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Geometry is one of the oldest science: originally, the practical knowledge on area and
shape was used in astronomy and in land surveying, but as soon as geometric figures could
be represented analytically, the theory developed quickly. There are various areas in Geom-
etry; this module will restrict to Differential Geometry, that is the part of Geometry which
is concerned with objects which are smooth, and in particular to the theory of curves and
surfaces in space. The visual nature of this low–dimensional geometry makes the theory
very accessible, and we will discuss and use various tools of visualisation to understand the
shape and the curvature of a geometric object.

Most results of the course have immediate extensions to high–dimensional objects (”mani-
folds”) though most of our proofs will use elementary approaches not always suitable for
generalization. The generalization to manifolds is a topic for a 4th year reading module.

Applications of Differential Geometry arise in various fields:

• in Mathematics (e.g. Perelman’s proof of the Poincare conjecture uses techniques of
Differential Geometry)

• Physics (after all, Einstein’s general theory of relativity is expressed in the language
of Differential Geometry!)

• Economy, Engineering, and Computer Graphics.
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Course details:

Module hours & rooms

Class Time Lecture Room
Monday 12-1 ENG LT1
Tuesday 5-6 ATT LT3
Thursday 2-3 BEN LT2

There will also be an example class on Wednesday 9-10 in ATT 208. However, in some
weeks it may be used for lectures. Near the end of the semester, some lectures and problem
classes will be used for revision.

Office hours: Mondays, 2-3: everyone is welcome with any questions or remarks. Of
course, you can also talk to me after class, or sent email to arrange for a meeting at a more
convenient time.

Assessment The assessment of this module is 100% course work: we will have two basic
skill tests (each worth 20% of the total module mark), one end of term class test (worth
30% of the total module mark) and a group project on visualisation (worth 30% of the
total module mark).

Basic skill tests The two basic skill tests are MAPLE TA tests and will be during term
(before the Easter break). The first one will deal with basic skills on curves, the second
one with basic skills on surfaces (can you compute the curvature of a curve and a surface?
do you know the main definitions? do you know the Theorema egregium? etc). As the
name says, you should consider the content of the basic skills tests as necessary to pass
the module.

Class test The class test will deal with more advanced topics: can you derive properties
of curves and surfaces by given data? can you prove main theorems? This will take place
near the beginning of next term.

Group project The task for each group will be to produce two exhibits for a future
exhibition, one on curves and one on surfaces. The aim is to demonstrate that you are able
to explain the contents of the module to, say, last year high school students or teachers.
One of the exhibits should be a small video, the other one could be a model of a geometric
object. To do so, we will learn how to use the software 3D-Explore-Math.

Problem class In the problem class we will develop strategies to solve problems and will
discuss additional examples to the ones given in the lectures. As always in learning (maths),
your own contribution and engagement will determine your success in this module. This
holds in particular for actively contributing to the problem sessions. The problem classes
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are not assessed, however experience has shown that students who attend and do well in
the problem classes also do well in the assessments.

Syllabus After an introductory lecture explaining the nature of the module and the subject
matter the module splits into two main parts:

(i) (Curves in the Plane and in Space): how much does a curve curve? What are global
properties of curves?

(ii) (Surfaces in Space): how to describe curvature properties of surfaces? What is the
first fundamental form? What information does the Gauss map carry? What are
shortest curves on a surface? What global information is given by the curvature:
Theorema Egregium, Gauss–Bonnet theorem.

Blackboard All course material, news and announcements can be found at https://

blackboard.le.ac.uk. Please make sure to enrol to Curves and Surfaces!

Reading list In the library (section 515.6) you will find many books on this subject, most
of them covering the standard material in a comprehensible way. Some of the relevant
books are:

• A. Pressley, Elementary Differential Geometry, Springer.

• S. Montiel, A. Ros, Curves and Surfaces, AMS.

• V. A. Toponogov, Differential Geometry of Curves and Surfaces, Birkhäuser.

• W. Kühnel, Differential Geometry: Curves – Surfaces – Manifolds, AMS.

• M. Berger, A Panoramic View of Riemannian Geometry, Springer.

• R. L. Faber, Differential Geometry and Relativity Theory: An Introduction, Springer.

• R. McLeod, Geometry and interpolation of curves and surfaces, Cambridge University
Press.

This lecture and its notes essentially follow the book “Elementary Differential Geometry”
by A. Pressley: we recommend to have a look at this book for further details and more
exercises. For historical notes compare the book of Montiel and Ros. The study of various
other sources is also highly recommended: different approaches and lots of exercises help
to conquer the material covered in this module. Moreover, you might as well find exiting
new topics!

Note: lecture notes are not text books; in particular, do expect to see typos, errors and
weird sketches. Any feedback is very appreciated!

https://blackboard.le.ac.uk
https://blackboard.le.ac.uk
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Chapter 1

Introduction

In this module we want to understand and visualise objects in space, e.g.

Some of the distinguishing properties come from topology, that is, they only depend on the
continuity of the involved maps. For example, the numbers of holes of an object cannot
be changed by a continuous deformation.
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Other properties depend on more geometric properties: for example, the curvature of a
surface will be effected by continuous deformations.

Our main interest are curves and surfaces. These are special cases of manifolds. Roughly,
a manifold can be understood as a gluing together of various pieces of flat material.

Curves are images of a map from an interval into the plane or 3–space. One immediate
geometric property is the curvature: it describes the shape of the curve in a neighbourhood
of a point.
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From our knowledge of calculus we expect the curvature to be related to the second deriva-
tive of a function.

The study of curvature of a curve goes back a long way. First attempts were made in the
14th century by d’Oresme, a bishop of the french city Lisieux; his approach was quantita-
tive. With the beginning of calculus, Newton and Leibniz tried to deal with the curvature
of plane curves with Leibniz’ first attempt of a definition in 1684. Euler initiated in 1736
intrinsic geometry and introduced the notion of arc length and curvature radius. The study
of space curves started in 1771 with work of Monge but Cauchy introduced the modern
way of defining notions such as curvature and torsion, and later Darboux gave the first
modern description in terms of moving frames.
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Figure 1.1: Newton, Leibniz, Cauchy, and Darboux

For surfaces we can look at the curvatures of curves through a given point. By a com-
pactness argument, there is a maximum and a minimum curvature, the so–called principal
curvatures. Averaging these principal curvatures we get the Gaussian and the mean cur-
vature.

These curvatures prescribe the shape of the surface; for example, a very famous result of
Gauss explains why every map from the earth’s surface has to distort distances: the earth
and a plane have different Gaussian curvature.

The study of surfaces has a long tradition: for cartography it is important to understand
which maps (if any) can be used to map a sphere onto the plane by preserving length (or
other geometric features). The stereographic projection was already studied by Ptolemy (c.
150), and other famous projections include the Mercator projection (1569). Euler started
the theory of surfaces (1748), and introduced a first notion of curvature in 1767. Gauss work
in 1828 systematically studied surfaces, and introduced the curvature nowadays known as
Gaussian curvature. He also clearly understood the difference between intrinsic/extrinsic
aspects, and was the first one to understand the importance of parametrisations to study
surfaces. The other important definition of curvature, the mean curvature, is due to Sophie
Germain (1831). In 1854 Riemann’s famous Habilitationsschrift generalised the notion
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Figure 1.2: Euler, Gauss, Germain and Riemann

of surface to higher dimensions, and introduced the curvature tensor of a Riemannian
manifold. His thesis is still considered as one of the most important works in differential
geometry.

Prerequisites: This module uses various results from Calculus and Analysis as well as
from Linear Algebra. If you are not confident about the following topics, please refresh
your knowledge:

• invertible functions and their inverse

• open ball in Rn

• continuous maps from an open set in Rn to Rm

• differentiable maps from an open set in Rn to Rm (in particular, partial derivatives,
the Jacobian, the Hessian, local maximum and minimum)

• basic integration of functions of one variable

• Eigenvalues and eigenvectors

• Linear maps and their matrix representation with respect to a basis

• Inner product in Rn.
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Chapter 2

Curves

2.1 What is a curve?

Recall the examples of curves you have seen in “Methods of Applied Maths”:

y = 2x+ 1 x2 + y2 = 1 y = x2

These examples are curves given by a Cartesian equation:

f(x, y) = c

where f : R2 → R is a function in 2 variables: Put differently, the curve is given as a level
set

C = {(x, y) ∈ R2 | f(x, y) = c}

of the differentiable function f . In our examples we have f(x, y) = y−2x, f(x, y) = x2 +y2

and f(x, y) = y − x2 respectively, and all curves are plane curves. If we want to consider
space curves, e.g.

C = {(x, y, z) ∈ R3 | x = cos z, y = sin z} ,

13
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then the curve is the level set of a function f : R3 → R2:

C = {(x, y, z) ∈ R3 | f(x, y, z) = c}

with c ∈ R2. In our example, we have

f(x, y, z) =

(
x− cos z
y − sin z

)
, c =

(
0
0

)
.

However, for our purposes it is mostly better to understand a curve as the path of a moving
particle: given a time t we assign a position γ(t):

γ(t) =

(
0
1

)
+ t

(
1
1

)
or γ(t) =

cos(t)
sin(t)
t



So, here is our first attempt to define a curve:

Preliminary Definition A (parametrised) curve is a map γ : (α, β)→ Rn where −∞ ≤
α < β ≤ ∞.
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Example 2.1. Given the plane curve C = {(x, y) ∈ R2 | y = x2} in Cartesian coordinates,
find a parametrisation γ : (α, β)→ R2 such that C = {γ(t) | t ∈ (α, β)}. Writing

γ(t) =

(
γ1(t)
γ2(t)

)
we have to find γ1, γ2 such that γ2(t) = γ1(t)2. An obvious choice is to set

γ(t) =

(
t
t2

)
for t ∈ R .

Thus, γ is a parametrisation of the parabola:

C = {γ(t) | t ∈ R} .

Example 2.2. Consider the circle C = {(x, y) ∈ R2 | x2 + y2 = 1}. In our first attempt,
we solve as before the equation x2 + y2 = 1 for y and set

γ(t) =

(
t√

1− t2

)
for t ∈ (−1, 1) .

However, {γ(t) | t ∈ (−1, 1)} $ C.

Second attempt: use polar coordinates! Write

γ(t) =

(
γ1(t)
γ2(t)

)
then we have to satisfy γ1(t)2 + γ2(t)2 = 1. Put

γ1(t) = cos t, γ2(t) = sin t

then
C = {γ(t) | t ∈ R} .

Example 2.3. Given the astroid γ(t) = (cos3 t, sin3 t) can we find a Cartesian equation?
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Put x = cos3 t, y = sin3 t. Since x
2
3 = cos2 t, y

2
3 = sin2 t we have

x
2
3 + y

2
3 = 1 .

So, the astroid is given by the Cartesian equation

C = {(x, y) ∈ R2 | x
2
3 + y

2
3 = 1} .

Our first definition of a curve allows for points where the curve does not have a tangent
line:

To avoid these curves, we adjust our definition of a curve. Recall first:

Definition 2.4. A map γ : (α, β)→ Rn is called smooth if γ is arbitrarily often differen-
tiable where

γ′(t) =

γ
′
1(t)
...

γ′n(t)

 .

To find a tangent at each point of a curve, we have to be able to take the derivative of the
parametrisation at this point; that is, we require from now on that our curves are smooth
functions!



2.1. WHAT IS A CURVE? 17

Definition 2.5. A (parametrised smooth) curve is a smooth map γ : (α, β) → Rn where
−∞ ≤ α < β ≤ ∞.

We call γ a parametrisation of the curve.

Now, we can define the tangent of a curve:

Definition 2.6. For a curve γ : (α, β)→ Rn the map

T = γ′ : (α, β)→ Rn

is called the tangent of γ.

Example 2.7. The map γ(t) = p+ tq, t ∈ R, p, q ∈ Rn is smooth with constant tangent

T (t) = q .

The curve is a straight line in Rn.

Example 2.8. Consider the half circle

C = {(x, y) ∈ R2 | y > 0, x2 + y2 = 1} .

Then

γ1(t) =

(
t√

1− t2

)
, t ∈ (−1, 1)

is a smooth parametrisation of C with tangent

T1(t) =

(
1
−t√
1−t2

)
.

In particular, at t = 0 we have

γ1(0) =

(
0
1

)
and T1(0) =

(
1
0

)
.

Now consider

γ2(t) =

(
cos t
sin t

)
, t ∈ (0, π) .
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Again γ2 is a smooth parametrisation of the half circle C with tangent

T2(t) =

(
− sin t
cos t

)
.

At t = π
2

we have

γ2(
π

2
) =

(
0
1

)
and T2(

π

2
) =

(
−1
0

)
.

This shows, that the tangent of a curve depends on the choice of parametrisation: in our
situation we have

γ1(0) = γ2(
π

2
) but T1(0) 6= T2(

π

2
) .

Example 2.9. Every plane circle can be smoothly parametrised by

γ(t) = m+ r(cos t, sin t), t ∈ R

where m is the centre of the circle and r is the radius.

Example 2.10. Let γ(t) = (t, t
2
3 ), t ∈ R. Then γ is not smooth at t = 0. However,

C = {γ(t) | t ∈ R}

can be parametrised smoothly: C = {γ̃(t) | t ∈ R} for the smooth map

γ̃(t) = (t3, t2) .
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Example 2.11. Consider the curve γ(t) = (t3 − 4t, t2 − 4), t ∈ R.

Then γ has a self–intersection γ(2) = γ(−2) = (0, 0). However, the tangent is well defined:

T (t) = (3t2 − 4, 2t)

with T (±2) = (8,±4).

Proposition 2.12. Let γ : (α, β)→ Rn be a curve with constant tangent T . Then γ is a
part of a straight line.

Proof. Since the tangent is constant, there is a ∈ Rn with γ′(t) = a for all t. Then for
t0 ∈ (α, β)

γ(t)− γ(t0) =

∫ t

t0

γ′(u)du = a(t− t0)

shows that

γ(t) = at+ b

with b = γ(t0)− at0 ∈ Rn is a straight line.

2.2 What is the length of a curve?

In this section we recall how to calculate the length of a curve from the module ”Methods
of Applied Maths”. We know that the distance between two points a, b ∈ Rn is measured
by

d(a, b) = ||a− b||

where ||x|| = √< x, x > and< x, y >=
∑n

i=1 xiyi where x = (x1, . . . , xn), y = (y1, . . . , yn) ∈
Rn. To approximate the length of a curve we consider a partition T with a = t0 < t1 <
. . . < tk = b and

L(γ, T ) =
k−1∑
j=0

||γ(tj+1)− γ(tj)|| .
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Intuitively, we see that L(γ, T ) is an underestimate for the length of γ. Therefore it makes
sense to define the arc length Lba(γ) of γ as the supremum of L(γ, T ) over all possible
partitions T . However, we wish to have a definition which is easier to work with.

By the Mean Value Theorem there exists ξj ∈ (tj, tj+1) with

||γ(tj+1)− γ(tj)||
tj+1 − tj

= ||γ′(ξj)|| .

From this, we have

L(γ, T ) =
k−1∑
j=0

||γ′(ξj)||(tj+1 − tj) .

Finally, taking supremums, one obtains that

Lba(γ) =

∫ b

a

||γ′(t)||dt .

Exercise 2.13. Can you fill in the gaps in the above argument, using the smoothness of
γ and the theory of integration, to make it rigorous?

