. If this looks
familiar, it’s because it is familiar. This happens to be the (7, 3) Hamming code.

There are questions that one might ask upon seeing this example: Is there a way that we
could have seen that this is a Hamming code without writing down all of the code words?
When we write down other polynomial codes, will they be Hamming codes? The answers to
these questions will be “yes” and “sometimes”, and the answers rely on understanding the
structure of the check matrix of the code, which in turn relies on interpreting the columns
of the check matrix as elements of an extension field of F (or collections of such elements).

Recall that a finite field field extension of Fq is a field Fqk and can be realized as a quotient

Fqk ∼= Fq[x]/f(x),

where f(x) ∈ Fq[x] is an irreducible polynomial of degree k. This means that we can identify
elements in Fqk with polynomials in Fq[x], and vice verse, and thus we can interpret any
vector in a vector space over Fq of dimension k (for example, a code word of length k or a
column of height k in a check matrix) as an element of Fqk .

So how should we think about the check matrix of a polynomial code? The answer is to
think about the condition that g divides f in terms of the roots of g: the polynomial f is
divisible by g if and only if f(α) = 0 whenever g(α) = 0. Suppose then that α is a root of
g. This gives us the condition

c0 + c1α + c2α
2 + · · ·+ cn−1α

n−1 = 0,

16

where f = (c0, c1, c2, . . . , cn−1). Now, α ∈ Fqk for some k, so we can interpret α and powers of
α as vectors of length k. If we write these as columns of a matrix, we find that the condition
that f(α) = 0 is the same as the condition

 | | | |
α0 α α2 · · · αn−1

| | | |




c0
c1
c2
...

cn−1

 =

 |0
|

 = 0.

Now, g probably has more than one root, and f needs to have every root of g as a root, so
if g has roots α0, . . . αk−1 we may put all of the conditions into one matrix simultaneously,
and get a matrix

H =



| | | |
α0
0 α0 α2

0 · · · αn−10

| | | |

| | | |
α0
1 α1 α2

1 · · · αn−11

| | | |

...
...

...
...

...

| | | |
α0
k−1 αk−1 α2

k−1 · · · αn−1k−1
| | | |


which will be a check matrix for the polynomial code of length n with generator polynomial g.
However, including a set of rows for every single root of g is not necessary. If g is irreducible,
α is a root of g, and α is a root of f , then every root of g is in fact a root of f , so we need
only include one entry in H for each irreducible factor of g.

Let’s pause now to go back and examine the example polynomial code from before, which
turned out to be a Hamming code. Our generator polynomial was g(x) = 1 + x+ x3, which
happens to be irreducible4, so its roots lie in the field

F23 = F2[x]/g(x).

4Well, it “happens” to be irreducible because I chose it that way.

17

We consider a root α of g which we can map to the polynomial x. Under this identification
of elements of F23 with polynomials in F2[x], we find

α0 −→ 1 −→ 100

α1 −→ x −→ 010

α2 −→ x2 −→ 001

α3 −→ 1 + x −→ 110

α4 −→ x+ x2 −→ 011

α5 −→ 1 + x+ x2 −→ 111

α6 −→ 1 + x2 −→ 101.

It turns out5 that the powers of α give all of the nonzero elements of F23 ; that is, α is a
primitive element. A check matrix for the code, then, is

H =

 | | | |
α0 α α2 · · · α6

| | | |

 ,

or, more explicitly,

H =

 1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 ,

which we can recognize as a check matrix for a (7, 4) Hamming code. A polynomial such
as g(x) is known as a primitive polynomial. That is, a primitive polynomial g(x) ∈ Fq[x]
is an irreducible polynomial such that a root of g is a primitive element of the finite field
Fq[x]/g(x). Put another way, a primitive polynomial is the minimal polynomial of a primitive
element.

Example 3.4. If g(x) ∈ F2[x] is a primitive polynomial of degree k, then the length 2k − 1
polynomial code with generator polynomial g(x) is the (2k − 1, 2k − k − 1) Hamming code.

Understanding what the check matrix for a polynomial code looks like, now, we might
have a chance of constructing a polynomial code which has minimum distance larger than 3.
To do this, we want a fact from linear algebra which we will (in these notes, at least) accept
as a matter of faith.

Proposition 3.5. A matrix V of the form

V =


a1 a2 · · · ak
a21 a22 · · · a2k
a31 a32 · · · a3k
...

... · · · ...
ak1 ak2 · · · akk


5Again, it “turns out” this way because I carefully chose g to make this happen.

