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There will be no obvious connections of my talk to representations of simple finite
groups.

On the other hand, there are only few established examples of commutative
nonassociative algebras with nice fusion rules. There are some further common
properties and features.

Is this mere coincidence?



(@ Some important questions and motivations

Q Fusion rules for algebras of cubic minimal cones: a summary
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My talk is dedicated to the memory of Sergei Natanovich Bernstein, 1880-1968.
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S.N. Bernstein (1830 — 1968)

A Russian and Soviet mathematician (doctoral dissertation, submitted in 1904 to the Sorbonne under
supervision of Emil Picard and David Hilbert), known for contributions to partial differential equations,
differential geometry, probability theory, and approximation theory:

1904 solved Hilbert's 19th problem (a C3-solution of a nonlinear elliptic
analytic equation in 2 variables is analytic)

1910s introduced a priori estimates for Dirichlet's boundary problem for
non-linear equations of elliptic type

1912 laid the foundations of constructive function theory (Bernstein’s
theorem in approximation theory, Bernstein's polynomial).

1915 the famous ‘Bernstein’'s Theorem’ on entire solutions of minimal
surface equation.

1917  the first axiomatic foundation of probability theory, based on the
underlying algebraic structure (later superseded by the
measure-theoretic approach of Kolmogorov)

1924 introduced a method for proving limit theorems for sums of
dependent random variables

1923 axiomatic foundation of a theory of heredity: genetic algebras
(Bernstein algebras): z%z? = w(x)?2?
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Some important questions

How incident (important, relevant) that the certain commutative non-associative
algebraic structures coming from a) finite simple groups, b) geometry of minimal cones,
c) PDEs (truly viscosity solutions)

Qo
Qo

Qo
(*]
Qo

Qo

have a distinguished Peirce spectrum

have distinguished (in particular, graded) fusion rules

are axial (generated by ‘good’ idempotents)

are metrized (i.e. carrying an associating symmetric bilinear form)
satisfy certain restrictions like the Norton inequality

etc

One possible point of view is to put these algebras in a broader context of general
non-associative metrized algebras with ‘small’ Peirce spectrum.



What is this all about?

A minimal surface (in a wider sense, a string) is a critical point
of the area functional. Geometrically, this means that the mean
curvature = 0. If z,41 = u(z) is a minimal graph over R™ then

div (1 4 |Duf?)"2 Du = 0.

Bernstein’s theorem (1915): w is an affine function n = 2. The
result is still true for n < 7 (Almgren, De Giorgi, Simons) but it
fails for n = 8 (Bombieri-de Giorgi-Giusti).
A minimal cone is a typical singularity of a minimal surface. All known minimal cones
are algebraic, i.e. zero level sets of a homogeneous polynomial u € R[z1,...,z,]:

o the Clifford-Simons cone, u(z) := (z} + 23 + x5 + 23) — (2% + x + 2% + 23) (the

norm for split octonions).

o The triality polynomials Re((z122)23), z; € Kq,d = 1,2, 4,8 are examples of
cubic minimal cones in R3?.

o The generic norm on the trace free subspace of the cubic Jordan algebra 73 (K,)

[ Problem: How to characterize algebraic minimal cones?




Hsiang minimal cones

W.-Y. Hsiang (J. Diff. Geometry, 1, 1967): Let u be a homogeneous polynomial in R".
Then «~*(0) is a minimal cone iff

Avu = |Dul?Au — %(Du,D|Du|2> =0 mod u.

o Indeg=2: {(z,y) € R*™: (m —1)|z|*> = (k- 1|y*}

e The first non-trivial case: degu = 3 and then
Aqu = a quadratic form - u(z) (1)

e In fact, all known irreducible cubic minimal cones satisfy very special equation:

Aju = Nz|? - u(x) (2)

Hsiang problem: Classify all cubic polynomial solutions of (2).

A homogeneous cubic solution of (1) is called a Hsiang cubic.



Some explicit examples of Hsiang cubics

e u = Re(z122)z3, zi € Aq, d=1,2,4,8, the triality polynomials in R3¢ where
Al =R, Ab=C, Ay=H, As =0

are the classical Hurwitz algebras. The example with d = 1 also appears as
Example 2 below.