Definition 2.14. Let γ : (α, β)→ Rn be a curve. Then the arc length function of γ with
starting point t0 ∈ (α, β) is the function s : (α, β)→ R defined by

s(t) =

∫ t

t0

||γ′(u)||du .

Remark 2.15. Note that the arc length function depends on the starting point t0 ∈ (α, β).

Example 2.16. Consider the logarithmic spiral γ(t) = (et cos t, et sin t), t ∈ R, and com-
pute the arc length function with starting point t0 = 0 and the length of the curve from
γ(0) to γ(1).
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From our geometric intuition we know that the arc length function should not change if
we rotate or translate the curve:

Proposition 2.17. Let Φ(x) = Mx + b,M ∈ O(n), b ∈ Rn and γ : (α, β) → Rn a curve.
Then Φ ◦ γ is a curve and

Lba(Φ ◦ γ) = Lba(γ) .

Proof. We first see that
γ̃(t) = Φ ◦ γ(t) = Mγ(t) + b ,

is a smooth function with
γ̃′(t) = Mγ′(t) .

For the next step, either observe that, by definition, M ∈ O(n) preserves the inner product,
i.e. < Mv,Mw >=< v,w > for all v, w ∈ Rn. Or, use that M t = M−1 for all M ∈ O(n),
hence

< Mv,Mw >=< v,M tMw >=< v,w > for all v, w ∈ Rn

and thus
||γ̃′(t)|| = ||γ′(t)||

for all t. The statement now follows from the definition of the arc length function.

We also observe that the derivative of the arc length function is

s′(t) =
d

dt

∫ t

t0

||γ′(u)||du = ||γ′(t)|| , (2.1)

the speed of a particle at the time t in the parametrisation γ.

Definition 2.18. A curve γ : (α, β)→ Rn has unit speed if

||γ′(t)|| = 1

for all t ∈ (α, β).
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The next lemma looks kind of harmless but we will use its result quite often. So familiarise
yourself with the statement and the (easy!) proof:

Lemma 2.19. Let n : (α, β) → Rn be a smooth map with ||n(t)|| = 1 for all t ∈ (α, β).
Then n′(t) is perpendicular to n(t) for all t, that is

< n′, n >= 0 .

Proof. Since n(t) has length 1, we have

1 =< n(t), n(t) > .

Differentiating this equation, we get

0 =
d

dt
< n(t), n(t) >= 2 < n′(t), n(t) > .

In particular, for a unit speed curve γ we have

Corollary 2.20. Let γ : (α, β)→ Rn be a unit speed curve and T its tangent. Then T ′ is
a normal to the curve, that is,

< T ′, T >= 0 .

Proof. The map T (t) has ||T (t)|| = 1, and thus we can apply the previous lemma with
n(t) = T (t).

Warning: the assumption that γ has unit speed is crucial!!

Example 2.21. Consider the parametrisation γ(t) = (cos t, sin t), t ∈ R, of the circle.
Then γ has unit speed, and

T (t) = (− sin t, cos t), T ′(t) = (− cos t,− sin t)

shows that < T, T ′ >= 0.

If we consider the parametrisation γ(t) = (t,
√

1− t2), t ∈ (−1, 1), then

T (t) = (1,− t√
1− t2

), T ′(t) = (0,− 1
√

1− t23 )

has

< T (t), T ′(t) >=
t

(1− t2)2
6= 0 for t 6= 0 .
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2.3 What is the best parametrisation of a curve?

As we have seen, the tangent and the speed of a curve will depend on the parametrisation.
Can we normalise the parametrisation, e.g., do all curves have a unit speed parametrisation
(which would be good in view of Corollary 2.20).

Consider the plane curves

γ(t) = (cos t, sin t) and γ̃(t) = (sin t,− cos t), t ∈ R .

Obviously, both curves parametrise a circle. We observe that

sin(t) = cos(t− π

2
), cos t = − sin(t− π

2
)

so that
γ̃(t) = γ(t+

π

2
) .

Thus, if we denote by Φ : R→ R, t 7→ t+ π
2
, then

γ̃ = γ ◦ Φ .

Note that Φ is bijective with Φ−1(t) = t − π
2

so that we can also write γ = γ̃ ◦ Φ−1. We
call γ̃ a reparametrisation of γ.

What are the properties of a map Φ so that γ ◦ Φ is again a curve?

Definition 2.22. Let U, V be open connected subsets of Rn. Then Φ : U → V is called a
diffeomorphism if

(i) Φ is bijective

(ii) Φ is smooth

(iii) Φ−1 is smooth

If Φ is a diffeomorphism, then γ̃ = γ ◦ Φ is smooth if and only if γ is smooth. Hence, we
can reverse the reparametrisation by γ = γ̃ ◦ Φ−1.

Definition 2.23. Let γ : (α, β) → Rn be a curve. Then γ̃ : (α̃, β̃) → (α, β) is called
a reparametrisation of γ if there exists a diffeomorphism Φ : (α̃, β̃) → (α, β) such that
γ̃ = γ ◦ Φ. In this case, Φ is called the corresponding reparametrisation map.
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Note that if γ̃ is a reparametrisation of γ with reparametrisation map Φ, then γ is also a
reparametrisation of γ̃ with reparametrisation map Φ−1. In fact we have more:

Remark 2.24. Reparametrisation is an equivalence relation on the set of curves.

Example 2.25. Is γ̃(t) = (cos t, sin t), t ∈ (0, π), a reparametrisation of γ(t) = (t,
√

1− t2),
t ∈ (−1, 1)?

(Hint: find a reparametrisation map!)

Lemma 2.26. Arc length is invariant under reparametrisation up to a sign. That is, if
γ̃ = γ ◦ Φ is a reparametrisation of γ, then Lba(γ) = Lb̃ã(γ̃), where ã = Φ−1(a), b̃ = Φ−1(b).

Proof. Exercise.

As we have seen, unit speed curves have nice properties. Can we reparametrise every curve
to a unit speed curve? Consider first a special class of curves; those whose speed is never
zero:

Definition 2.27. A curve is called regular if γ′(t) 6= 0 for all t ∈ (α, β); otherwise it is
called singular.

Example 2.28. The curve γ(t) = (cos t, sin t), t ∈ R, is regular since

||γ′(t)|| = ||(− sin t, cos t)|| = 1 6= 0, for all t ∈ R .

Corollary 2.29. Every unit speed curve is regular.

Proposition 2.30. Every reparametrisation of a regular curve is regular.

Proof. Let γ : (α, β)→ Rn be a regular curve, and let Φ : (α̃, β̃)→ (α, β), t̃ 7→ t = Φ(t̃) be
a diffeomorphism.

Since

Φ−1 ◦ Φ(t̃) = t̃ =⇒ 1 =
d

dt̃

(
Φ−1 ◦ Φ(t̃)

)
=

d

dt
Φ−1|Φ(t̃) ·

d

dt̃
Φ|t̃

we see that d
dt̃

Φ|t̃ 6= 0. Thus, for a reparametrisation γ̃ = γ ◦ Φ we see

d

dt̃
γ̃(t̃) =

d

dt
γ|Φ(t̃) ·

d

dt̃
Φ|t̃ 6= 0 .

Here we used that d
dt
γ|Φ(t̃) 6= 0 since γ is regular. Therefore, γ̃ is regular.
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An obvious consequence is that every reparametrisation of a unit speed curve is regular.
Put differently, only regular curves may allow a reparametrisation into a unit speed curve.

Theorem 2.31. A parametrised curve has a unit speed reparametrisation if and only if it
is regular.

Proof. If γ̃ = γ ◦ Φ has unit speed, then γ̃ is regular. Since γ is a reparametrisation of γ̃
Proposition 2.30 shows that γ is regular.

Conversely, let γ : (α, β)→ Rn be regular, that is, ||γ′(t)|| 6= 0 for all t ∈ (α, β). Consider
the arc length function

s(t) =

∫ t

t0

||γ′(u)||du .

We first show that s is smooth. We recall (2.1) that s is differentiable with s′(t) = ||γ′(t)||.
How about higher derivatives?

Since ||γ′|| =
√

(γ′1)2 + . . .+ (γ′n)2 6= 0 we have that

d

dt
||γ′|| = 1

2
√

(γ′1)2 + . . .+ (γ′n)2
(2γ′1γ

′′
1 + . . .+ 2γ′nγ

′′
n)

so that
d

dt
||γ′(t)|| = < γ′(t), γ′′(t) >

||γ′||
. (2.2)

That is, t 7→ s′(t) is differentiable. Repeated application of the product rule and (2.2)
show that all higher derivatives exist, that is, s is smooth.

Next, we see from s′(t) = ||γ′|| > 0 that s is strictly increasing. Since s is smooth we know
from “Real Analysis” that the image of the interval (α, β) under s gives an open interval,
which we will denote by s(α, β) = (α̃, β̃). Moreover, s is bijective.

The Inverse Function Theorem states that if s′(t0) 6= 0 then s−1 exists and is smooth in
a neighbourhood of t0. Since s is bijective, this shows that s−1 is smooth at every point
t0 ∈ (α, β). Put

Φ : (α̃, β̃)→ (α, β), t 7→ Φ(t) = s−1(t) ,

and note that

Φ′(t) = (s−1)′(t) =
1

s′(s−1(t))
=

1

||γ′(Φ(t))||
, (2.3)

since s′ = ||γ′||. Now put
γ̃ = γ ◦ Φ

then

γ̃′(t) = γ′(Φ(t)) · Φ′(t) =
γ′(Φ(t))

||γ′(Φ(t))||
.

Thus ||γ̃′(t)|| = 1 and γ̃ is a unit speed reparametrisation of γ with reparametrisation map
Φ.
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Let us summarise the steps to reparametrise a curve by unit speed:

(i) Check γ′(t) 6= 0 for all t ∈ (α, β), e.g., verify ||γ′(t)|| 6= 0.

(ii) Compute the arc length function s(t) =
∫ t
t0
||γ′(u)||du, choose convenient t0 ∈ (α, β).

Put (α̃, β̃) = s(α, β).

(iii) Compute the inverse s−1(t) of s, and put Φ(t) = s−1(t) for t ∈ (α̃, β̃).

(iv) Put γ̃ = γ ◦ Φ.

(v) Verify your result: show that ||γ̃′(t)|| = 1 for all t ∈ (α̃, β̃).

Example 2.32. Let γ(t) = (cos(2t+ 3), sin(2t+ 3)). Reparametrise γ, if possible, by unit
speed.

Example 2.33. Let γ(t) = (t,
√

1− t2), t ∈ (−1, 1). Reparametrise γ, if possible, by unit
speed.

Our procedure produces for every regular curve a unique reparametrisation by a unit speed
curve. But is there another unit speed reparametrisation of a regular curve?

Corollary 2.34. Let γ be a regular curve, and γ̃ = γ ◦Φ be a unit speed reparametrisation
of γ. Then for u = Φ−1

u = ±s+ c ,

where s is the arc length function and c ∈ R constant. Conversely, if γ̃(u(t)) = γ(t) for
u = ±s+ c then γ̃ has unit speed.

In other words, the reparametrisation to unit speed is essentially unique (up to change of
parameter s(t) 7→ ±s(t) + c with c ∈ R). Note that this means that we can reparametrise
a unit speed curve into a different unit speed curve!

Proof. We have γ̃ ◦ u = γ so that

γ̃′(u(t)) · u′(t) = γ′(t) .

Thus γ̃ has unit speed if and only if

||γ̃′|| = 1 ⇐⇒ u′(t) = ±||γ′(t)|| = ±s′(t) ⇐⇒ u = ±s+ c .

Example 2.35. Let γ(t) = (et cos t, et sin t). Reparametrise, if possible, by unit speed.
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The parametrisation of a regular curve by unit speed can be very “ugly”. Worse, in lot of
cases, we cannot compute the arc length function or its inverse explicitly.

Example 2.36. The curve γ(t) = (t, t2, t3), t ∈ R, is regular with

s(t) =

∫ t

t0

√
1 + 4u2 + 9u4du .

This is a so–called elliptic integral, and there is no explicit formula for s.

2.4 How much does a curve curve?

We are looking for a measure of how much a curve curves. We first compile a list of
essential properties of this curvature:

• The curvature should be a geometric property, that is, it should not be dependent
on the parametrisation but only on the shape of the curve.

• Straight lines should have zero curvature.

• Large circles should have smaller curvature then small circles.

• The curvature should measure how much the tangent is changing.
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A straight line γ = at + b has γ′′ = 0 so we might think that the curvature should be the
length of γ′′. However, if we reparametrise a curve

γ̃ = γ ◦ Φ

then
γ̃′′ = (γ′′ ◦ Φ)(Φ′)2 + (γ′ ◦ Φ)Φ′′

and the length of γ̃′′ changes in unpredictable ways, which seems to contradict our first
requirement. In particular, for this to become a reasonable definition, we have to fix which
parametrisation we choose.

Definition 2.37. If γ : (α, β)→ Rn is unit speed, then the curvature of γ is defined by

κ(t) = ||γ′′(t)|| .

Example 2.38. Compute the curvature of a plane circle.

(Hint: find a unit speed parametrisation of the circle of radius r and centre m ∈ R2).

Now, we can define the curvature of a regular curve, by simply requiring it to be indepen-
dent of the parametrisation!

Definition 2.39. If γ is regular, then its curvature is defined by

κ(Φ(t)) = κ̃(t)

where κ̃ is the curvature of the unit speed curve γ̃ = γ ◦ Φ.

Note that by the uniqueness of the unit speed parametrisation, the curvature is indeed
well–defined. As we have seen, it might be difficult to explicitly compute the unit speed
parametrisation of a regular curve. Therefore, we need formulae for the curvature which
are completely given in terms of the original parametrisation

Proposition 2.40. If γ is regular, then its curvature is given by

κ =
|| < γ′, γ′ > γ′′− < γ′, γ′′ > γ′||

||γ′||4
.

In particular, for n = 3 this gives

κ =
||γ′ × γ′′||
||γ′||3

, (2.4)
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and for n = 2

κ =
| det(γ′, γ′′)|
||γ′||3

where (γ′, γ′′) denoted the 2× 2 matrix with columns γ′ and γ′′.

Proof. We have to compute the curvature of a unit speed reparametrisation: let γ̃ = γ ◦Φ
where Φ = s−1 is given by the arc length function s. Recall (2.3) that

Φ′ =
1

||γ′ ◦ Φ||

so that with (2.2)

Φ′′ = − 1

||γ′ ◦ Φ||2
||γ′ ◦ Φ||′ = −< γ′′ ◦ Φ, γ′ ◦ Φ >

||γ′ ◦ Φ||4
.

Therefore, for γ̃ = γ ◦ Φ:
γ̃′ = (γ′ ◦ Φ) · Φ′

and

γ̃′′ = (γ′′ ◦ Φ)(Φ′)2 + (γ′ ◦ Φ)Φ′′ =
< γ′ ◦ Φ, γ′ ◦ Φ > γ′′ ◦ Φ− < γ′ ◦ Φ, γ′′ ◦ Φ > γ′ ◦ Φ

||γ′ ◦ Φ||4
.

By definition we thus have

κ = κ̃ ◦ Φ−1 =
|| < γ′, γ′ > γ′′− < γ′, γ′′ > γ′||

||γ′||4
.

For the case n = 3, we recall the equation for the triple vector product

a× (b× c) =< a, c > b− < a, b > c, a, b, c ∈ R3

so that
< γ′, γ′ > γ′′− < γ′, γ′′ > γ′ = γ′ × (γ′′ × γ′) .