18

(called a Vandermonde matrix) has determinant

det(V) =
∏

1≤j≤n

aj
∏

1≤i<j≤k

(ai − aj).

In particular, if all of the aj are distinct, the determinant is nonzero. (And so the columns
of the matrix are linearly independent.)

Having knowledge of this proposition, we might think to construct check matrices which
have submatrices which are Vandermonde matrices. The right amount of linear independence
will then follow immediately.

Consider, for example, the 2× (qk − 1) matrix(
1 α α2 · · ·αqk−2
1 α2 α4 · · ·α2(qk−2)

)
,

where α ∈ Fqk is a primitive element. If we take any two columns and put them in a 2× 2
matrix, we get something of the form (

αi αj

α2i α2j

)
,

which has nonzero determinant, as αi 6= αj. This means that any two columns are linearly
independent, and therefore the check matrix is the check matrix of a linear code of minimum
distance at least 3. Similarly, if we want minimal distance at least 4, we can consider the
check matrix  1 α α2 · · ·αqk−2

1 α2 α4 · · ·α2(qk−2)

1 α3 α6 · · ·α3(qk−2)

 .

Now, when we considered the example of the Hamming code as a polynomial code, we labeled
the columns of the check matrix with powers of α ∈ F23 , but we thought of the matrix as
having entries in F2. So, are we to consider this check matrix with entries in Fq or Fqk? We
can do either, and we either get a code with alphabet Fq or with alphabet Fqk .

Let’s consider first the check matrix with entries in Fq, which we might write as

H =



| | | |
α0 α α2 · · · αq

k−2

| | | |

| | | |
α0 α2 α4 · · · α2(qk−2)
| | | |

| | | |
α0 α3 α6 · · · α3(qk−2)

| | | |


,

to emphasize that each symbol represents a (column) vector of height k.

19

Using the α and the construction of F23 from the earlier Hamming code example,

α0 −→ 1 −→ 100

α1 −→ x −→ 010

α2 −→ x2 −→ 001

α3 −→ 1 + x −→ 110

α4 −→ x+ x2 −→ 011

α5 −→ 1 + x+ x2 −→ 111

α6 −→ 1 + x2 −→ 101,

we would have the binary check matrix

H =



1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1
1 0 0 1 0 1 1
0 0 1 0 1 1 1
0 1 1 1 0 0 1
1 1 1 0 1 0 0
0 1 0 0 1 1 1
0 0 1 1 1 0 1


.

(In fact, the removing the middle three rows doesn’t change the code at all.) The rank of
this check matrix is too large, compared to the number of columns, for this code to be useful.
In fact, it just gives the (7, 1) repetition code. To get a less trivial example we would have
to consider a primitive polynomial of larger degree. The polynomial g(x) = 1 + x+ x4 does
the trick, and taking a root α ∈ F24 and doing a similar construction gives a check matrix
of width 15 and height 12. In fact, for a binary code constructed in this way, we can remove
all of the rows coming from even powers of α, so we can get a check matrix of width 15 and
height 8 for a code with minimal distance 5. (That the minimal distance is 5 instead of 4
comes come omitting the 4th row, which we never wrote down.)

Now, we started off with polynomial codes and then went back to constructing and analyz-
ing check matrices. The check matrices that we generated were inspired by what the check
matrix for a polynomial code looks like, however, and we can go back and construct a poly-
nomial gives a code with the check matrix that we have constructed. The top row (or block

of rows), with entries α0, α, α2, . . . , αq
k−2, is equivalent to the condition that f(α) = 0, when

we consider a codeword as a polynomial. The next row, with entries α0, α
2, α4, . . . , α2(qk−2),

is the condition f(α2) = 0. And so on.
So we want our generator polynomial g(x) to have roots α, α2, . . . , αk for some power of

k. We can take g to be the smallest such polynomial, namely

g(x) = lcm(mα(x),mα2(x), . . . ,mαk(x)),

20

where mα denotes the minimal polynomial of α. By the previous discussion, if our codewords
are length qk−1 and g has degree e, this gives a (qk−1, qk−e−1) linear code with minimum
distance at least k + 1.

School of Mathematics, University of Bristol
E-mail address: j.bober@bristol.ac.uk

	0.1. About these notes
	0.2. A warning about notation
	1. Introduction: Error detection and correction
	1.1. Motivational stuff. What is this all about?
	1.2. First examples
	1.3. Some brief formal stuff

	2. Linear codes
	2.1. Minimum distance for linear codes
	2.2. Error syndromes
	2.3. Equivalence of codes
	2.4. Hamming codes
	2.5. Hamming codes over fields other than F2

	3. Using algebra