1
3T + x2 T3 T4
) . . o
o u(x) = T2 1 T5 = a Cartan isoparametric cubic in R®
1
T4 Zs5 7301 — X2

It is the generic norm in the Jordan algebra of 3 x 3 symmetric matrices over R

r1 T2 I3
o u(z)=| zsa w5 ws
7 Tg 9

(equivalently, the generic norm in the Jordan algebra of 4 x 4 symmetric traceless
matrices over R)

Thus, Hsiang cubics are nicely encoded by certain algebraic structures. Which ones?

J




Nonassociative algebras and singular solutions

Evans, Crandall, Lions: Let B be the unit ball, ¢ continuous on 9B, F' uniformly elliptic
operator. Then the Dirichlet problem F(D2u) =0in B, u = ¢ on OB has a unique viscosity
solution u which is continuous in B.

@ Nirenberg, 50's: if n = 2 then u is classical (C?) solution (Abel Prize, 2015)
0 Krylov-Safonov, Trudinger, Caffarelli, early 80's: the solution is always C'1¢

A problem of crucial importance is when a viscousity solution is a classical solution.
Nadirashvili, VI3dut, 2007-2011: if n > 12 then there are solutions which are not C2.

Theorem (N. Nadirashvili, V.T., S. VI3dut, Adv. Math. 2012)

The function w(z) := “X2) where uy is the Cartan isoparametric cubic

u1(z) = @3 + 3a5(a] + 23 — 203 — 223) + 37\/5174(:6% — 22) 4 3v3z 123,
is a singular viscosity solution of the uniformly elliptic Hessian equation

(Aw)® 4 2832 (Aw)? + 21235 Aw + 2'° det D?(w) = 0,




How it works (on algebraic level)

Defining
identitites
Blow-up/down Viscousity Fusion rules
procedures solutions < > -
Trialities
Generic The Springer
norms :
(C__Minimal cones ) e
Nonlinear Elliptic
Equations and
. . . . Nonassociative Algebras
Further reading on both analytic and algebraic account is here:
N. Nadirashvili, V.T., S. VIZdut, Nonlinear elliptic equations and nonasso- Bt
ciative algebras, Math. Surveys and Monographs, v. 200, AMS, 2015.
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Notations

©

V' denotes a commutative nonassociative algebra with multiplication denoted by
juxtaposition;

©

L, : x — vz is the multiplication operator (also denoted as ad.)
¢ € V is called an idempotent if 2 = ¢;

o(c) = the spectrum of L;

©

c is called semi-simple if V' is the direct sum of (simple) L.-invariant subspaces

©

a symmetric bilinear form (,) on V is associating if (zy, z) = (z,yz)

©

V is metrized if it carries a symmetric associating bilinear form (&~ Frobenius)

©

If V' is metrized then L. is self-adjoint. In particular, all idempotents in V' are
semi-simple.



Why %?

The eigenvalues 1,0 and % are very distinguished:

2 = z2® and Jordan algebras, z2(zy) = x(x?y):

o Power-associative algebras, 2%z
o(c) c{0,1, 1}

O certain axial algebras

o pseudocomposition algebras, i.e. z° = b(z)z: o(c) = {1,—1, 1}, always primitive

o nonassociative rank 3 algebras, i.e. % = a(z)z? + b(z)x:

o(c) ={1,-b(c), 5}, always primitive

©

Algebras of cubic minimal cones,
4oz’ + 2’2 — 3z, 2)a® — 2(a*, ) =0 and trL, =0,

then o(c) C {—1,—3, 5,1}, always primitive.
2 2

o Bernstein algebras z°z% = w(x)?z?, o(c) = {1,0, 1}, always primitive

All the above algebras have nice fusion rules (some are Z/2-graded)