Since γ′ and γ′′ × γ′ are perpendicular, we have

||γ′ × (γ′′ × γ′)|| = ||γ′|| · ||γ′′ × γ′||

which gives the result for n = 3. For n = 2 we consider the plane curve γ(t) = (x(t), y(t))
as a space curve γ̂ = (x, y, 0) in R3. Both curves have the same curvature. Since

γ̂′ × γ̂′′ =

x′y′
0

×
x′′y′′

0

 = (x′y′′ − x′′y′)

0
0
1

 = det(γ′, γ′′)

0
0
1


the formula for space curves gives the result for plane curves.
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Example 2.41. Consider the helix γ(t) = (a cos t, a sin t, bt) with a, b > 0, t ∈ R. Compute
the curvature of γ by

• the above formula

• by reparametrising the helix by unit speed.

2.5 How many plane curves have the same curvature

function?

In the case of plane curves, we can refine the notion of curvature: we will look at the signed
curvature. Let γ : (α, β)→ R2 be unit speed and T = γ′ its tangent. Then there is a unit
normal N : (α, β)→ R2 obtained by 90◦ rotation of the tangent T , i.e.

N =

(
−t2
t1

)
if T =

(
t1
t2

)
.

Note that for each t ∈ (α, β) the pair {T (t), N(t)} is an orthonormal basis of R2. This
basis changes with t.

Definition 2.42. The pair {T,N} is called the Frenet frame of the plane unit speed curve
γ.
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(The pair {T,−N} is also a moving frame of the unit speed curve γ: at each point t we
have an orthonormal basis. However, the orientation of this basis is different from the
orientation of the standard basis. Therefore, we always consider the Frenet frame).

Since γ is unit speed we know by Corollary 2.20 that T ′ is perpendicular to T , therefore,
there is a function κs : (α, β)→ R such that

T ′ = κsN .

Definition 2.43. The signed curvature κs of a plane unit speed curve γ : (α, β)→ R2 is
given by

γ′′ = κsN

where N is the unit normal vector given by 90◦ rotation of the tangent vector T = γ′.

Obviously, the absolute value of the signed curvature

|κs| = ||κsN || = ||γ′′|| = κ

is the curvature of γ. Note that the curvature κ is not differentiable at points with γ′′(t) = 0
(the norm is not differentiable at 0). However, the signed curvature κs is smooth:

Theorem 2.44 (Frenet equations). Let γ : (α, β) → R2 be a plane unit speed curve and
{T,N} its Frenet frame. Then the Frenet equations

T ′ = κsN, N ′ = −κsT

hold. Moreover, the signed curvature is a smooth function with

κs =< T ′, N > .
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Proof. By definition we have T ′ = κsN . Thus,

< T ′, N >=< κsN,N >= κs

since ||N || = 1. Since γ is smooth, T ′, N are smooth, and thus κs is smooth. Now, {T,N}
is for each t an orthonormal basis, so that

N ′ = λT + µN

for some functions λ, µ : (α, β)→ R. Since N has unit length, Lemma 2.19 shows

µ =< N ′, N >= 0 .

Moreover, by the product rule we have

κs =< T ′, N >=< T,N >′ − < T,N ′ >= − < T,N ′ >= −λ .

If the signed curvature is positive then the curve curves towards the direction of the normal
N , if it is negative it curves away from N .

Example 2.45. Compute the signed curvature of γ(t) = (cos t, sin t).

Proposition 2.46. Let γ : (α, β) → R2 a unit speed plane curve. Fix t0 ∈ (α, β) and
put T0 := T (t0) = γ′(t0). Let ϕ(t) be the angle between T (t) and the fixed vector T0 (in
particular, ϕ(t0) = 0). Then the signed curvature is given by

κs(t) = ϕ′(t) .

Thus, the signed curvature gives the rate of the rotation of the tangent vector.

Note that ϕ is only unique up to 2π, however ϕ′ is well–defined.
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Proof. Consider the orthonormal basis {T0, N0} of R2 where N0 is the 90◦ rotation of T0.
Since T has length 1, by definition of ϕ we see that

T (t) = T0 cosϕ(t) +N0 sinϕ(t) .

Differentiating gives
T ′ = −T0 sinϕϕ′ +N0 cosϕϕ′

We consider the projection onto T0:

− sinϕϕ′ =< T ′, T0 >=< κsN, T0 >= κs < N, T0 > .

But then, considering the angle between N and T0, we see

< N, T0 >= cos∠(N, T0) = cos(ϕ+
π

2
) = − sinϕ

shows the claim.

Now we can address the question: how many plane curves have the same signed curvature
— and can any smooth function occur as the signed curvature of a unit speed curve?

Theorem 2.47 (Fundamental Theorem of plane curves). Let k : (α, β) → R be smooth.
Then there exists a unit speed curve γ : (α, β)→ R2 with signed curvature κs = k.

Moreover, γ is unique up to a rigid motion that is, if γ, γ̃ : (α, β) → R2 are unit speed
with the same signed curvature κs then there exists a M ∈ SO(2) (that is, M ∈ O(2) with
detM = 1) and b ∈ R2 such that

γ̃ = Mγ + b .

Note:
SO(n) := SLn(R) ∩O(n) = {M ∈ O(n) : det(M) = 1}

The group O(n) contains all reflections and rotations in Rn. However, a reflection has
determinant −1 and so is not in SO(n). Hence, every M ∈ SO(2) is a rotation

M =

(
cos θ − sin θ
sin θ cos θ

)
with angle θ ∈ R.
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Proof.

Existence: We first show the existence of a unit speed curve γ with signed curvature
κs = k: Fix t0 ∈ (α, β) and let T0 = (1, 0) ∈ R2. We want that the tangent at t0 of our
curve γ is given by T0. From the previous proposition we know that the derivative of the
angle function ϕ(t) between T0 and T (t) is the signed curvature. Therefore, we define a
function ϕ : (α, β)→ R by integrating

ϕ(t) =

∫ t

t0

k(u)du .

If we put
T (t) = (cosϕ(t), sinϕ(t))

then ||T (t)|| = 1 and the angle between T0 = (1, 0) and T (t) is given by ϕ(t). Thus, to
obtain our curve γ we integrate

γ(t) =

∫ t

t0

(cosϕ(u), sinϕ(u))du .

Since γ′(t) = (cosϕ(t), sinϕ(t)) = T (t) we see that γ has unit speed. Moreover, the normal
of γ is given by

N(t) = (− sinϕ(t), cosϕ(t))

so that
γ′′(t) = (− sinϕ(t)ϕ′(t), cosϕ(t)ϕ′(t)) = k(t)N(t) .

This shows that the signed curvature of γ is given by κs = k = ϕ′.

Uniqueness: The proof of the uniqueness part has two parts.

Step 1: We first show that if γ̃ = Mγ + b with M ∈ SO(2), b ∈ R2, then the signed
curvatures κ̃s = κs of γ̃ and γ coincide.

By assumption
γ̃′ = Mγ′

so that T̃ = MT and Ñ = MN . Since M is a rotation and therefore preserves orientation,
it maps the Frenet frame {T,N} of γ to the Frenet frame {T̃ , Ñ} of γ̃ for every t ∈ (α, β).
Hence,

T̃ ′ = MT ′ = MκsN = κsÑ

which shows that κ̃s = κs.

Step 2: If the unit speed curves γ̃, γ : (α, β) → R2 have the same signed curvature κs
then fix t0 ∈ (α, β) and define M ∈ SO(2) by

MT (t0) = T̃ (t0), MN(t0) = Ñ(t0) .
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This can be done because {T̃0, Ñ0} and {T0, N0} are each an orthonormal basis, and there
is a unique rotation mapping one oriented orthonormal basis to another. Moreover, let

b = γ̃(t0)−Mγ(t0) ∈ R2 .

Define a new curve σ : (α, β)→ R2 by

σ = Mγ + b .

Our aim is to show that σ = γ̃. By our first step we know that the signed curvature of σ
is given by the signed curvature κs of γ. We also know that at the point t0 we have

σ(t0) = Mγ(t0) + b = γ̃(t0)

and the tangent and normal of σ at t0 are

Tσ(t0) = MT (t0) = T̃ (t0)

and
Nσ(t0) = MN(t0) = Ñ(t0) .

by the definition of M and b. Define

f(t) =
1

2
(||Tσ(t)− T̃ (t)||2 + ||Nσ(t)− Ñ(t)||2) .

It is clear that if σ = γ̃ then f(t) = 0 for all t. We claim that the converse also holds.

Now, all terms in f are non–negative, so f(t) = 0 implies

Tσ(t) = T̃ (t), Nσ(t) = Ñ(t)

for all t. But σ′ = Tσ = T̃ = γ̃′ shows that σ = γ̃ + c, c ∈ R2 constant. However,
σ(t0) = γ̃(t0) shows c = 0 and our claim is shown.

In order to show that we do indeed have f(t) = 0, we first show that f is constant by
considering

f ′ =< T ′σ − T̃ ′, Tσ − T̃ > + < N ′σ − Ñ ′, Nσ − Ñ > .

The Frenet equations show
T ′σ − T̃ ′ = κs(Nσ − Ñ)

and
N ′σ − Ñ ′ = −κs(Tσ − T̃ )

so that
f ′ = 0

and f is constant. Since f(t0) = 0 the constant is zero, that is, f(t) = 0 for all t. Therefore,
σ = γ̃ and the proof is complete.
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Note that the above theorem shows that a curve is determined completely (up to rigid
motion) by its signed curvature.

Let us summarise the steps to find a plane unit speed curve with prescribed signed curvature
k:

(i) Find the angle function ϕ(t) =
∫ t
t0
k(u)du

(ii) Put T (t) = (cosϕ(t), sinϕ(t)).

(iii) Integrate γ(t) = (
∫ t
t0

cosϕ(u)du,
∫ t
t0

sinϕ(u)du).

(iv) Verify your result: show that γ(t) has signed curvature κs(t) = k(t).

Example 2.48. Find all regular curves with curvature κ(t) = c for all t ∈ R, c > 0.

Example 2.49. Find all unit speed curves with signed curvature κs(t) = t for all t ∈ R.

Example 2.50. Define and give a formula for the signed curvature of a regular plane
curve.

2.6 Is the curvature enough to completely describe a

space curve?

Consider the two space curves

γ(t) = (cos t, sin t, 0)

and

γ̃(t) = (
1

2
cos t,

1

2
sin t,

t

2
) .

The first curve is unit speed and thus, the curvature is given by

κ(t) = ||γ′′(t)|| = 1 .

The second curve is regular since

||γ̃′|| = ||(−1

2
sin t,

1

2
cos t,

1

2
)|| = 1√

2
6= 0 .

The curvature is then (2.4) given by

κ̃ =
||γ̃′ × γ̃′′||
||γ̃′||3

=

∣∣∣∣∣∣
∣∣∣∣∣∣12
− sin t

cos t
1

× 1
2

− cos t
− sin t

0

∣∣∣∣∣∣
∣∣∣∣∣∣(

1√
2

)3 =

∣∣∣∣∣∣
∣∣∣∣∣∣
 sin t
− cos t

1

∣∣∣∣∣∣
∣∣∣∣∣∣

√
2

= 1 .
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Comparing the shape of the two curves, γ is a circle whereas γ̃ is a helix, shows that the
curvature does not determine the curve up to rigid motion.

In the plane curve case, we used that a unit speed curve has a unique unit normal given
by 90◦ rotation of the tangent. For a space curve, the space perpendicular to the tangent
is a plane (and not as before a line), and thus we have more choice in normal vectors. In
particular, there is no preferred 90◦ rotation of the tangent!

However, we know that T ′ is perpendicular to the tangent T if γ is unit speed. If T ′ 6= 0 we
can normalise to obtain a unit normal vector N = γ′′

||γ′′|| . We complete {T (t), N(t), B(t)}
to an orthonormal basis of R3 by putting B = T ×N .

Definition 2.51. A regular space curve γ : (α, β) → R3 is called Frenet curve if its
curvature κ is nowhere zero, i.e., κ(t) 6= 0 for all t.

Note that a unit speed Frenet curve has ||T ′|| = κ 6= 0, and we obtain indeed a moving
frame:

Definition 2.52. The Frenet frame {T,N,B} of a unit speed Frenet curve is given by

T = γ′, N =
γ′′

||γ′′||
, B = T ×N .

N is called the normal, B is called the binormal of γ.



38 CHAPTER 2. CURVES

Note that {T (t), N(t), B(t)} is for each t an orthonormal basis of R3 which has the same
orientation as the standard basis of R3. As in the plane case we can now compute the
Frenet equations; that is, we compute the derivatives of the frame {T,N,B}:
First, we have

T ′ = γ′′ = κN .

Since ||B|| = 1 we know by Lemma 2.19 that B′ is perpendicular to B, thus

B′ = λT + µN

for some functions λ, µ. Moreover,

B′ = (T ×N)′ = T ′ ×N + T ×N ′ = κN ×N + T ×N ′ = T ×N ′ ,

so that B′ = T ×N ′ is also perpendicular to T , and thus λ(t) = 0 for all t.

Definition 2.53. Let γ : (α, β) → R3 be a unit speed Frenet curve. Then the torsion of
γ is defined as

τ = − < B′, N > ,

where N is the normal and B the binormal of γ.

Thus, we have B′ = −τN . Let us now compute the derivative of the normal N : by Lemma
2.19 we have < N ′, N >= 0. Moreover,

< N ′, T >=< N, T >′ − < N, T ′ >= − < N, κN >= −κ

and
< N ′, B >=< N,B >′ − < N,B′ >= − < N,−τN >= τ .

Theorem 2.54 (Frenet equations). Let γ : (α, β) → R3 be a unit speed Frenet curve and
{T,N,B} its Frenet frame. Then the Frenet equations

T ′ = κN, N ′ = −κT + τB, B′ = −τN

hold.

We write the Frenet equations also asTN
B

′ =
 0 κ 0
−κ 0 τ
0 −τ 0

TN
B


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Example 2.55. Compute the curvature and torsion of a plane curve with nowhere van-
ishing signed curvature.

Example 2.56. Is the straight line γ(t) = ta + b, a, b ∈ R3, ||a|| = 1, a unit speed Frenet
curve?

Example 2.57. Compute, if possible, the curvature and torsion of the curve

γ(t) = (cos r cos t, cos r sin t, t sin r), r > 0 .

Discuss the shape of the curve γ.

Recall our definition of a Frenet curve: a regular curve γ : (α, β) → R3 is Frenet curve if
the curvature κ of γ is nowhere vanishing where

κ =
||γ′ × γ′′||
||γ′||3

In particular, γ is Frenet if and only if γ′ and γ′′ are linearly independent (which in the
case of a unit speed curve is equivalent to γ′′ 6= 0). In case of a Frenet curve γ, we can
define the torsion by reparametrising by unit speed and using the torsion of the unit speed
curve at corresponding points.

Lemma 2.58. The curvature and torsion of a Frenet curve γ are given by

κ =
||γ′ × γ′′||
||γ′||3

and

τ =
< γ′ × γ′′, γ′′′ >
||γ′ × γ′′||2

Proof. The curvature formula is already proved in (2.4).

Idea of proof for the torsion: Prove that the formula holds for a unit speed curve γ by
using that N = 1

κ
T ′. Then conclude by showing that the right–hand side is independent

of the parametrization.