Fusion rules for algebras of cubic minimal cones

* | 1 -1 -1 1
1 1 -1 —% %
- S
- Loy L
1 1,-1,-1

o Not Z/2-graded in general

o Two distinguished subalgebras: V.(1) @ V.(—1) (carries a hidden Clifford algebra

structure) and V(1) & V.(—3) (carries a hidden rank 3 Jordan algebra structure)

o Primitive idempotents w in the hidden Jordan algebra (w e w = w) are exactly
2-nilpotents in V (w? = w) with the fusion rules

« | 0o ~1 1
o | —1,1_ 0%1  0',—1
-1 o’ 0" (0=0®0", 0" = Span(w))

1 o’



Fusion rules for algebras of cubic minimal cones

However, it turns out that the fusion rules are Z/2-graded a posteriori. Let
V =V%@® V! be the standard Z/2-grading. Let

n1 = dim V.(—1), ny = dim Ve(—1),

Then

o if V is polar ('Clifford type’), see Definition 5 below, then V°V® = 0; in this case
V0 is an isomorphic image of V.(1) ® V.(—1).

0 if ng =0 then V° =V,(1) ® Ve(—1) and V' = V.(3)
0 if ny =0then VO =V,(1) @ Vo(—3) and V! = V.(3)
o ifni =1then VO =V, (1)@ Ve(—1) and V! = V.(-1) & V.(3)

0 if ny =4 then ny = 5 (the algebra V' has dimension 21 and comes from the Albert
exceptional Jordan algebra) then grading is explicit but more subtle



Two basic examples in dimensions 2 and 3

Example 1. Let V be the 2 dimensional algebra generated by three idempotents ¢;,
i =0,1,2 which can be realized as unit vectors in R? subject to the conditions:

o (ci,¢j) =—5.i# c1
O cotci+c2=0

Then for any triple {7, 7, k} = {1,2,3} we have

2 2
¢k =Cip = (—ci —¢j)° =ci+¢j +2cic; = —cp + 2¢i¢ C2

hence cic; = cx and cx(c; — ¢j) = —(¢i — ¢;). This implies V =V, (1) & V,,(—1), the
both Peirce subspaces being 1-dimensional. The corresponding fusion rules are

* \ 1 -1
1 -1
—1 1

The Peirce dimensions are n; = 1,n2 = ng = 0, the ambient dimension n = 2.
The minimal cone is given by z2z52 = 0, i.e. pair of two orthogonal planes in R?



Two basic examples in dimensions 2 and 3

Example 2. Similarly, let V' be the 3 dimensional algebra generated by four
idempotents ¢;, i = 0, 1,2, 3 realized as unit vectors in R® subject to the conditions:

0 ¢+ cj is a 2-nilpotent, i.e. (¢; +¢;)? =0 (i # j) co
Then similarly to the above, one easily verifies that

V= ‘/Q(l) D V%(_%)7

C1

where dim V¢, (1) =1 and dim V¢, (—3) = n2 = 2. 3 C2

1
2

The corresponding fusion rules are

NI N[ [N

—_ =
—
| |

The underlying algebra structure after a 1-rank perturbation becomes a Jordan algebra
of Clifford type. The minimal cone is given by z1x2x3 = 0, i.e. the triple of coordinate
planes in R3.



% in the spectrum of metrized algebras

Let V be a commutative metrized algebra over R with positive definite associating form
(x,y). Then

(a) the set of idempotents of V' is nonempty
Proof. Let x be a stationary point of f(z) = (x,z?) on the unit sphere (z,z) = 1
(obviously a nonempty set). By Lagrange’s principle, V(m,m2> = 322 and
V{z,z) = 2z must be proportional =

2 2
r=kxr = ¢ =c¢, wherec:=

is an idempotent!

T

(z,x?)

(b) if ¢ is an extremal idempotent then it is primitive. In fact, the spectrum of
L. : & — cx on the orthogonal complement ¢t is a subset of (—oo, %]
Proof. Consider variation of (z,z?), with 2 = zo + y and y_Lxo.

(c) if ¢ is an idempotent with the smallest length then Vo($)V.(3) C Va($)™"

(d) if all idempotents c have the same length and 1 € o(c) then the 3-fusion rule holds!



% in algebras with identities

Let a commutative algebra V satisfy an identity of the kind
Zqﬁa(x)xa =0, z% € N(z),

where
(x) = {2% : z, 2%, «°, 2°2°, za®, 2°2°, x(a®2?),.. .}

is the commutative groupoid generated by x.

Theorem A.

Let V be a commutative algebra satisfying identity (3) and let ¢ be a nonzero
idempotent in V. Then % € o(c) in the sense that % is a root of the characteristic
polynomial of the linearization of (3).

3)




% in algebras with identities

Proof by linearization: given a NA polynomial f(z) in x, there exists a unique
endomorphism Df(x) : V — V such that

f(z+ey) = f(@) + Df()(y)e mod ¢,
Similarly, given a homogeneous function ¢ : V' — K, there exists a unique linear form
D¢(x) € V* such that

d(z + ey) = ¢(x) + Do(x)(y)e mod €.

We also have
D(¢f) =¢Df + f® Do
where
(a®b)(y) =a-bly), a€V,beV”.
Example 1. We have

(4 ey)® = 2® + 2zye mod € = D(z°)=2L,
(x +ey)® = 2° + (2%y + 22(xy))e mod € = D)=L, +2L2,



% in algebras with identities

Now, let ¢ # 0 be an idempotent. Then ¢* = c yields
D dale) =0.
Also, the linearization followed by substitution = = ¢ yields
Zqﬁaa )+ 2% @ D(¢a) =0
Z $a(c)Pro(Le) =c®®, DeV”
where Py (L) = D(2%)|s=c is a polynomial in L.. For example,
D(z®) = L2 +2L% =

D(z*)|pme = Lo + 2L =
Pys(t) = 2t° +t.



1

5 In algebras with identities

Some characteristic polynomials (note that D(z*) are very complicated but P« (t) not):

z® D(z?) Pya(t) Ppo (1) | Peo(3)
T 1 1 1 1
z? 2L, 2 2 1
x> L+ 2L2 2%+t 3 1
z* Lys+ LyL,2+2L3 263 12 4 ¢ 4 1
x?2? | AL,2 L, 4¢? 4 1
z° Lya+LyLs+ L2002 +2L0% | 2t + 83 +t24+¢ | 4 1

e In particular, P.(1) = degz.

e A NA groupoid of characteristic polynomials generated by P, = 1 by virtue of

D(z°2”) = Lya D(a”) + Ls D(z®), ie.
Pa,s = t(Pya + P,s)

e This in particular yields (by induction on degz®) that

Prags(3) = 5(Pea(3) + Pos(3)) = 5(1+1) =1



5 in algebras with identities

Return to the identity:
S $a()Pon(Le) = 0 @
If Ly = Ay and y € Kc this yields
Z% )Ppa(X) =0

Since }°_ ¢a(c) =0 and Ppa (%) =1 we conclude that

XC(%) =0 = % €o(c)

=] = = E E 9DHAE
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How to connect nonassociative algebras to PDEs?
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Commutative metrized algebras

Let A be a commutative K-algebra on V. A K-bilinear symmetric form @ on a vector
space V is called associating if

Qlz,y) =0 VyeV = zx=0,
An algebra (4, Q) is called metrized if @ is associating. In that case we have
Ly=L, forallyeV.
In particular, there holds the Peirce decomposition
V=@ VW
A€o (Ly)

Examples:

e a full matrix algebra with its trace Q(z,y) = trzy

e a real semisimple Lie algebra with its Killing form Q(a, b) = trad, ady

e a real semisimple Jordan algebra with its trace form Q(a,b) = trab

In what follows Q(z,y) = (z,y).



Commutative metrized algebras

In this setting, the study of V is essentially equivalent to study of the cubic form
N(z) = ;(zx,z) = %(:c{:r)
Then the (commutative) multiplication structure is recovered by linearization:
(ry,z) = N(z,y,2) = N(x+y+2)—N(z+y)—N(z+2)—N(y+2)+N(z)+N(y)+N(z).

Conversely, if N(x) is a cubic form on an inner product space (V, (,)) then the
multiplication is uniquely determined and turns V into a commutative metrized algebra.