Step 1: If γ is unit speed then using N = 1
κ
T ′ and (2.4) for a unit speed curve

τ = − < N,B′ >= − < N, (T ×N)′ >= − < N, T ′ ×N + T ×N ′ >

= − < N, T × (
1

κ
T ′)′ >= − <

1

κ
T ′, T × (

1

κ
T ′′ + (

1

κ
)′T ′ >

= − 1

κ2
< T ′, T × T ′′ >= − 1

κ2
< γ′′, γ′ × γ′′′ >



40 CHAPTER 2. CURVES

Using the cyclic formula < a, (b× c) >=< c, (a× b) > and that γ is unit speed, we obtain:

τ =
1

κ2
< γ′ × γ′′, γ′′′ >

=
< γ′ × γ′′, γ′′′ >
||γ′ × γ′′||2

.

Step 2: For a regular curve γ with unit speed reparametrised curve γ̃ = γ ◦ Φ we have
γ = γ̃ ◦ s where s = Φ−1 is the arc length function with s′ = ||γ′||. Then

γ′ = (γ̃′ ◦ s)s′ ,

γ′′ = (γ̃′′ ◦ s)(s′)2 + (γ̃′ ◦ s)s′′ ,

and

γ′′′ = (γ̃′′′ ◦ s)(s′)3 + 3(γ̃′′ ◦ s)s′′s′ + (γ̃′ ◦ s)s′′′ .

Therefore, we compute

γ′ × γ′′ = (γ̃′ ◦ s)× (γ̃′′ ◦ s)(s′)3

and

< γ′ × γ′′, γ′′′ >=< γ̃′ ◦ s× γ̃′′ ◦ s, γ̃′′′ ◦ s > (s′)6 .

Combining the last two equations we obtain

< γ′ × γ′′, γ′′′ >
||γ′ × γ′′||2

=
< (γ̃′ ◦ s)× (γ̃′′ ◦ s), γ̃′′′ ◦ s >
||(γ̃′ ◦ s)× (γ̃′′ ◦ s)||2

.

Since τ = τ̃ ◦ s by definition, this shows the claim.

2.7 How many space curves have the same curvature

and torsion?

As in the case of plane curves, we can prescribe the curvature data and obtain a space
curve:

Theorem 2.59 (Fundamental Theorem of space curves). For every two smooth functions
κ, τ : (α, β)→ R with κ(t) > 0 for all t ∈ (α, β) there exists a unique, up to a rigid motion,
unit speed curve γ with curvature κ and torsion τ .

For the proof we need the following theorem from the theory of differential equations
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Theorem 2.60. • Every first order linear differential equation

x′(t) = A(t)x(t)

with a differentiable map A : (α, β)→M(n×n) into the set of all n by n matrices, has
a unique solution x : (α, β)→ Rn with x(t0) = x0 for some fixed t0 ∈ (α, β), x0 ∈ Rn.

• Every first order linear differential equation

x′(t) = G(t)x(t)− x(t)G(t)

with a differentiable map G : (α, β)→M(n× n) into the set of all n by n matrices,
has a unique solution x : (α, β)→M(n×n) with x(t0) = x0 for some fixed t0 ∈ (α, β)
where x0 is an n by n matrix.

Proof of the Fundamental Theorem. Fix t0 ∈ I and an orthonormal basis T0, N0, B0 with
det(T0, N0, B0) = 1 and apply the previous theorem to obtain a unique solution of x′ = Ax
with x(t0) = (T0, N0, B0) for

A =

 03 κI3 03

−κI3 03 τI3

03 −τI3 03

 ∈M(9× 9)

where 03 is the 3 by 3 zero matrix. Writing x(t) = (T (t), N(t), B(t)) with T,N,B :
(α, β)→ R3 we thus haveTN

B

′ =
 03 κI3 03

−κI3 03 τI3

03 −τI3 03

TN
B

 . (2.5)

Note that these are exactly the Frenet equations. It remains to show that T,N,B form an
orthonormal basis and have the correct orientation, that is det(T,N,B) = 1. Consider the
matrix

D =

 ||T ||2 < T,N > < T,B >
< N, T > ||N ||2 < N,B >
< B, T > < B,N > ||B||2

 ∈M(3× 3)

then we know that D(t0) = I3. Moreover,

D′ =

=

 2 < T ′, T > < T ′, N > + < T,N ′ > < T ′, B > + < T,B′ >
< N ′, T > + < N, T ′ > 2 < N ′, N > < N ′, B > + < N,B′ >
< B′, T > + < B, T ′ > < B′, N > + < B,N ′ > 2 < B′, B >


=

 2κ < N, T > κ(||N ||2 − ||T ||2) + τ < T,B > κ < N,B > −τ < T,N >
κ(||N ||2 − ||T ||2) + τ < T,B > 2(τ < B,N > −κ < T,N >) τ(||B||2 − ||N ||2)− κ < T,B >
κ < N,B > −τ < T,N > τ(||B||2 − ||N ||2)− κ < T,B > −2τ < N,B >


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where we used the equations (2.5) found previously. For

G =

 0 κ 0
−κ 0 τ
0 −τ 0


we see that

GD −DG =

 0 κ 0
−κ 0 τ
0 −τ 0

 ||T ||2 < T,N > < T,B >
< N, T > ||N ||2 < N,B >
< B, T > < B,N > ||B||2


−

 ||T ||2 < T,N > < T,B >
< N, T > ||N ||2 < N,B >
< B, T > < B,N > ||B||2

 0 κ 0
−κ 0 τ
0 −τ 0


=

 κ < N, T > κ||N ||2 κ < N,B >
−κ||T ||2 + τ < B, T > −κ < T,N > +τ < B,N > −κ < T,B > +τ ||B||2
−τ < N, T > −τ ||N ||2 −τ < N,B >


−

−κ < T,N > κ||T ||2 − τ < T,B > τ < T,N >
−κ||N ||2 κ < N, T > −τ < N,B > τ ||N |||2

−κ < B,N > κ < B, T > −τ ||B||2 τ < B,N >

 .

Hence we have D′ = GD−DG, showing that D is a solution of x′ = Gx− xG with initial
condition D(t0) = I3. On the other hand, the identity matrix I3 satisfies 0 = I ′3 = GI3−I3G
and I3(t0) = I3, and thus part 2 of the previous theorem shows that D = I3. In other
words, (T (t), N(t), B(t)) is an orthonormal basis.

Since det(T,N,B) is a continuous function, satisfies det(T (t0), N(t0), B(t0)) = 1 at t0, and
det(T (t), N(t), B(t)) = ±1, we conclude that det(T,N,B) = 1, and thusB(t) = T (t)×N(t)
for all t. Now define

γ(t) =

∫ t

t0

T (u)du

then γ′ = T and γ is unit speed. Moreover, T ′ = κN shows that N is the normal of γ and
γ has curvature κ. Finally, B = T ×N shows that B is the binormal of γ, and B′ = −τN
then implies that τ is the torsion of γ.

The uniqueness, up to rigid motion, follows exactly as in the case of a plane curve. It is
Question 4 of problem sheet 3.



Chapter 3

Surfaces

3.1 What is a surface?

By our geometric intuition, a surface looks locally like a bent piece of paper. To be able
to compute curvature of a surface, we need a more formal definition: How do we formalise
“a bent piece of paper”?

First, let us recall some notions from real analysis and fundamental maths:

(i) A subset U ⊂ Rm is called open if for all p ∈ U there exists r > 0 such that
Br(p) ⊂ U . Here

Br(p) = {q ∈ Rm | ||p− q|| < r} .

Examples: Rm and Br(p) are open in Rm.

(ii) Let S ⊂ Rm. A subset U ⊂ S is called open in S if for all p ∈ U there exists r > 0
such that Br(p) ∩ S ⊂ U .

43
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Example: If U ⊂ S with U, S ⊂ Rm open then U is open in S.

If S = {q ∈ Rn | ||q|| ≤ 1} then U = {q ∈ S | ||q − (1, 0, . . . , 0)|| < 1
2
} is open in S.

(iii) Let X ⊂ Rm, Y ⊂ Rn. Then f : X → Y is called continuous at p ∈ X if for all ε > 0
there exists δ > 0 so that for all q ∈ X with ||q − p|| < δ also ||f(q)− f(p)|| < ε.

Equivalently, f : X → Y is continuous if the preimage of every open set is open.
That is, for all U ⊂ Y open, f−1(U) is an open subset of X.

(iv) A homeomorphism from X to Y is a bijective map f : X → Y such that both f and
f−1 are continuous.

We can now give a first attempt at a definition:

Definition 3.1. A topological surface patch is a set S ⊂ R3 such that there exists a
homeomorphism X : U → S from an open subset U ⊂ R2 onto S, that is We call X a
parametrisation of S.

Example 3.2. Let P = {p + ta + sb | t, s ∈ R} where a, b, p ∈ R3, ||a|| = ||b|| = 1,
< a, b >= 0. Then

X(t, s) = p+ ta+ sb, s, t ∈ R,
is a parametrisation of the plane P since X : R2 → R3 is continuous, X(R2) = P and
X−1(q) = (< q − p, a >,< q − p, b >) is the continuous inverse of X, and thus X is a
homeomorphism.

What is wrong with our definition? A sphere is certainly a surface in our geometric
understanding, however, there is no parametrisation covering the whole sphere.

Example 3.3. The sphere of radius 1 with centre at the origin is given by

S2 = {(x, y, z) | x2 + y2 + zz = 1} .

The polar coordinates give a parametrisation

X(θ, ϕ) = (cos θ cosϕ, cos θ sinϕ, sin θ) .
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If we put U = R2 then X : U → S2 has X(U) = S2, however, X is not bijective. To make
X bijective, we have to restrict U = (−π

2
, π

2
) × (0, 2π). Then U is open but X(U) $ S2.

Indeed, X(U) = S2 − {(x, 0, z) : x ≥ 0}, that is, the sphere with a cut running from the
north to the south pole along the y = 0 line with positive x. One can show, however, that
X : U → X(U) is a parametrisation of the surface patch X(U).

Thus, our definition only covers parts = “patches” of the surfaces. To obtain the whole
surface, we have to be able to glue the pieces together in a reasonable way.

Definition 3.4. A subset S ⊂ R3 is called a topological surface if for every point p ∈ S
there exists an open neighbourhood W ⊂ R3 of p (p ∈ W ) such that there exists a
parametrisation of W ∩S, that is, there exists homeomorphism X : U → W ∩S of an open
subset U ⊂ R2 to W ∩ S.

We call the surface patch X : U → W ∩ S a (coordinate) chart . A collection of charts
whose images cover S is called an atlas for S.

From our definition, we see that locally our surface looks like R2.
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Example 3.5. Continuing with our sphere example, we now see that the sphere is a
topological surface, but not a topological surface patch. With this parametrisation (and
in fact with all parametrisations) we require more than one chart in our atlas. Can you
see how we might define further charts to get an atlas and hence show the sphere really is
a surface?

So far, our definition allows surfaces which have edges and corners. For instance a cube
and other polyhedra. Just as with curves, we wish to study how surfaces curve, that is the
rate of change of a tangent. Therefore we must impose extra conditions on our surfaces.
Recall the following definition:

Definition 3.6. A map f : U → Rn, U ⊂ Rm open, is called smooth if each component fi
of f = (f1, . . . , fn) has continuous partial derivatives of all orders.

Recall that for smooth f : U → R3, U ⊂ R2 open, the Jacobian of f is given by the partial
derivatives J(f) = (fu, fv) where we denote fu = ∂

∂u
f and fv = ∂

∂v
f .

Moreover, we want our surfaces to have tangent planes at each point, that is, the partial
derivatives Xu, Xv of the parametrisation X should span a plane:

Definition 3.7. A regular surface patch is a surface patch X : U → S ⊂ R3 such that X
is smooth and Xu(p) and Xv(p) are linearly independent for all p ∈ U .

Remark 3.8. The last condition is equivalent to Xu ×Xv 6= 0.
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Example 3.9. X : R2 → R3, X(u, v) = p+ua+vb, a, b, p ∈ R3, ||a|| = ||b|| = 1, < a, b >=
0 is a smooth map with X(R2) = P is the plane through p, spanned by a, b. As we have
seen X is a parametrisation of P . Moreover, X is smooth and

Xu = a, Xv = b

are perpendicular, and thus linearly independent. Thus, P is a regular surface.

Example 3.10. The parametrisation

X(θ, ϕ) = (cos θ cosϕ, cos θ sinϕ, sin θ) .

of S = X(U), U = (−π
2
, π

2
)× (0, 2π) is a smooth map. Moreover,

Xθ =

− sin θ cosϕ
− sin θ sinϕ

cos θ

 , Xϕ =

− cos θ sinϕ
cos θ cosϕ

0

 .

Then ||Xθ ×Xϕ|| = | cos θ| 6= 0 for θ ∈ (−π
2
, π

2
). Thus, X(U) is a regular surface.

Definition 3.11. A subset S ⊂ R3 is called a (smooth) surface if for every point p ∈ S
there exists an open set W ⊂ R3 with p ∈ W such that W ∩ S is a regular surface patch.
That is, there exists X : U → W ∩ S (where U ⊂ R2 is open) with

(i) X smooth,

(ii) X is bijective,

(iii) X,X−1 are continuous,

(iv) Xu, Xv are linearly independent.

Again, we call a collection of regular surface patches, or charts , an atlas if their images
cover S.

Given two charts X : U → S, X̃ : Ũ → S in an atlas for a surface S, define φ := X̃−1 ◦X :
X−1(X(U) ∩ X̃(Ũ))→ X̃−1(X(U) ∩ X̃(Ũ)). We call φ a transition map.
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By applying the Inverse Function Theorem, we see that transition maps are smooth.

Example 3.12. (The image of) a surface patch is a surface

Example 3.13. Let f : U → R smooth, U ⊂ R2 open. Is the graph

{(x, y, z) | z = f(x, y)}

of f is smooth surface? Consider the parametrisation given by X(u, v) = (u, v, f(u, v)).

Example 3.14. What is the graph of f(u, v) =
√

1− u2 − v2, u2 + v1 < 1?

Can you cover the whole sphere by graphs?

Example 3.15. The torus T 2 = X(R2) is given by

X(θ, ϕ) = ((a+ b cos θ) cosϕ, (a+ b cos θ) sinϕ, b sin θ)

where 0 < b < a, θ, ϕ ∈ R. By appropriate restrictions we can use X as a regular
parametrisation of parts of the torus.
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Example 3.16 (A non-example made into an example). Let S be a subspace of R3 such
that S is the union of two halves S+ and S− with their intersection S+∩S− being a single
point x. For example, the circular cone

S := {(x, y, z) ∈ R3 : x2 + y2 = z2}

where we take S+ to be the part of S such that z ≥ 0 and S− the part with z ≤ 0, hence
S+ ∩ S− = {0}.
We claim that S is not a surface. Consider the point x ∈ S. Suppose that X : U → S is
a surface patch whose image contains x. Since X(U) is an open set containing x, X(U)
intersects both S+ and S− non-trivially. Pick points a ∈ X(U) ∩ S+ and b ∈ X(U) ∩ S−
such that a 6= 0 6= b.

Since X is a bijection, we may consider the points X−1(a), X−1(b) and X−1(x) in U . Pick
a curve γ in U which goes from X−1(a) to X−1(b) but does not pass through X−1(x). As
γ is a curve in U , X ◦ γ is a curve on S. However, X ◦ γ goes from a ∈ S+ to b ∈ S−

without passing through the point x, a contradiction. Therefore there is no such surface
patch around x.