While a CMA is not power associative in general (z%z? # z3z), the moments of z of
order < 5 are well defined:



Commutative metrized algebras

Let K =R, (V,(:,-)) be an inner product vector space and u(x) be a cubic form V.
Denote by V' = CMA (u) the corresponding metrized algebra, i.e.

u(z,y,2) = (zy,2),  VzEV.
In this setting,
o u(z) = glz,z?)

2
T

Du(z) = 3

zy = (D*u(x))y, or Ly = D%u(x)

i.e. the (left) multiplication operator by x is the Hessian of u at
e L, is self-adjoint: (L,y,z) = (y, Loz)

e If (,) is positive definite then the set of idempotents of V' is nonempty.

a cubic form uw + a PDE = a metrized algebra V(u) with a defining identity




Examples

o A trivial example. V = R" with (z,y) = zy and u(z) = £2°. One has
u(z;y, z) = 0.0,u(z) = zyz, = Tey=u1xy
therefore e is the usual multiplication.

o A less trivial example (a Jordan spin- factor) Let V = R? with the standard

Euclidean inner product (z,y). Let u(x) = $aiza. Then

u(z;y; 2) =x2y121 + T1Y221 + 1122 = T ey = (T1y2 + Ta2y1, T1Y1)
o A non-trivial example (H. Freudenthal 1954, T. Springer 1961) Let

V = #3(Fq) be the vector space of self-adjoint 3 x 3-matrices with coefficients in a
normed division algebra F; and

u(z) = Det(z) := é((trx) —3tratra® + 2tra®).

Then V (u) is a Jordan algebra w.r.t. the multiplication

zeoy = ;(zy+yx)



Two basic examples
(A) The Cartan-Miinzner equations (describe isoparametric hypersurfaces with g = 3
distinct principal curvatures):

|Du(@)]* = 9la|* (a*,2%) = 36Jz[*
S
Au(z) =0 trL, =0, VexeV

(B) Hsiang (1967) asked to classify all cubic homogeneous solutions of
|Dul?Au— 1Vu - V|Vul® = Nz u (4)

This equation asserts that the cone »~'(0) has zero mean curvature in R".

w
s
8
w
I

x,2?)|a|?

trl, =0 (a nontrivial implication)



How to connect Cartan-Miinzner eqs with Jordan algebras

Given a cubic form u : V' — K, consider its linearizations
° u(@,y,2) =u(@+y+2) —ul@+y) —ulx+2) —uly+2) +u@) +uy) +u(z)

o 8yu($) = u(ny) = %u(maxvy)

The Springer Construction (McCrimmon, 1969)
A cubic form N : V — K, N(e) =1, is called a admissible if the bilinear form

T(z;y) = N(e;z)N(e;y) — N(e; 23 y)

is a nondegenerate and the map # : V' — V uniquely determined by T'(z%;y) = N(z;y)
satisfies the adjoint identity
(®)* = N(z)z.
If N is Jordan and z#y = (z +y)¥ — 2% — y# then
zey = 5(z#y + N(e;z)y + N(e;y)z — N(e;z5y)e)
defines a Jordan algebra structure on V' and
z*3 — N(e;2)z*> + N(z;e)z — N(z)e =0, Vz V.




How to connect Cartan-Miinzner eqs with Jordan algebras

Let us drop the second (harmonictiy) equation. Then

Theorem (V.T., J. of Algebra, 2014). There is a natural correspondence between
e cubic solutions of |Vu(z)|? = 9|z|4, and
e rank 3 formally real semisimple Jordan algebras

such that congruent solutions corresponds to isomorphic Jordan algebras.