If we however consider S − {x}, then this could be a surface. For example, the circular
cone with the point (0, 0, 0) removed is a surface. It has two connected components which
are the open sets S+ = {(x, y, z) ∈ S : z > 0} and S− = {(x, y, z) ∈ S : z < 0}. We can
form an atlas by taking the two surface patches X± : U → S±, where U := R2−{(0, 0, 0)}
and

X±(u, v) := (u, v,±
√
u2 + v2).

Hence, the circular cone with the vertex removed is a surface.

As in the case of curves, we are interested in the shape of the surface, and not necessarily
in its parametrisation. In particular, given a surface X : U → X(U) = S, we can ask under
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which condition on the map Φ : Ũ → U is the map X̃ = X ◦Φ : Ũ → S a parametrisation
of S? For X̃ to be injective, Φ has to be injective. For X̃ to be bijective, Φ(Ũ) = U has
to hold. For X̃ and X̃−1 to be continuous, Φ has to be a homeomorphism, and X̃ smooth
requires Φ to be smooth.

Finally, we consider the regularity condition: Write (u, v) = Φ(ũ, ṽ), then as we know from
“Methods of Applied Maths”

X̃ũ = (Xu ◦ Φ) · ∂u
∂ũ

+ (Xv ◦ Φ) · ∂v
∂ũ

and

X̃ṽ = (Xu ◦ Φ) · ∂u
∂ṽ

+ (Xv ◦ Φ) · ∂v
∂ṽ

so that

X̃ũ × X̃ṽ = det J(Φ)(Xu ◦ Φ)× (Xv ◦ Φ) .

Thus, X̃ is regular if det J(Φ) 6= 0. By the Inverse Function Theorem, then Φ−1 is smooth.

Definition 3.17. A map Φ : Ũ → U , Ũ , U ⊂ R2 open, is called a diffeomorphism if Φ is
bijective and both Φ and Φ−1 are smooth.

Definition 3.18. A reparametrisation map of a regular surface patch X : U → S ⊂ R3 is
a diffeomorphism Φ : Ũ → U where Ũ ⊂ R2 is open.

Lemma 3.19. If Φ is a reparametrisation map of X : U → S then X̃ = X ◦Φ is a regular
surface patch with X̃(Ũ) = X(U).

X̃ is called a reparametrisation of X : U → S.
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We are interested in properties of the surface which do not depend on the parametri-
sation of the surface. Put differently, we look for properties which are preserved under
reparametrisation. Our first example are the differentiable maps from a surface.

Definition 3.20. Let S be a smooth surface, f : S → Rm a function and p ∈ S. Then f
is called differentiable at p ∈ S if the map f ◦X : U → Rm is differentiable at X−1(p) for
some parametrisation X : U → S at p.

This definition is independent of the choice of parametrisation X: If X̃ = X ◦ Φ is a
reparametrisation of X with Φ : Ũ → U , then

f ◦ X̃ = (f ◦X) ◦ Φ

is differentiable since f ◦X is differentiable and Φ is smooth. In particular, we have shown:

Lemma 3.21. If f ◦X is differentiable for some parametrisation X then f ◦ X̃ is differ-
entiable for every reparametrisation X̃ = X ◦ Φ of X.

We can apply this lemma to the map f = X−1:

Corollary 3.22. If X : U → S = X(U) is a parametrisation of a surface patch, then
X−1 : S → U is differentiable.

Remark 3.23 (Important principle). We wish to define properties for surfaces which are
invariant under reparametrisation as above. Then, to define these properties globally on S it
is enough to define them locally with respect to some parametrisation X : U → X(U) $ S.
Indeed, since all points on the surface are contained in the image of a chart and the property
is defined at a point invariant of the chart, the property must be well-defined globally.

In this spirit, we define:
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Definition 3.24. If S1, S2 are surfaces, then f : S1 → S2 is called smooth if for some
parametrisation X1 : U1 → S1 and X2 : U2 → S2 the composition

X−1
2 ◦ f ◦X1 : U1 → U2

is smooth.

Again, one can show that this definition is independent on the choice of parametrisations
X1, X2. As before, we make the following definition

Definition 3.25. Let S1, S2 be surfaces and f : S1 → S2 a bijection. Then, f is a
diffeomorphism if both f and its inverse f−1 are smooth.

3.2 What is the linearisation of a surface?

As in the case of curves, we first look at a linear approximation of the surface: all vectors
which are tangent to a curve on the surface are also tangent to the surface. Thus, we
define:

Definition 3.26. Let S ⊂ R3 be a (smooth) surface, p ∈ S. Then the tangent space of S
at p is given by

TpS = {v ∈ R3 | there exists a curve γ : (−ε, ε)→ S with γ(0) = p, γ′(0) = v} .
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Example 3.27. Show that the tangent space of the sphere S2 of radius 1 has tangent
space

TpS
2 = {v ∈ R3 |< v, p >= 0} .

Note that if X : U → S is a parametrisation of a surface S, p = X(u, v) and γ̃ : (−ε, ε)→ U
curve with γ̃(0) = (u, v), then

γ(t) = X ◦ γ̃(t)

is a curve in S with γ(0) = p. Write γ̃(t) = (u(t), v(t)), then

γ′ = Xuu
′ +Xvv

′ .

Theorem 3.28. The tangent space TpS is a vector space. For every parametrisation
X : U → S with p = X(u, v) ∈ X(U)

TpS = span{Xu(u, v), Xv(u, v)}

and thus

dimTpS = 2 .
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Proof. Let X be a parametrisation of S with X(u, v) = p. Then Xu(a, b), Xv(a, b) ∈ TpS
since for γ(t) = X(a+ t, b) we have γ(0) = p and

Xu(a, b) = γ′(0) ∈ TpS

and similarly for Xv = γ̃′(0) ∈ TpS for γ̃(t) = X(a, b+ t). Now, consider

x := Xu(a, b)λ+Xv(a, b)µ ∈ span{Xu(a, b), Xv(a, b)}, λ, µ ∈ R .

Let ε be small enough so that (a+ tλ, b+ tµ) ∈ U for all t ∈ (−ε, ε). Define

γ(t) = X(a+ tλ, b+ tµ) , t ∈ (−ε, ε) ,

then γ is a curve in S with γ(0) = p and

x = Xu(a, b)λ+Xv(a, b)µ = γ′(0) ∈ TpS .

Thus, span{Xu(a, b), Xv(a, b)} ⊂ TpS.

Conversely, let x ∈ TpS, that is, there exists a curve γ : (−ε, ε) → S, γ(0) = p, with
γ′(0) = x. Choose a surface patch X : U → S around the point p with X(a, b) = p.
By taking ε small enough, we may assume that Im(γ) ⊂ U . Then, there exists a curve
γ̃ : (−ε, ε)→ U such that γ̃(0) = (a, b) and γ = X ◦ γ̃ (if necessary, use a smaller interval).
Write γ̃(t) = (u(t), v(t)) then

x = Xu(a, b)u
′(0) +Xv(a, b)v

′(0) ∈ span{Xu(a, b), Xv(a, b)} .

Definition 3.29. Let S ⊂ R3 be a (smooth) surface. A smooth map V : S → Rn is called
a vector field on S. If V (p) ∈ TpS for all p ∈ S then V is called a tangential vector field.

Example 3.30. If X : U → S is a surface patch, then Xu and Xv are tangential vector
fields on S = X(U).

Since TpS is a 2–dimensional vector space, its orthogonal complement in R3 is 1–dimensional.

Definition 3.31. Let S ⊂ R3 be a (smooth) surface. A Gauss map is a unit normal vector
field on S, that is, a smooth map N : S → R3 with N(p) ⊥ TpS and ||N(p)|| = 1 for all
p ∈ S.



3.2. WHAT IS THE LINEARISATION OF A SURFACE? 55

Example 3.32. If X : U → S is a surface patch then NX = Xu×Xv

||Xu×Xv || is a unit normal

vector field on the surface patch S = X(U). Note that −NX is also a unit normal for X.
We call NX the standard unit normal of X.

The map NX depends on the choice of the parametrisation X: If X̃ = X ◦ Φ is a
reparametrisation of X, then with (u, v) = Φ(ũ, ṽ)

X̃ũ = (Xu ◦ Φ) · ∂u
∂ũ

+ (Xv ◦ Φ) · ∂v
∂ũ

and

X̃ṽ = (Xu ◦ Φ) · ∂u
∂ṽ

+ (Xv ◦ Φ) · ∂v
∂ṽ

so that, as before,

X̃ũ × X̃ṽ = det J(Φ)(Xu ◦ Φ)× (Xv ◦ Φ) .

But then

N X̃ =
det(J(Φ))

| det(J(Φ))|
NX ◦ Φ = ±NX ◦ Φ .

Note that it is always possible to find a reparametrisation Φ with N X̃ = −NX ◦ Φ. Thus,
if we want a surface S to have a Gauss map, we have to require that we can patch the unit
normals NX , which are given by the surface patches X : U → X(U) ⊂ S, together in a
smooth way:

Definition 3.33. A surface is called orientable if there exists a unit normal vector field
N : S → R3.

Lemma 3.34. A surface S is orientable if and only if there exists an atlas for S where
every transition map φ between charts has det J(φ) > 0.
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Proof. Idea: a transition map between two charts is a reparametrisation map between the
appropriate restrictions of the domains of the charts. Use the above argument to show
that the transition maps must have det J(φ) > 0.

Exercise: complete this proof.

For an orientable surface S with unit normal N : S → R3, there exists an atlas such that
every chart X : U → S has its standard unit normal NX equal to N on U . Indeed given
any atlas, as noted above we may replace any of the charts X : U → S with X̃ : U → S
such that N X̃ = −NX ◦ Φ.

From now on, if a surface is orientable, we assume that all the charts for S have a standard
unit normal. This gives us a standard choice of Gauss map.

There are surfaces which are non–orientable: the most famous one is the Möbius strip.

Example 3.35 (Möbius strip). Consider the map

X(t, θ) =
(
(1− t sin

θ

2
) cos θ, (1− t sin

θ

2
) sin θ, t cos

θ

2

)
Considering the image M := Im(X) of this map, we see that it is a strip with width given
by the parameter t. We may suppose that −1/2 < t < 1/2.

The map X is periodic in θ, hence we must restrict its domain in order to make it injective.
Doing this though, we see that it is no longer surjective, so we must use more than one
chart to cover our surface.

Define U = {(t, θ) : −1/2 < t < 1/2, 0 < θ < 2π} and Ũ = {(t, θ) : −1/2 < t < 1/2, −π <
θ < π}. Let A be an atlas containing the two charts X : U → S and X : Ũ → S (show
this is in fact an atlas).

We suppose for a contradiction that the Möbius strip M is orientable. That is, there is
a smooth unit normal N : M → R3. In particular, N restricted to the curve defined by
X|t=0 is a smooth map. We calculate a unit normal on this curve.

Xt|t=0 = (− sin
θ

2
cos θ, − sin

θ

2
sin θ, cos

θ

2
)

Xθ|t=0 = (− sin θ, cos θ, 0)
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and so,

Xt ×Xθ|t=0 = (− cos θ cos
θ

2
, − sin θ cos

θ

2
, − sin

θ

2
)

Considering the chart X : U → S, if M was orientable, N |U = ±NX . Without loss of
generality, we may suppose that we have chosen N so that N = NX on U . Now, for N to be
smooth, we must have limθ→0N

X = limθ→2πN
X . However, NX −→ (−1, 0, 0) as θ −→ 0,

but NX −→ (1, 0, 0) as as θ −→ 2π, a contradiction. Therefore, M is a non-orientable
surface.

3.3 Examples

Theorem 3.36. Let W ⊂ R3 open and f : W → R smooth. Let c ∈ R be a regular value
of f , that is,

gradp f = (fx(p), fy(p), fz(p)) 6= (0, 0, 0)

for all p ∈ Sc(f) = {(x, y, z) ∈ W | f(x, y, z) = c}.
Then the level set Sc(f) of c is a surface.

In order to prove this theorem, we need to use the following theorem:

Theorem 3.37 (Inverse Function Theorem). Let f : U → Rn be a smooth function on
U ⊂ Rn open. Suppose that the Jacobian J(f) is invertible at some point p ∈ U . Then,
there exists an open neighbourhood V of f(p) and a bijection g : V → g(V ) such that

(i) g ◦ f = idg(V ) and f ◦ g = idV , so g is a local inverse to f .

(ii) g is smooth

(iii) J(f−1)(f(p)) = [J(f)(p)]−1

Proof of Theorem 3.36. Let p = (x0, y0, z0) be such a point of Sc(f) for a regular point
c. Suppose that fz(p) 6= 0 (the proof will be similar in the other two cases). Define
F : W → R3 defined by

F (x, y, z) = (x, y, f(x, y, z)).

This has Jacobian  1 0 0
0 1 0
fx fy fz


which is invertible since fz(p) 6= 0. So, by the Inverse Function Theorem, there exists an
open neighbourhood V of F (p) = (x0, y0, c) and a smooth function G : V → G(V ) which
is a local inverse for F .
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Since V is open, there exists open neighbourhoods U1 of (x0, y0) in R2 and U2 of c in R2

such that U1×U2 ⊂ V . Now F and G are inverses, so restricting G to U1×U2, we see that

G(x, y, z) = (x, y, g(x, y, z))

for some smooth function g : U1 × U2 → R. The maps F and G are inverses, so

f(x, y, g(x, y, z)) = z

for all (x, y) ∈ U1 and z ∈ U2. Define X : U1 → R3 by

X(x, y) := (x, y, g(x, y, c))

Then X is a smooth homeomorphism. Its inverse X−1 is a restriction of the projection
map π(x, y, z) = (x, y) and so is also continuous. By a simple calculation, we see that
Xx×Xy = (−gx,−gy, 1) 6= 0 and hence X is a regular surface patch for the point p. Since
p was arbitrary, the collection of all such X forms an atlas for S, showing S is a surface.

Example 3.38. The sphere of radius r > 0

S2(r2) = {(x, y, z) ∈ R3 | x2 + y2 + z2 = r2}

is the level set of the function f(x, y, z) = x2 + y2 + z2. Then r2 is a regular value since

gradp f = 2(x, y, z) 6= (0, 0, 0)

since (x, y, z) 6= 0 if (x, y, z) ∈ S2(r) = Sr2(f). Thus, S2(r) is a surface.

Theorem 3.36 gives an algebraic way of defining a surface. The following describes a more
geometric method.

Example 3.39 (Ruled surfaces). A ruled surface is a surface S where every point lies on
a straight line, called rulings. Hence, the surface is a union of straight lines.

Let C be a curve in S which meets all the rulings. Then, a point p ∈ S lies on some line l
which intersects the curve C at q. Let γ : (α, β)→ R3 be a parametrisation of (part of) the
curve C with γ(u) = q for some u ∈ (α, β). Let δ(u) be a non-zero vector in the direction
of the line l through q = γ(u). Then, we have:

p = γ(u) + vδ(u)

for some v ∈ R. Since every point may be described in such a way, we define X : R2 → S
by

X(u, v) := γ(u) + vδ(u).
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In order to make X bijective, we must restrict the domain to some open neighbourhood U
of Im(γ). Provided δ : (α, β) → R3 is smooth (γ is already smooth), then X is a smooth
map. We wish X to also be regular.

Xu = γ′ + vδ′

Xv = δ

where we write γ′ and δ′ for ∂γ
∂u

and ∂δ
∂u

, respectively. Suppose that γ′ and δ were linearly
independent. If v were taken to be small enough, then Xu and Xv would also be linearly
independent and hence X would be regular. Note that our assumptions make sense: γ′

and δ being linearly independent is assuming that the lines are not parallel to the tangent
of the curve. Our assumption taking v small enough just means that our surface patch is
only valid close to our curve γ.

Definition 3.40. A surface which has two different sets of rulings is called doubly-ruled.

Definition 3.41. A ruled surface where all the rulings are parallel is called a generalised
cylinder .

Note that we do not assume that the cross-section of a generalised cylinder is a closed
curve.

Example 3.42. If S is a generalised cylinder, we may take δ to be the constant vector
a ∈ R3.

X(u, v) := γ(u) + va

In order that x is regular and injective, we wish to choose γ so that it is never tangent to
any of the rulings and so that it intersects each of the rulings exactly once.

For example, if all the rulings were parallel to the z-axis, let γ be a curve in the x − y
plane given by γ(t) = (f(t), g(t), 0). Then,

X(u, v) = (f(u), g(u), v).

Find, if possible, the Gauss map of the generalised cylinder. Note: for γ(t) = (cos t, sin t)
we get the standard cylinder.
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Definition 3.43. A ruled surface where all the rulings pass through a fixed point x ∈ R3

is called a generalised cone with vertex x.

Note that the point x cannot be in the surface S (cf. Example 3.16).

Example 3.44. If S is a generalised cone, we may take δ(u) = γ(u)− x. Then,

X(u, v) = (1 + v)γ(u)− vx

is a surface patch for S subject to some conditions on γ. For example, if x is the origin
and γ lies in the plane z = 1 and is given by γ(t) = (f(t), g(t), 1). Then, after a change of
parametrisation, we have

X(u, v) = v(f(u), g(u), 1).

Example 3.45 (Surfaces of revolution). Let γ be a plane curve, called a profile curve. We
obtain a surface of revolution S, by rotating γ around a fixed axis which lies in the plane
defined by γ.
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For example, let γ be a curve in the x− z plane given by γ(t) = (f(t), 0, g(t)) and rotate
this about the z axis. Then the surface of revolution S is the image of the map

X(u, v) = (f(u) cos v, f(u)sinv, g(u)).

Under what assumptions is X a surface patch and how many different surface patches are
needed to create an atlas? Does S have a Gauss map and can you compute it?

Note that the sphere (with two points removed) can also be considered as a surface of
revolution.

We know that a linear equation defines a plane which is the simplest surface (cf. Example
3.2). If we allow our Cartesian equations to have quadratic factors, we get the following
richer class of examples.

Example 3.46 (Quadric surfaces). Let A ∈ M(3 × 3) be a symmetric matrix, b ∈ R3 a
constant vector and c ∈ R a constant scalar. A quadric is defined to be the set of points
v ∈ R3 which satisfy the equation

vTAv + bvT + c = 0.

If A = (aij) and b = (b1, b2, b3), then the above equation is equivalent to

a11x
2 + a22y

2 + a33z
2 + 2a12xy + 2a23yz + 2a13xz + b1x+ b2y + b3y + c = 0.

Note that a quadric is not always a surface; some are degenerate. For example, x2+y2+z2 =
0 is the single point 0. However, quadrics do produce several different examples of surfaces.
After applying an isometry in R3 (i.e. reflection, rotation, or translation), these have
general form as follows, where p, q, r are constants.

(i) Ellipsoid x2

p2
+ y2

q2
+ z2

r2
= 1

(ii) Hyperboloid of 1 sheet x2

p2
+ y2

q2
− z2

r2
= 1
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(iii) Hyperboloid of 2 sheets −x2

p2
− y2

q2
+ z2

r2
= 1

(iv) Hyperbolic paraboloid (this is a pringle!) x2

p2
− y2

q2
= z

(v) Parabolic cylinder x2

p2
= y
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(vi) ...and five other examples.

Can you find all of the above possible examples? Hint: since A is a symmetric matrix,
there exists an orthogonal change of basis matrix Q such that D := QTAQ is a diagonal
matrix. As we are finding the general form, we can consider vTDv + b′vT + c′ = 0, where
b′ ∈ R3 and c′ ∈ R. Consider different values taken by the seven coefficients of D, b′ and
c′ and find the ten examples of surfaces and the other degenerate examples too.

Example 3.47 (Compact surfaces). A compact surface is a surface S which is also a
compact set. Recall that the Heine-Borel theorem says that a set in Rn with the usual d2

metric is compact if and only if it is closed and bounded.

Theorem 3.48 (Classification of compact surfaces). A connected compact surface is one
of

(i) a sphere

(ii) an g-fold torus T# . . .#T (gluing of g tori)

(iii) gluing of n projective planes P# . . .#P

Figure 3.1: Orientable compact surfaces: Sphere and g-fold torus

In the second case of the above Theorem 3.48, g is the genus and denotes the number of
“holes”. We define the genus of the sphere to be zero.
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Figure 3.2: Non-orientable compact surface: Net for a projective plane

The third case of Theorem 3.48 includes, for example, the Klein bottle K which is the
gluing of two projective planes, K = P#P . Note that we need to expand slightly our
definition of a surface as the Klein bottle does not embed in R3. Also, we note that
K#P = P#P#P = T#P .

Note that in the above theorem, the first two cases are orientable, whereas the examples
in third case are non-orientable. So, a compact surface is fully described by its genus g
and whether it is orientable or not.

3.4 How do we measure distance and area on a sur-

face?

Let X : U → S = X(U) be a surface patch, and γ : (α, β)→ S a curve on S. Recall that
the arc length function of γ is given by

s(t) =

∫ t

t0

||γ′(u)||du, t0 ∈ (α, β) ,

As before, for γ(t) = X(u(t), v(t)) we have

γ′ = Xuu
′ +Xvv

′

so that

||γ′||2 =< Xuu
′ +Xvv

′, Xuu
′ +Xvv

′ >= ||Xu||2(u′)2 + 2 < Xu, Xv > u′v′ + ||Xv||2(v′)2 .

We abbreviate:

Definition 3.49. Let X : U → S = X(U) be a surface. The coefficients of the first
fundamental form (with respect to the parametrisation X) are given by

E =< Xu, Xu >, F =< Xu, Xv >, G =< Xv, Xv >



3.4. HOW DO WE MEASURE DISTANCE AND AREA ON A SURFACE? 65

Note that E,F,G : U → R are smooth functions.

Example 3.50. Let γ : R → R2, γ(t) = (x(t), y(t)) be a unit speed curve, and assume
that the generalised cylinder S = X(R2), X(u, v) = (x(u), y(u), v), is a smooth surface.
Compute the coefficients of the first fundamental of the parametrisation X.

Thus, we can compute the arc length of a curve on a surface in terms of data of the surface
and the corresponding curve in the parameter domain U :

Lemma 3.51. The arc length of a curve γ(t) = X(u(t), v(t)) on S is given by

Lba(γ) =

∫ b

a

√
Eu′2 + 2Fu′v′ +Gv′2dt.

More generally, if w ∈ TpS then w = Xu(p)λ + Xv(p)µ for some λ, µ ∈ R, and the length
of the vector w is given by

||w|| =
√
Eλ2 + 2Fλµ+Gµ2 .

In other words, the coefficients of the first fundamental form measure the length of tangent
vectors. Note that the coefficients of the first fundamental form depend on the choice of
parametrisation. Thus, we consider the following:

Definition 3.52. The first fundamental form of a surface S ⊂ R3 is the bilinear form
σp : TpS × TpS → R given by

σp(v, w) =< v,w >

for v, w ∈ TpS.

Recall that σp : TpS × TpS → R being bilinear just means that it is linear in both of
its arguments i.e. σp(αu + βv, w) = ασp(u,w) + βσp(v, w) and similarly for the second
argument.

This definition is clearly independent of a parametrisation! Indeed, the first fundamental
form is just the restriction of the bilinear form <,>: R3×R3 → R to the tangent space of
S:

σp =<,> |TpS×TpS .

The coefficients of the first fundamental form give exactly the matrix representation of the
first fundamental form:
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Lemma 3.53. If X : U → S is a parametrisation of S at p, then the matrix I =

(
E F
F G

)
is a matrix representation of σ in the basis {Xu, Xv}. That is,

σ(x, y) =
(
λ µ

)(E F
F G

)(
λ̃
µ̃

)
where x = Xuλ+Xvµ, y = Xuλ̃+Xvµ̃.

We have noted above that the coefficients depend on the parametrisation. Let X : U → S
be a surface patch with coefficients of the first fundamental form being E, F and G.
Suppose Φ : Ũ → U is a diffeomorphism. Since Φ is a diffeomorphism between open
subsets of R2, it can be written as Φ(x, y) = (u(x, y), v(x, y)) for some functions u and v.
Let X̃ = X ◦ Φ be the reparametrisation of X. Then,

X̃x = Xuux +Xvvx

X̃y = Xuuy +Xvvy

So we can calculate the coefficients of the first fundamental form with respect to X̃ and
write them in terms of the coefficients from X.

Ẽ = < X̃x, X̃x >= ux
2E + 2uxvxF + vx

2G

F̃ = < X̃x, X̃y >= uxuyE + (uxvy + uyvx)F + vxvyG

G̃ = < X̃y, X̃y >= uy
2E + 2uyvyF + vy

2G

Writing this as a matrix we get:

Lemma 3.54. Let X̃ = X ◦ Φ be a reparametrisation of the surface patch X : U → S,
where Φ(x, y) = (u(x, y), v(x, y)). Then,(

Ẽ F̃

F̃ G̃

)
= J(Φ)T

(
E F
F G

)
J(Φ)

where J(Φ) =

(
ux uy
vx vy

)
is the Jacobian of Φ.

Note that in some textbooks the first fundamental form might be written differently. Sup-
pose that w ∈ TpS for some surface patch X : U → S. Then, w = λXu + µXv for some
λ, µ ∈ R. Define linear maps du, dv : U → R by

du(w) = λ, dv(w) = µ

Then, we have
||w||2 =< w,w >= du2E + 2 du dvF + dv2G
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Now, w ∈ TpS, so there is some curve γ with γ(0) = p and derivative γ′(0) = w. Consid-
ering the differential of the arc length s′ = ||γ′||, write

ds2 = du2E + 2 du dvF + dv2G

The coefficients of the first fundamental form of a surface patch X : U → X(U) can be
used to compute the area of a region X(R) ⊂ X(U): recall (Methods of Applied Maths)
that the area is given by

A(X(R)) =

∫∫
R

||Xu ×Xv||dudv .

But recalling < a × b, c × d >=< a, c >< b, d > − < a, d >< b, c > for a, b, c, d ∈ R3 we
obtain

||Xu×Xv||2 =< Xu×Xv, Xu×Xv >=< Xu, Xu >< Xv, Xv > − < Xu, Xv >
2= EG−F 2

so that we proved:

Lemma 3.55. Let X : U → S = X(U) be a surface patch and R ⊂ U . Then the area of
X(R) is given by

A(X(R)) =

∫∫
R

√
EG− F 2dudv .

Note that the above definition appears to be dependent on the parametrisation. However,
we want the area to be independent of the parametrisation used.

Lemma 3.56. Let X̃ = X ◦Φ be a reparametrisation of a surface patch X : U → S. Then
for R ⊂ U , ∫∫

R

√
EG− F 2dudv =

∫∫
R̃

√
ẼG̃− F̃ 2dxdy

where R̃ = X̃−1(X(R)). Hence, the area of X(R) is invariant under reparametrisation.
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Proof. Exercise. Hint: Use Lemma 3.54.

Example 3.57. Compute the area of the standard cylinder C of height h > 0.

Hint: consider X(u, v) = (cosu, sinu, v) for u ∈ (0, 2π), v ∈ R and C = X(R), R =
[0, 2π]× [0, h]. Be careful: the region R is not in the parameter domain of X. Consider an
appropriate limit.

Example 3.58. Compute the area of a sphere of radius r.

3.5 How much does a surface bend?

We want to know how much a surface bends, that is, how much is the Gauss map changing
when we move a point on the surface?

We recall that although the unit normal of an orientable surface is only determined up to
a sign, we have picked a standard unit normal. If X : U → S is a surface patch, then
NX = Xu×Xv

||Xu×Xv || is the chosen standard unit normal.

The rate of change of a map f : Rn → Rm is measured by its derivative. But in the case
of a differentiable map f : S → Rm we are only interested in the rate of change of f(p)
while p is moving on S. The movement of points on the surface is linearised by the tangent
plane. Informally, if we consider two points p, q ∈ S which are “close” together, the vector
moving from p to q is “close” to being a tangent vector. Thus, we define:

Definition 3.59. Let f : S1 → S2 be a smooth map between two surfaces S1, S2. Then
the differential of f at p ∈ S1 is the linear map dfp : TpS1 → Tf(p)S2 which is given by

dfp(w) =
d

dt
(f ◦ γ)|t=0

where γ : (−ε, ε)→ S1, γ(0) = p, γ′(0) = w.

Example 3.60. Let X : U → S be a parametrisation with X(u, v) = p. Show that

dX(u,v)(e1) = Xu, dX(u,v)(e2) = Xv

where e1, e2 is the standard basis of R2.

We wish to show that the differential dfp of a smooth map f : S1 → S2 is well-defined.
That is, it does not depend on the choice of a curve γ. To do this we use the following
lemma.
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Lemma 3.61. Let f : S1 → S2 be a smooth map between surfaces and p ∈ S1. Suppose
X : U → S1 is a surface patch such that X(u0, v0) = p. Then,

dfp(w) = λ(f ◦X)u(u0, v0) + µ(f ◦X)v(u0, v0)

where w = λXu + µXv ∈ TpS1.

Proof. Let γ : (−ε, ε) → S1 be a curve such that γ(0) = p and γ′(0) = w. Possibly after
taking ε small enough, we may write γ(t) = (u(t), v(t)), where u(0) = u0 and v(0) = v0.

dfp(w) =
d

dt
(f ◦ γ)|t=0

=
d

dt
(f ◦X(u(t), v(t)))|t=0

=
(
(f ◦X)u(u, v)u′(t) + (f ◦X)v(u, v)v′(t)

)
|t=0

= λ(f ◦X)u(u0, v0) + µ(f ◦X)v(u0, v0)

Corollary 3.62. The differential dfp : TpS1 → Tf(p)S2 is well-defined.

Corollary 3.63. The differential dfp : TpS1 → Tf(p)S2 is linear.

Proof. Exercise – use Lemma 3.61.

Proposition 3.64.

(i) Let S be a surface, p ∈ S. Then the differential of the identity map id : S → S is the
identity map id : TpS → TpS.

(ii) Let S1, S2 and S3 be surfaces with f1 : S1 → S2 and f2 : S2 → S3 smooth. Then,

d(f2 ◦ f1)p = df2 f2(p) ◦ df1 p ∀p ∈ S1

(iii) If f : S1 → S2 is a diffeomorphism, then for all p ∈ S1, dfp : TpS1 → TpS2 is
invertible.

Proof. Exercise.

Recall that we are interested in the rate of change of the Gauss map N : S → S2 ⊂ R3,
where S2 is the unit sphere.
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Definition 3.65. The second fundamental form of a surface S is the form τp : TpS×TpS →
R, p ∈ S, given by

τp(x, y) = − < dNp(x), y >

for x, y ∈ TpS.

Lemma 3.66. The map τp is bilinear.

Proof. Since the differential is linear, τp is linear in the first component and it is clearly
linear in the second component.

As for the first fundamental form, we wish to be able to calculate the form for a given
surface patch. Let X : U → S be a surface patch and p a point in S with X(u0, v0) = p.
If w ∈ TpS is given by w = λXu + µXv, then applying Lemma 3.61 we obtain:

dNp(v) = λ(N ◦X)u(u0, v0) + µ(N ◦X)v(u0, v0) .