Proof. Let V = CMA(u), then u(z) = é<x2,1> and (z2,22) = 36/x|*. Let W =R @V and
define

3
N(@) = af = Jwolal® + 5 5% 2), © = (@o,2).

Then e = (1,0) is a base point: N(e) =1, and the polarization yields:

N(ziy) = 3adyo — 3zo{z,y) — Slel*yo + 55 (2, y)

= N(z;e) =32 — %|x\2 and N(e;z) = 3zo

= T(z,y) = N(esz)N(esy) — N(z;yse) = 3(zoyo + (z,9) = 3(z,y)
= x# :(x87%|x\2,$x27101)

= (x#)# = N(z)x = N(z)is admissible O



An alternative approach
Let V = CMA(u). Then the defining relation and the subsequent polarizations are:
(2,22 =36lz|* = B=|z%r = 24 L2=2z@z+|z?
If ¢ # 0 is an idempotent of V then |c|? =1 and 2L2 + L. — 1 = 2c ® c implying
o(Le) C {1, %, 1} = the Peirce decomposition: V =Rc @ V.(—1) ® Vc(%)7
A further polarization gives z(cy) + c¢(zy) + (cx)y = ¢{z,y), thus

Vc(t1)Vc(t2) 1 Vc(tg) unless t1 +1to +t3 =0.

1
1 -1 1
1
1 1 -1 1
The fusion rules: -1 1 %
1 1,-1

o Ly Vc(%) — Vc(%) and L2 = %|z|2 for any € V.(—1), hence (LI,VC(fl),VC(%)) is a

symmetric Clifford system, implying that

d<p(d) = de{1,2,4,8}
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Hsiang algebras

In the metrized algebra setup, the Hsiang problem (4) becomes equivalent to the
classification of all commutative Euclidean metrized algebras V satisfying

<LE2,$3> = <x7x><x27x>7

tr L, = 0.

We call a commutative algebra with positive definite associating symmetric bilinear
product a Hsiang algebras if the two above equations hold.

The correspondence:

V is a Hsiang algebra < u(z) = ¢(x,2”) generates a Hsiang cubic minimal cone.



Examples of Hsiang algebras, |

Any commutative pseudocomposition algebra, i.e. an algebra with
z® = |z, trLy =0

is Hsiang.

Remark. Appear in diverse contexts, for instance, genetic algebras or isoparametric
hypersurfaces (the hypersurfaces M of the Euclidean sphere S™~' C R™ whose principal
curvatures are constant along M). In the CMA! setup, the Cartan-Miinzner equations
for g = 3 distinct curvatures become the pseudocomposition algebra definition:
[Vu(@)* = 9lz|* (2*,2%) = 36]z[*
N
Au(z) =0 trL, =0, Ve eV

The first equation is essentially equivalent to z* = 36|z |*z.

Lcommutative metrized algebra



Examples of Hsiang algebras, |l

Definition. A commutative metrized Zs-graded algebra V' = Vi @ V; is called polar if
VoVo = {0} and L2 =|z|? on Vi, Yz € Vo.

An equivalent description: start with a symmetric Clifford system o7 € Cliff(X,Y), i.e.

symmetric matrices {A1,..., A4} with A2 =1 and
AiAj + Ain =0, i#7j

The well-known obstruction:

q <1+ p(p),
where p(m) = 8a + 2b if m = 249+t . 6dd, 0 < b < 3 is the Hurwitz-Radon function.

Proposition (the correspondence)
An algebra V' = Vj @ V; is polar iff it is isomorphic to CMA of the cubic form

q
ud(z):zxi.ytAiy’ z=(w,y)€RqXR2p
=1

The correspondence is a bijection between isomoprhy classes and the classes of geometrically

equivalent Clifford systems.




How to classify?

otherwise it is called exceptional.

Definition. A Hsiang algebra V' similar to a polar algebra is said to be of Clifford type;

Polar algebras Symmetric Clifford
/ systems
Hsiang
algebras

Vladimir G. Tkachev

\> Exceptional algebras <—>-
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The harmonicity

Theorem 1

Any non-trivial Hsiang algebra V' is harmonic, i.e. tr L, = 0 for all x € V. In particular,

o In any Hsiang algebra

<$27 x3> = —%)\<CU, I2>|1'|2

for some X < 0.

o All idempotents ¢ have the same length: |c| = \/— 2.

Definition
A Hsiang algebra is called normalized if A = —2 (i.e. |c[> = 2). Then

<562, .’E3> = %(:C, :E> <m7 l’2>,

z2® + 12°2? — |2°2% — 2(z®, )z = 0.