Using this, we calculate coefficients for the second fundamental form.

τp(Xu(u0, v0), Xu(u0, v0)) = − < (N ◦X)u(u0, v0), Xu(u0, v0) >

= − < (N ◦X)(u0, v0), Xu >u + < (N ◦X)(u0, v0), Xuu(u0, v0) >

= < (N ◦X)(u0, v0), Xuu(u0, v0) >

Similar computations give

τp(Xu(u0, v0), Xv(u0, v0)) =< (N ◦X)(u0, v0), Xuv(u0, v0) >

and
τp(Xv(u0, v0), Xv(u0, v0)) =< (N ◦X)(u0, v0), Xvv(u0, v0) > .

Definition 3.67. Let X : U → S = X(U) be a surface patch with Gauss map N : S → R3.
The coefficients of the second fundamental form (with respect to the parametrisation X)
are given by

L =< N ◦X,Xuu >, M =< N ◦X,Xuv >, N =< N ◦X,Xvv >

Note that, since the second partial derivatives are all continuous, M =< N ◦ X,Xvu >.
Moreover, L,M,N : U → R are smooth functions.
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Lemma 3.68. If X : U → S is a parametrisation of S at p, then the symmetric matrix

II =

(
L M
M N

)
is a matrix representation of τp in the basis {Xu, Xv}. That is,

τp(x, y) =
(
λ µ

)(L M
M N

)(
λ̃
µ̃

)
where x = Xuλ+Xvµ, y = Xuλ̃+Xvµ̃.

Note that, as with the first fundamental form, you may see the second fundamental form
written differently elsewhere as

Ldu2 + 2M dudv +Ndv2

For more details see, for example, Chapter 7 in Pressley.

From the above lemma, we also see the following.

Lemma 3.69. The second fundamental form is symmetric:

τp(x, y) = τp(y, x) , p ∈ S, x, y ∈ TpS .

Proof. Easy exercise.

We now show that dNp : TpS → TpS is an endomorphism. That is, it is a linear map from
TpS to itself. Since the differential of a map is always linear, we only need to show that
dN(v) ∈ TpS for all v ∈ TpS. By definition N : S → S2, that is, N takes values in the unit
sphere since ||N || = 1. Thus, dNp : TpS → TN(p)S

2 by the definition of the differential.
Recall that

TN(p)S
2 = {v ∈ R3 |< v,N(p) >= 0}

but vectors which are perpendicular to the Gauss map are exactly the tangent vectors of
S. Thus

TN(p)S
2 = TpS

and dNp is for each p ∈ S an endomorphism of the tangent space at p. Since τp is symmetric
we see that

< dNp(x), y >= −τp(x, y) = −τp(y, x) =< x, dNp(y) >

for all p ∈ S, x, y ∈ TpS. In other words, dNp is a self–adjoint endomorphism.

Definition 3.70. The shape operator (Weingarten-operator) is the self–adjoint linear map
Ap : TpS → TpS given by

Apx = −dNp(x)
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So, in particular, we have:

τp(x, y) =< Ap(x), y >=< x,Ap(y) >

We will use the following important fact about self-adjoint maps:

Lemma 3.71. Let A : V → V be a self-adjoint operator on a vector space V . Then A is
diagonalisable with respect to a basis of eigenvectors v1, . . . vn. Moreover, the eigenvectors
are pairwise orthogonal.

Proof. Let e1, . . . , en be any orthogonal basis of V . Since A is self-adjoint, its matrix
representation is symmetric, hence it is diagonalisable. That is, there exists Q ∈ O(n)
such that D = QTAQ is diagonal.

In particular, the shape–operator Ap is diagonalisable with respect to a basis of eigenvectors
v1, v2 with corresponding (real) eigenvalues κ1(p), κ2(p):

Definition 3.72. The eigenvalues κ1, κ2 of the shape-operator are called the principal
curvatures of S. The Gaussian curvature is defined by

K = κ1κ2 = det(A)

and the mean curvature by

H =
κ1 + κ2

2
= 1

2
trace(A) .

Note: the principal, mean and Gaussian curvatures are all functions on the surface S.

Note also that if we change the sign of the normal map N , dNp and so Ap also change sign.
However, since the Gaussian curvature K = det(A) it does not change sign. Therefore,
Gaussian curvature is also well-defined for non-orientable surfaces. The same is not true
for mean curvature.

We now want to compute the above curvatures in terms of a parametrisation, that is, in
terms of the coefficients of the first and second fundamental form. Writing

(N ◦X)u = aXu + bXv, (N ◦X)v = cXu + dXv

with a, b, c, d : U → R we get

−L = − < N ◦X,Xuu >=< (N ◦X)u, Xu >= aE + bF

−M = − < N ◦X,Xuv >=< (N ◦X)v, Xu >= cE + dF

−M = − < N ◦X,Xvu >=< (N ◦X)u, Xv >= aF + bG

−N = − < N ◦X,Xvv >=< (N ◦X)v, Xv >= cF + dG
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so that (
E F
F G

)(
a c
b d

)
= −

(
L M
M N

)
.

Since the shape operator Ap written in matrix form is A = −
(
a c
b d

)
, we have

Lemma 3.73. The matrix representation of the shape operator A with respect to the basis
{Xu, Xv} is given by

A = I−1II .

Thus,

K = detA =
LN −M2

EG− F 2

and

H = 1
2

trA =
LG− 2MF +NE

2(EG− F 2)

Example 3.74. Compute the principal, mean and Gaussian curvature of the standard
cylinder X(u, v) = (cosu, sinu, v).

Surfaces with certain curvature properties have been extensively studied in the past. Fa-
mous examples are:

Definition 3.75. A surface with mean curvature H = 0 is called a minimal surface. A
surface with constant mean curvature H 6= 0 is called a CMC surface (a constant mean
curvature surface). A surface with constant negative Gaussian curvature is called a K–
surface.

The minimal surfaces are indeed critical points of the area functional. That is, minimal
surfaces occur in nature as soap films.
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CMC surfaces are also critical points of the area functional but under the constraint of a
fixed enclosed volume; thus they arise as soap bubbles.

Other famous surface classes are Lagrangian surfaces and Willmore surfaces.

To understand the principal, Gaussian and mean curvature geometrically, we discuss how
these curvatures are related to curvatures of curves on the surface.

Let γ be a curve on an orientable surface S and N the Gauss map of S. Since γ′(t) ∈ Tγ(t)S
we have < γ′, N ◦ γ >= 0. In particular, if γ is unit speed then

γ′, N ◦ γ, (N ◦ γ)× γ′

is a moving frame of γ. That is, an orthonormal basis for every t. We have

γ′′ = κnN ◦ γ + κg(N ◦ γ)× γ′

for some smooth functions κn, κg. Note that the curvature of γ is κ = ||γ′′|| and hence

κ2 = κ2
n + κ2

g
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Definition 3.76. Let γ be a unit speed curve on a surface S and N a Gauss map of S.
Then

κn =< N ◦ γ, γ′′ >

is called the normal curvature of γ, and

κg =< (N ◦ γ)× γ′, γ′′ >

is called the geodesic curvature.

Note that if we change the sign of N then the signs of κn and κg also change. So they are
only defined up to sign for non-orientable surfaces.

Question: We have defined the normal and geodesic curvature only for unit speed curves.
How would you define these for a regular curve (Hint: compare with how we defined
curvature of regular curves)?

Although in the definition of the normal curvature the second derivative of γ is used, the
normal curvature indeed only depends on the tangent of γ:

Theorem 3.77. Let S be a surface with Gauss map N . Then the normal curvature of a
unit speed curve γ on S only depends on γ′ (and not on γ′′):

κn = τ(γ′, γ′) .

In particular, if X : U → S is a parametrisation of S with γ(t) = X(u(t), v(t)) ∈ X(U)
for all t then

κn = L(u′)2 + 2Mu′v′ +N(v′)2

Here L = L(t) = L ◦ γ(t) = L(u(t), v(t)) and similarly for M and N .

Proof. If γ(t) ∈ X(U) for some t then the assumption that γ(t) ∈ X(U) for all t can be
achieved by using a smaller parameter domain of γ. Thus, using Lemma 3.68, the two
statements are equivalent.

Now, γ(t) = X(u(t), v(t)) for some parametrisation X of S, so γ′ = Xuu
′ + Xvv

′. Calcu-
lating and using that Xu and Xv are in the tangent space, we get:

< γ′′, N ◦ γ > = < (Xuu
′ +Xvv

′)′, N ◦ γ >
= < Xuu(u

′)2 +Xuvu
′v′ +Xuu

′′ +Xvv(v
′)2 +Xvuu

′v′ +Xvv
′′, N ◦ γ >

= L(u′)2 + 2Mu′v′ +N(v′)2
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Note that this theorem also means that if we have two different curves which just touch
at a point p ∈ S, then they both have the same normal curvature at p. This theorem also
yields Meusnier’s Theorem as a corollary.

Corollary 3.78 (Meusnier’s Theorem). Let S be an orientable surface, p ∈ S and w a
tangent vector at p. Let Πθ be a plane through p parallel with the tangent vector w which
meets the tangent plane TpS at an angle θ. Suppose the curve γθ in Πθ ∩ S through p has
curvature κ = κθ. Then κ sin θ is independent of θ.

Proof. We may parametrise γ = γθ so it has unit speed. Then, γ′′ = κnN ◦γ+κg(N ◦γ)×γ′.
Now, γ is in the plane Πθ. Hence, the component of κ in the N ◦ γ direction is κn. That
is, κn = κθ sin θ. However, by Theorem 3.77, κn depends only on p and w, not θ.

Corollary 3.79. If θ = 0 in the above theorem, κ = ±κn and κg = 0.

We will now link normal curvature with principal curvature of a surface which will give us
a geometric understanding of principal curvature.
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Let S be an oriented surface with Gauss map N , and Ap its shape–operator. Since Ap is
self–adjoint, there is an orthonormal basis {v1, v2} for TpS of eigenvectors of Ap. Recall
that the corresponding eigenvalues κ1 and κ2 are the principal curvatures at p.

Consider a unit speed curve γ : (α, β) → S with γ(t0) = p. Then γ′(t0) ∈ TpS and thus,
there exists θ ∈ R with

γ′(t0) = cos θv1 + sin θv2 ,

that is, θ is the oriented angle from v1 to γ′. By Theorem 3.77, the normal curvature of γ
is given by

κn = τ(γ′, γ′) .

Since v1 and v2 are orthogonal unit vectors and κi are eigenvectors of the shape operator
we have

τ(v1, v1) =< Av1, v1 >= κ1, τ(v1, v2) = 0, τ(v2, v2) = κ2 .

Thus
κn = τ(cos θv1 + sin θv2, cos θv1 + sin θv2) = cos2 θκ1 + sin2 θκ2 .

This proves the following theorem:

Theorem 3.80 (Euler’s Theorem). The normal curvature of a unit speed curve γ is given
by

κn = κ1 cos2 θ + κ2 sin2 θ

where κ1, κ2 are the principal curvatures, and θ is the oriented angle from an eigenvector
v1 of the shape-operator with eigenvalue κ1 to γ′.

Euler’s theorem now gives a geometric interpretation of the principal curvatures:

Theorem 3.81. The principal curvatures at a point p ∈ S are the maximum and minimum
normal curvatures of all unit speed curves on the surface S that pass through p.

Proof. If κ1(p) = κ2(p) then Euler’s theorem shows κn = κ1(sin2 θ+cos2 θ) = κ1 for all unit
speed curves. Thus, κn is independent of the choice of unit speed curve, and the maximum
normal curvature equals the minimum normal curvature and is given by κ1 = κ2.

If κ1(p) 6= κ2(p) assume without loss of generality that κ1(p) > κ2(p). Then Euler’s
theorem shows

κn = κ1 cos2 θ + κ2 sin2 θ = κ1(1− sin2 θ) + κ2 sin2 θ

= κ1 + (κ2 − κ1) sin2 θ ≤ κ1

since κ2 − κ1 < 0 and sin2 θ ≥ 0. Similarly,

κn = (κ1 − κ2) cos2 θ + κ2 ≥ κ2 .
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In the light of the above theorem, recall Example 3.74 where you calculated the principal
curvatures of a cylinder. Also recall the principal curvatures for a sphere (Question 5,
Problem sheet 6). Do these agree with your intuition for each surface?

Example 3.82. Consider the elliptic paraboloid S = X(R2) with X(u, v) = (u, v, u2 +v2).

Compute the principal curvatures, the mean and the Gaussian curvature.

Show that the curve γ(t) = (cos t, sin t, 1) is a unit speed curve on the elliptic paraboloid.

Compute the normal curvature of γ by

(i) Theorem 3.77

(ii) the definition of the normal curvature.

3.6 What does the curvature say about the shape of

a surface?

The Gaussian and the mean curvature describe the local shape of a surface.

Definition 3.83. Let S be a surface with principal curvatures κ1, κ2, Gaussian curvature
K and mean curvature H. A point p ∈ S is called

• elliptic if K(p) > 0,

• hyperbolic if K(p) < 0,

• parabolic if K(p) = 0, H(p) 6= 0,

• flat or planar if K(p) = 0 = H(p),

• umbilic if κ1 = κ2.

What is the geometric interpretation of this definition? Consider the shape-operator Ap
at a point p ∈ S. Since it is self-adjoint, it is diagonalisable with respect to a basis of
eigenvectors v1, v2 which are orthogonal. The corresponding eigenvectors κ1 and κ2 are the
principal curvatures and these are the maximum and minimum for all normal curvatures
of curves through p. Consider curves γ through p which are formed by intersection of S
with a plane Π perpendicular to the tangent plane TpS. By the corollary to Meusnier’s
Theorem with θ = 0, we see that γ has curvature κ = κn.
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If p is elliptic, then κ1, κ2 > 0, or κ1, κ2 < 0. Hence S has a local maximum or minimum
at p.

If p is hyperbolic, κ1 < 0 < κ2 and so there is a saddle point at p.

To explain parabolic, flat and umbilic points let us look at some examples:

Example 3.84. On the sphere S2 we have κ1 = κ2 = 1 and every point on the sphere is
both elliptic and umbilic.

Example 3.85. On the cylinder of radius r we have κ1 = 1
r

and κ2 = 0, so that all point
are parabolic (no point on the cylinder is umbilic).

Example 3.86. On a plane both principal curvatures are zero, so that all points are flat.
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You might think that flat, or planar points are only found on planes. However, the situation
is a little more complicated than that. There are also flat points on the surfaces z = x4

and z = x3 − 3xy2.

However, we do have the following theorem.

Theorem 3.87. Let S be a connected surface where every point is umbilic. Then S is an
open subset of a plane, or a sphere.

Proof. Let X : U → S be a surface patch around a point p ∈ S, where U ⊂ R2 is connected.
Denote κ := κ1 = κ2 then the shape operator

A = κ

(
1 0
0 1

)
is a multiply of the identity matrix (written in a basis of eigenvectors of A). But then
Ap = κ(p)idTpS on TpS. Hence, it is a multiple of the identity matrix with respect to any
basis. Then

(N ◦X)u = −κXu, (N ◦X)v = −κXv

and by further differentiation:

(κXu)v = −(N ◦X)uv = −(N ◦X)vu = (κXv)u .

This shows
κvXu + κXuv = κuXv + κXvu
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and then
κvXu = κuXv .

But Xu, Xv are linearly independent, so κu = κv = 0. Put differently, κ is constant.

If κ = 0, then (N ◦X)u = −κXu = 0 and (N ◦X)v = 0, so N ◦X is constant. Then

< N ◦X,X >u=< N ◦X,Xu >= 0 =< N ◦X,X >v

and < N ◦X,X > is constant. In other words, X(U) is contained in a plane.

If κ is a non–zero constant, then (N ◦ X)u = −κXu and (N ◦ X)v = −κXv shows that
N ◦X = −κX + c for a constant c ∈ R3. Then

||X − 1

κ
c||2 = || − 1

κ
(N ◦X)||2 =

1

κ2
.

Since κ is constant, this shows that X is an open subset of a sphere of radius r = 1
κ2

and
centre 1

κ
c.

So all surface patches are open subsets of a plane or a sphere. However, where two surface
patches intersect, the intersection is part of the same plane, or the same sphere. Hence, S
itself is an open subset of a plane, or a sphere.

Note that this is the analogue of the result for plane curves of constant curvature.

3.7 How many surfaces have the same curvature?

Our last question is how much a surface can be changed without changing the curvature.
Intuitively, the shape of a surface should not be changed by a rigid motion.

Lemma 3.88. The first and second fundamental forms are preserved by rigid motion. That
is, by a map X 7→MX + b, where M ∈ SO(3) and b ∈ R3.

Proof. LetX : U → S be a surface patch. Then (MX+b)u = MXu and (MX+b)v = MXv.
Since M ∈ SO(3), < MXu,MXv >=< Xu, Xv > and hence the first fundamental form
is preserved. Since det(M) = 1, MXu ×MXv = det(M)Xu ×Xv = Xu ×Xv and so the
second fundamental form is also preserved.

Corollary 3.89. The principal, mean and Gaussian curvatures are preserved by rigid
motion.

So translating and rotating our surface does preserve its shape. But are there other oper-
ations on the surface which preserve the curvature?
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Definition 3.90. Let f : S1 → S2 be a smooth map between two surfaces. We call f
a local isometry if it maps any curve in S1 to a curve of the same length in S2. In this
situation, we say S1 and S2 are locally isometric.

If f is a local isometry which is also a diffeomorphism, then we call f and isometry . Then,
S1 and S2 are isometric.

The following lemma provides an alternative description of a local isometry.

Lemma 3.91. Let f : S1 → S2 be a smooth map between surfaces S1 and S2. Then f is
local isometry if and only if

< dfp(x), dfp(y) >=< x, y >

for all p ∈ S1 and x, y ∈ TpS1.

Note that the inner product on the right hand side is in TpS1, whereas the inner product
on the left hand side is in Tf(p)S2

Proof. Let γ1 : (t0, t1)→ S1 be a curve in S1. Then

s(γ1) =

∫ t1

t0

< γ′1, γ
′
1 >

1/2 dt

Now, γ2 := f ◦ γ1 is a curve on S2 with γ′2 = dfγ1(t)(γ
′
1). So,

s(γ2) =

∫ t1

t0

< γ′2, γ
′
2 >

1/2 dt

=

∫ t1

t0

< dfγ1(t)(γ
′
1), dfγ1(t)(γ

′
1) >1/2 dt

If < dfp(x), dfp(y) >=< x, y >, then s(γ1) = s(γ2) and f is a local isometry. Conversely,
if f is a local isometry, then s(γ1) = s(γ2) for all curves γ1 : (−ε, ε) → S1. By taking ε
small enough, we see from the above integrals that < dfγ1(t)(γ

′
1), dfγ1(t)(γ

′
1) >=< γ′1, γ

′
1 >.

Since for all w ∈ TpS1 we may find a curve γ1 with γ1(0) = p and γ′1(0) = w, the result
follows.

Corollary 3.92. If f : S1 → S2 is a local isometry, then dfp : TpS1 → TpS2 is an isometry
of vector spaces i.e. it preserves distance in the vector space.

Proof. It is enough to show that dfp is a bijection. Suppose w ∈ TpS1 such that w 6= 0,
but dfp(w) = 0. Then, 0 6=< w,w >=< dfp(w), dfp(w) >= 0, a contradiction.
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Most importantly for us however, we get the following corollary:

Corollary 3.93. A smooth map f : S → S̃ is a local isometry if and only if it preserves
the first fundamental form i.e.

σ̃f(p)(dfp(x), dfp(y)) = σp(x, y)

Example 3.94. Show that the plane and the cylinder are locally isometric.

So, locally isometric surfaces may look quite different! However, there is the following
theorem due to Gauss:

Theorem 3.95 (Theorema egregium (“excellent theorem”)). Let f : S → S̃ be a local
isometry, and K and K̃ be the Gaussian curvatures of S and S̃, respectively. Then

K(p) = K̃(f(p)) , p ∈ S .

Thus, Gaussian curvature is preserved under a local isometry. This is truly astonishing: the
definition of Gaussian curvature uses the second derivative of a parametrisation, whereas a
local isometry only preserves the first fundamental form which is given by first derivatives.
Consider this and you might understand Gauss’ amazement: a cylinder and a plane have
the same Gaussian curvature!

Before proving this theorem, we will give a straightforward real-world corollary.

Corollary 3.96. Any map of any region of the earth’s surface must distort distances.

Proof. Any map f which did not distort distances would be a diffeomorphism from this
region of the sphere to a region in the plane which multiplies all distances by the same
constant vector c > 0. Without loss of generality, we can assume that the plane contains
the origin. Mapping the region of the plane to the plane by x 7→ c−1x, the composition
with f would give a local isometry between the region of the sphere and a region of the
plane. But the plane has Gaussian curvature 0 and the sphere has Gaussian curvature
K > 0. This contradicts the theorema egregium!
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We will prove Gauss’ Therorema egregium via a series of lemmas which will also be useful
in their own right.

Consider a surface patch X : U → S for an orientable surface S. Let N : S → R3 be the
Gauss map of S. Recall that Xu and Xv lie in the tangent plane TpS at a point p and
by the regularity condition on X, they are linearly independent. So, Xu, Xv and N form
a moving basis at the point p ∈ S. (Note that it is not necessarily an orthogonal basis
since Xu and Xv cannot be assumed to be orthogonal.) Hence, we can express the second
partial derivatives of X in this basis.

Xuu = Γ1
11Xu + Γ2

11Xv + LN

Xuv = Γ1
12Xu + Γ2

12Xv +MN

Xvu = Γ1
21Xu + Γ2

21Xv +MN

Xvv = Γ1
22Xu + Γ2

22Xv +NN

(3.1)

where Γkij : U → R are smooth functions and are called the Christoffel symbols with respect
to X. Since Xuv = Xvu, we have Γ1

12 = Γ1
21 and Γ2

12 = Γ2
21. Note that we have used that

L =< N,Xuu > etc. in the above equations (cf. Definition 3.67).

Lemma 3.97. The Christoffel symbols Γkij depend only on E, F and G and their deriva-
tives.

Proof. Using equations 3.1, we consider the inner product of the second derivatives of X
with the first derivatives of X. This gives us six equations, two of which are the following:

< Xuu, Xu > = Γ1
11E + Γ2

11F

< Xuu, Xv > = Γ1
11F + Γ2

11G

We now wish to find other expressions for the inner products on the left hand side in terms
of E, F and G and their derivatives. To do this we use the definitions of E, F and G and
differentiate. For example,

Eu =< Xu, Xu >u= 2 < Xuu, Xu >,

Fu =< Xu, Xv >u=< Xuu, Xv > + < Xu, Xuv >

=< Xuu, Xv > +1
2
Ev.

Hence, we get simultaneous equations in two variables:

1
2
Eu = Γ1

11E + Γ2
11F

Fu − 1
2
Ev = Γ1

11F + Γ2
11G

Solving these and the other such equations, we get explicit formulae for the Christoffel
symbols in terms of E, F , G and their derivatives.
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Exercise 3.98. Give an explicit formula for each Christoffel symbol Γkij in terms of E, F
and G and their derivatives.

Since X is smooth, we have that Xuuv = Xuvu. Using equations 3.1 we obtain:

(Γ1
11Xu + Γ2

11Xv + LN)v = (Γ1
12Xu + Γ2

12Xv +MN)u

Differentiating and rearranging:

((Γ1
11)v − (Γ1

12)u)Xu + ((Γ2
11)v − (Γ2

12)u)Xv + (Lv −Mu)N

=Γ1
12Xuu + (Γ2

12 − Γ1
11)Xuv − Γ2

11Xvv − LNv +MNu

Recall that if A = (aij) is the matrix with respect to the basis Xu, Xv for the Wiengarten
operator Ap = −dNp, then Nu = dNp(Xu) = −a11Xu − a21Xv and Nv = dNp(Xv) =
−a12Xu − a22Xv. Substituting these and equations 3.1 into the above gives:

((Γ1
11)v − (Γ1

12)u)Xu + ((Γ2
11)v − (Γ2

12)u)Xv + (Lv −Mu)N

=Γ1
12(Γ1

11Xu + Γ2
11Xv + LN) + (Γ2

12 − Γ1
11)(Γ1

12Xu + Γ2
12Xv +MN)

− Γ2
11(Γ1

22Xu + Γ2
22Xv +NN) + (La12 −Ma11)Xu + (La22 −Ma21)Xv

By Lemma 3.73, A = I−1II. Calculating, we obtain:

A =

(
a11 a12

a21 a22

)
=

1

EG− F 2

(
GL− FM GM − FN
EM − FL EN − FM

)
Therefore,

La12 −Ma11 = −F LN −M
2

EG− F 2
= −F detA = −FK

La22 −Ma21 = E
LN −M2

EG− F 2
= E detA = EK

After substituting these into the above equation, equating coefficients of Xu Xv and N on
each side and rearranging, we get the following three equations:

FK = (Γ1
12)u − (Γ1

11)v + Γ2
12Γ1

12 − Γ2
11Γ1

22

EK = (Γ2
11)v − (Γ2

12)u + Γ1
11Γ2

12 + Γ2
11Γ2

22 − Γ1
12Γ2

11 − (Γ2
12)2

Lv −Mu = LΓ1
12 +M(Γ2

12 − Γ1
11)−NΓ2

11

Starting instead with Xuvv = Xvvu, we get a further three equations which proves the
following propositions.

Proposition 3.99 (Codazzi-Mainardi Equations). Let E, F , G and L, M , N be the
coefficients of the first and second fundamental forms of an orientable surface patch X :
U → S and Γkij be the Christoffel symbols. Then the following equations hold:

Lv −Mu = LΓ1
12 +M(Γ2

12 − Γ1
11)−NΓ2

11

Mv −Nu = LΓ1
22 +M(Γ2

22 − Γ1
12)−NΓ2

12
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Proposition 3.100 (Gauss Equations). Let E, F , G be the coefficients of the first funda-
mental forms of an orientable surface patch X : U → S with Gaussian curvature K and
Γkij be the Christoffel symbols. Then the following equations hold:

EK = (Γ2
11)v − (Γ2

12)u + Γ1
11Γ2

12 + Γ2
11Γ2

22 − Γ1
12Γ2

11 − (Γ2
12)2

FK = (Γ1
12)u − (Γ1

11)v + Γ2
12Γ1

12 − Γ2
11Γ1

22

FK = (Γ2
12)v − (Γ2

22)u + Γ2
12Γ1

12 − Γ2
11Γ1

22

GK = (Γ1
22)u − (Γ1

12)v + Γ1
22Γ1

11 + Γ2
22Γ1

12 − (Γ1
12)2 − Γ2

12Γ1
22

It turns out that there are no further such equations.

Exercise 3.101. Derive the three other equations from Xuvv = Xvvu in the same way as
above to complete the proofs of Propositions 3.99 and 3.100.

Proof of Gauss’ Theorema egregium. Let X : U → S be a surface patch around the point
p. Since X is regular, E =< Xu, Xu > > 0, similarly G > 0. So we can use one of the
corresponding Gauss equations to write K as an equation using only E, F and G and their
derivatives (by Lemma 3.97 the Christoffel equations depend only on E, F and G and
their derivatives). By Corollary 3.93, the first fundamental form is invariant under local
isometries, so the Gaussian curvature is too.

3.8 The fundamental theorem of surfaces

We know that the Gauss and Cordazzi-Mainardi equations must be satisfied by the coef-
ficients of the first and second fundamental forms. What other restrictions are there on
E, F , G, L, M and N so that there is guaranteed to exist a surface with those as the
coefficients of its fundamental forms?

In addition to the above equations, E =< Xu, Xu > > 0 and similarly G > 0. Also, if S is
regular, then Xu and Xv are linearly independent. In other words, det I = EG− F 2 > 0.
It turns out that this is enough. More precisely, we obtain the following theorem which is
stated without proof.

Theorem 3.102 (Fundamental theorem of surfaces). Let E, F , G, L, M and N be smooth
functions defined on a connected open set U ⊂ R2 with values in R. Assume that E,G > 0
and EG − F 2 > 0. Moreover, assume that the Gauss and Cordazzi-Mainardi equations
hold. Then, for all (u0, v0) ∈ U , there exists an open neighbourhood V of (u0, v0) and a
surface patch X : V → R3 such that X(V ) has E, F , G and L, M , N as the coefficients
of its first and second fundamental forms, respectively.

Furthermore, if X̃ : V → R3 is another surface patch with the same first and second
fundamental forms, then there exists a rigid motion taking X to X̃. That is, there exists
M ∈ SO(3), b ∈ R3 such that X̃ = MX + b.
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Thus, if we want to prescribe the coefficients of the first and second fundamental form
we have to guarantee that the Gauss and Codazzi–Mainardi equations hold. This is the
reason why surface theory is still a very lively area of research: to construct a minimal
surface, a CMC surface or a Willmore surface, one has to solve highly non–trivial partial
differential equations. In the last 50 years, various methods have been introduced to study
these special surface classes.



Index

arc length, 20
function, 20
curve on a surface, 65

area, 67
astroid, 15
atlas, 45, 47

transition map, 47

binormal, 37

chart, 45, 47
transition map, 47

Christoffel symbols, 84
circle, 15, 18

curvature, 28
CMC surface, 73
Codazzi-Mainardi equations, 85
compact surface, 63

classification of, 63
continuous, 44
curvature, 27

Gaussian, 72, 73
geodesic, 75
mean, 72, 73
normal, 75
of a Frenet curve, 39
of a regular curve, 28
of a regular plane curve, 29
of a regular space curve, 29
of a unit speed curve, 28
principal, 72
signed, 31

curve
arc length, 20
binormal, 37

Cartesian equation, 13
curvature, 28
Frenet, 37
normal, 30, 37
plane, 30
regular, 24
singular, 24
smooth, 17
space curve, 36
tangent, 17
torsion, 38
unit speed, 21

cylinder, 59

diffeomorphism, 23, 50
between two surfaces, 52

differentiable map, 51
differential, 68

elliptic point, 78
Euler’s Theorem, 77

first fundamental form, 65
coefficients, 64

flat point, 78
Frenet curve, 37
Frenet equations

of a plane unit speed curve, 31
of a unit speed Frenet curve, 38

Frenet frame
of a plane unit speed curve, 30
of a unit speed Frenet curve, 37

fundamental form
first, 65
second, 70

88



INDEX 89

Fundamental Theorem
of plane curves, 33
of space curves, 40
of surfaces, 86

Gauss equations, 85
Gauss map, 54
Gaussian curvature, 72
generalised cone, 60
generalised cylinder, 59
graph, 48

homeomorphism, 44
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