The Peirce decomposition

o Let c € #(V) and V.(t) = ker(L. — tI), then V(1) = Rc and
V=Re® Ve(-1) @ Ve(~3) @ Ve(3)

e The Peirce dimensions

ni(c) =dimV.(—1), n2(c) =dimVe(—1), ns(c) =dimV.(3)

satisfy
nz(c) = 2n1(c) + na(c) — 2
3ni(c) + 2n2(c) — 1 =dimV = n.
In particular, any of n;(c) completely determines two others.
Examples.
e If V is a polar algebra then (ni(c),n2(c)) = (dim Vo — 1, 1 dim Vi —dim Vp + 2).

e If V is a pseudocomposition algebra then (ni(c),n2(c)) = (=Y 0).



The Peirce decomposition

Proposition 1
Setting Vo = Vo(1), Vi=V.(-1), Va=V(—3), Vz=V.(3) we have

Vo Vi Vs Vs
Vo Vo Vi Va Vs
Vi Vi Vo Vs Va® V3
Vo Vo Vi | Vo Ve ie Vs
Vs Vs | Va@d Vs | VioVe | Vo Vi@ Ve

In particular, Vo @& Vi and Vo @ Va are subalgebras of V. Notice however that these
subalgebras may be Hsiang subalgebras or not.




The cubic trace identity

Traces of (powers of) multiplication operators in an algebra is an important tool to study
invariant properties. We already have tr L, = 0 for any x € V. The following property
provides an effective tool to determine the Peirce dimensions.
Theorem 2
Any normalized Hsiang algebra satisfies the cubic trace identity

trL2 = (1 — na1(c))(z, z°), Vee Z(V),xz e V. (6)

In particular, the Peirce dimensions (n1(c),n2(c)) are similarity invariants of a general
Hsiang algebra and do not depend on a particular choice of an idempotent c.

In what follows, we write (n1(V),n2(V)), or just (n1,ns2).




A ‘rough’ classification of Hsiang algebras

Theorem 3 (A hidden Clifford algebra structure)

ny — 1 §p(n1 + no — 1),
where p is the Hurwitz-Radon function.

Proof. One can prove that A(z) = /3L, — (1 + v/3)(LzLe + L.Ly), x € V; satisfies
A =z)* onVad Wi

which implies A € Cliff (V4, V> @ V3) and the desired obstruction.

Corollary

Given ng > 0, there are finitely many admissible Peirce dimensions (n1,n2).




A ‘rough’ classification of Hsiang algebras

Theorem 4 (A hidden Jordan algebra structure)

Given c € Z(V), let us define the new algebra structure on A. = (Vo @ Va, ) with the
multiplication
zey = gy + (z, )y + (y, ¢}z — 2Aay, c)c. @)
Then A. is a Euclidean Jordan algebra with unit ¢* = 2¢, the associative trace form
T'(z;y) = (x,y) and
rk Ac = min{3,n2 (V) + 1} < 3.

Idea of the Proof: to verify that the cubic form N(z) = (z,z*) on Vi & V2 with a

basepoint ¢* = 2c is Jordan for any ¢ € .# (V') and apply the Springer-McCrimmon
construction.




A ‘rough’ classification of Hsiang algebras

Theorem 5 (The dichotomy of Hsiang algebras)

The following conditions are equivalent:
@ A Hsiang algebra V' is exceptional

@ The Jordan algebra V(1) @ V.(—3) is simple for some c

@ The Jordan algebra Vo(1) & V.(—3) is simple for all ¢

@ The quadratic form = — tr L2 has a single eigenvalue and na (V') # 2




A ‘rough’ classification of Hsiang algebras

Combining Theorem 3 and Theorem 5, one obtains

Corollary

There are at most 24 classes of exceptional Hsiang algebras. For any such an algebras
na € {0,5,8,14,26} and the possible corresponding Peirce dimensions are

n 2 5 8| 14| 26| 9 12| 15| 21| 15| 18| 21| 24| 30| 42| 27| 30| 33| 36| 51| 54| 57| 60
ni| 1 2 & 5 e 0 1 2 4 0 1 2 3 5 © 0 1 2 3 0 1 2 3
nol 0| O o O 0 5 5 5 5 8 8 8 8 8 8 14| 14| 14| 14| 26| 26| 26| 26

The cells in blue color represent non-realizable Peirce dimensions and the cells in gold
color represent unsettled cases

The above dimensions come from the possible solutions of the Hurwitz-Radon
obstruction in Theorem 3 if ny = 0,5, 8,14, 26. The pink-color dimensions are not
realizable (it follows form a finer, tetrad representation, see Example 2 above for en
example of a tetrad, and Theorem 7 below).

A key question: Which Peirce dimensions in the above table are indeed realizable?




A ‘rough’ classification of Hsiang algebras: the existence

n 2 5 8| 14| 26| 9 12| 15| 21| 15| 18| 21| 24| 30| 42| 27| 30| 83| 86| 51| 54| 57| 60| 72
ny| 1 2 3 5 9 0 1 2 4 0 1 2 3 5 9 0 1 2 3 0 1 2 3 7
nol O] O o O 0 5 5 5 5 8 8 8 8 8 8 14| 14| 14| 14| 26| 26| 26| 26 | 26

White dimensions are realizable

0 If ng = 0 then ny € {2,5,8,14,26}. The corresponding Hsiang algebras are
VES(u), u = 3(2,2°%), V = #4(Kay) ©Re, d =0,1,2,4,8.

o If ny = 0 then ny € {5,8,14}. The corresponding Hsiang algebras are VS (u),
15(2%,3% — 2), where z — % is the natural involution on V = J4(Ky), d = 2,4,8.

o If ny = 1 then ny € {5,8,14,26}. The corresponding Hsiang algebras are V¥ (u),
u(z) = Re(z,2%), where 2 € V = #4(Kq) ® C, d = 1,2,4,8.

o If (n1,n2) = (4,5) then V = VF(u), u = 1(z,2%) on J4(Ks) © J45(K:)




Towards a finer classification: a tetrad decomposition

A quadruple of idempotents as in Example 2 on page 17 is called a tetrad, see picture below

Here w; are 2-nilpotents. Remarkably, for each vertex c;, the adjacent wq are the primitive
idempotents in the corresponding Jordan algebra V, (1) & V&, (f%) such that 2¢; is the Jordan
algebra unit and 2¢; = Zadjacent Weq is the Jordan frame.



Towards a finer classification: a tetrad decomposition

Theorem 6

v=5s'eSTesPeM oM oM,
where M" := V4, (0) N Vi, (0)" N Vi, (0 and S* := V4, (0)* N Vi, (0) N Vi, (0). IFV
is an exceptional Hsiang algebra with no = 3d + 2, d € {1,2,4,8} then
o M*® is a null-subalgebra, dim M, = ni + 1,
0 §*=85,P 85 o, dimS+, =d.

O any 'vertex-adjacent’ triple S.,Sg, S forms a triality:

SaSs =8y,  |zazs|® = Laal|as]?,




Fusion rules

of a tetrad

52153153

My Moy Mg

E E s1 Sa Sg S3 So sS4 Mg & Mg My & Mg My & My
S1 Rwq S3 So Sa S M1 S1 @ Dy My My

Sa Rwg S1 sS4 Mgy S3 Mgy So & Dy My

S3 Rwg Mg S4 S Ms Mg S3 @ D3
S3 Rwsg s1 So Mg Mg S3® D3
S Ruwg Sy Moy So ® Do Moy

sS4 Rwi S1® D My My

M,y 0 slgs2gm3 | stesdgm?
Moy 0 s?2 @ 53 @ Ml
Mg 0

Table:



Towards a finer classification: a tetrad decomposition

Define T := Span[S®S®]. Then

Theorem 7

Qo

Qo

Qo

T Cc M*

T = T°

T admits a structure of a commutative real division algebra, in particular,
7(V) :=dimT* € {1,2}

Ifd > ny then (V') = n1.

Ifni1 > 1 and d > p(n1) — 1 then 7(V) = 1.

If 7(V) =1 then ny =1 mod 2.

There is no exceptional Hsiang algebras with the blue Peirce dimensions.
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